This document is intended to aid centres to successfully plan, deliver and assess Application of Number.


 Theodora Price
 1 years ago
 Views:
Transcription
1 ESSENTIAL SKILLS WALES APPLICATION OF NUMBER General Guidance/Clarification This document is intended to aid centres to successfully plan, deliver and assess Application of Number. Whilst this guidance focuses on clarification and application of the first two columns of the standards You must provide evidence that you can & Evidence requirements it is emphasised that candidates must have covered sufficiently the skills included in the third column  In order to show that you are competent, you need to show how to: before attempting to produce a portfolio. This guidance/clarification should be read in conjunction with the following publications: Essential Skills Wales publication (WG, April 2010) Additional Clarification of Essential Skills Wales (WG, November 2011) WJEC Example Portfolios (Available on CD from WJEC) WJEC Handbook for Centres 2011/12 (Available from WJEC website) Please also refer to Appendix 1  Clarification of Source/Presentation Types and Appendix 2  Suggested Calculations at the end of this document Progression Throughout all levels progression is demonstrated by increasing levels of autonomy on the part of the candidate and increased complexity of planning, data sources, calculation, presentation and interpretation. Skills and Evidence Progression  Essential Skills Wales publication (p ) At all levels tasks should follow the whole process of: Understanding and tackling a problem collecting and interpreting data carrying out calculations checking results interpreting results presenting findings reflecting/reviewing the task (Guidance  Essential Skills Wales Publication (p.96) Each level should build upon the skills required at lower levels. Task Setting Whilst candidates can present evidence from a variety of different tasks, centres are encouraged to devise tasks which give candidates opportunities to cover all criteria using a single meaningful task. Centres are advised to look at levels above and below that aimed at. November
2 LEVEL 1 At level 1, tasks should follow the whole process of: Understanding and tackling a problem obtaining and interpreting data carrying out calculations checking results interpreting results presenting findings For tasks to be meaningful it is advised that candidates attempt to produce a portfolio based on a meaningful real life task that gives opportunities to meet all the criteria. Should candidates be unable to meet all the criteria of in the context of one task then they can produce standalone evidence for the missing criteria this evidence should also have a meaningful reallife purpose and in order to be realistic should include some evidence of interpretation. 2
3 N1.1 Understand numerical data N1.1.1 Understand and describe at least one given practical problem or task that involves a range of numerical data and information. N1.1.2 Agree with an appropriate person how you will tackle it. N1.1.3 Obtain relevant numerical data and information from at least two sources to meet the purpose of your task. Evidence requirements Clarification of Evidence Requirement Notes/Examples candidate has understood and described the given problem or task. Evidence must be in the form of notes produced by the candidate (by hand or electronically) candidate has contributed to deciding how the task will be tackled Evidence must be in the form of notes produced by the candidate (by hand or electronically) candidate is clear about how the data/information you obtain meets your purpose. All tasks should have a clear reallife purpose and all work should to be in the context of the task. i.e. why do we need to know this? Who needs to know this? The candidate needs to explain the task and its purpose in their own words. The task must have sufficient opportunities for the candidate to obtain relevant numerical data and use suitable methods. The task brief may be given to the candidates. This may be done at the beginning of each part of the task or as a whole at the beginning of the task. This requires the candidates to write the task brief in their own words and how they are going to tackle it. Careful planning for this criterion also provides coverage for: Planning could follow the structure shown in the Notes/Example column. The evidence may be located at various stages throughout the task. The candidates need to obtain data from at least two different sources and show how they have used these sources. Of these, at least one of the sources needs to be a chart / graph / diagram or table. For example  A person wants to buy a house in a certain area and wants to find out information about the average house in that area. A discussion with the tutor/teacher could follow the following pattern: What do I want to find out? Why do I want to find it? What data do I need to find it out? Where will I get this data? What calculations will I need to perform? How will I check that those calculations make sense? How will I present the findings effectively? How will I know if I've found out what I wanted to find? Then the candidate could outline the key points and the teacher/tutor could sign it to show agreement For example, in the house task: One source could be a table of records of 10 houses in a certain area. The second source could be a scale diagram of the floor plan of an average house in the area. 3
4 Your sources must include at least one of a table, a chart, a graph, or a diagram. Evidence must include data/information obtained from at least two different sources. At least one source must include a table, chart, graph or diagram. Evidence must include: copies of source material details of the site/s of observation/measurement records of data/information obtained Sources may include: information from the internet information from books/magazines direct measurements surveys/questionnaires maps/scale diagrams ALL SOURCES NEED TO BE SHOWN AND THEIR USE NEEDS TO BE EXPLICIT. I.E. The candidate needs to show how they have used each source. E.g. by marking on graphs. A map showing the location of the houses that are for sale. A graph showing house prices in the area. 4
5 N1.2 Carry out calculations N1.2.1 Use appropriate methods to get the results you need and describe the methods you have used. N1.2.2 Use the data and information you have obtained to carry out calculations relevant to your task to do with: amounts or sizes scales or proportion handling statistics candidate can identify and describe the methods and calculations that are suitable for getting the results you need. Evidence of describing methods must normally be in the form of notes produced by the candidate (by hand or electronically) candidate: has used data and information from N1.1 is clear about the purpose and relevance of your calculations Evidence for the second bullet may be in the form of either notes or a witness statement. Evidence must include calculations (at least one from each category) relating to: amounts or sizes scales or proportion handling statistics and show how the candidate has checked their methods and calculations. Evidence must show the results make sense in relation to the purpose of the task. This criterion could be met during the planning stage of the task or at the beginning of each part of the task. The candidate should identify and describe the methods they are using. Answering the questions: What do I want to find out? What calculations will I need to perform to find it out? should give evidence for this criterion. For example: I want to know the average house price in the area. To do this I will calculate the mean price of 10 ten houses by adding the prices up and dividing by 10. For each category (a, b, c) below there is a requirement of a minimum of one purposeful calculation accompanied by evidence of the methods used and checking the accuracy of the results. Candidates should not claim the same calculation for (a), (b) and (c). Proportional percentage calculations may be claimed for (a) or (b) but cannot be claimed for both simultaneously. Use of ICT for the purpose of calculation is acceptable. However, in order to claim the work for candidates must show evidence of more than merely inputting data into a spreadsheet. e.g. If the candidates produce their own spreadsheet they need to show evidence of the creation and evidence of the formulae used. a) Amounts or Sizes see appendix b) Scale or Proportion All calculations for scale diagrams must be shown and the scale must be included on the diagram. Appropriate scales for level 1 are such as: 1:2, 1:10, 1:100, 1:1000 If a pie chart is to be claimed for 1.2.2(b) then the calculations must be shown and the pie chart must be handdrawn. For example: Calculation of floor space could include conversion of room measurements from cm to m. Calculation of the area of the floor (e.g. simple rectangles) They could be given a scale diagram of the floor plan of the average house and use it to calculate the actual dimensions. Pie chart showing the types of houses available for sale (e.g. detached, semidetached, terraced). 5
6 This evidence must normally be in the form of notes produced by the candidate (by hand or electronically). c) Handling statistics Evidence needs to include calculation of mean and range of about 10 items of data Calculating the statistics for houses in a certain area to find the average house. Checking Candidate must show evidence of checking results of at least one calculation in each category (a, b, c). Checking areas by estimation. Using spreadsheet to calculate mean /range to check manually calculated values. Checking statistics are sensible. 6
7 N1.3 Interpret results and present findings N1.3.1 Present your findings using charts, graphs or diagrams. candidate can choose how to present your findings using two appropriate ways (i.e. chart and diagram or graph and diagram) present their findings correctly Whether or not ICT is used to produce graphics, evidence must show that the candidate has checked their accuracy and can explain them fully. Evidence of this understanding may be in the form of a witness statement. Candidates need to choose how to present their findings. They could do this verbally with the teacher/tutor who could provide a suitable witness statement. They do not need to illustrate the same data using several different methods unless there is a purpose in doing so. The candidates must have at least one type of presentation from each of the following categories: Category 1: Graph or chart Category 2: Diagram or table All presentations must be labelled correctly (suitable heading, correctly labelled axes, suitable scales on axes). Use of ICT to draw presentations is acceptable but they must be accurate and correctly labelled. For example: Category 1: GRAPH I am going to use pie chart to show the distribution of types of houses in each area. Category 2: TABLE I will present a table showing how far my chosen house is from local amenities (e.g. school, shops, leisure centre, internet café) N1.3.2 Describe what your results tell you and explain how they meet the purpose of your task. candidate can describe the results of your calculations explain how they relate to the purpose of the task Evidence must normally be in the form of written notes produced by the candidate (by hand or electronically). Any presentations/findings should be accompanied by an explanation of what it shows in relation to the task. Candidates need to show an understanding of their results in the context of the task. They should be answering: What do the results tell them? Have they found out what they want to find out? For example: Comments such as: I have found that the mean house price in the area is 124,000. The range of the house prices was 230,000. This shows that there is a big difference between house prices in the area. The floor space of the average house is 115m 2. The most common type of house is semidetached half of the houses in my survey were semidetached. 7
8 LEVEL 2 At level 2 tasks should follow the whole process of: Understanding and tackling a problem collecting and interpreting data carrying out calculations checking results interpreting results presenting findings reflecting and reviewing For tasks to be meaningful it is advised that candidates attempt to produce a portfolio based on a meaningful real life task that gives opportunities to meet all the criteria. One task must include evidence that covers the entire process of 2.1, 2.2 and 2.3. However, should candidates be unable to meet all the criteria of in the context of one task then they can produce a supplementary task for the missing criteria this evidence must also have a meaningful reallife purpose and must include evidence of either 2.1 or 2.3 8
9 N2.1 Understand numerical data Evidence requirements Clarification of Evidence Requirement Notes/Examples N2.1.1 Help to identify and describe at least one practical problem or task that involves a range of numerical data and information. candidate has played an active part in identifying and describing the problem or task about which you have been briefed or which you have chosen. Evidence must be in the form of notes produced by the candidate (by hand or electronically). All tasks must have a clear reallife purpose and all work needs to be in the context of the task. i.e. why do we need to know this? Who needs to know this i.e. who are the audience? The candidate needs to explain the task and its purpose in their own words and there must be evidence of some candidate input to the task. The problem must have sufficient opportunities for the candidate to select data and analysis methods suitable for the level. The task brief could be general but candidates should be encouraged to follow their own lines of enquiry. This must be done at the beginning of the task this cannot be completed retrospectively. For example  A person wants to buy a house costing between 120,000 and 150,000 and needs to choose between two different locations your brief is to compare the types of houses available in two different areas and their average price and present your findings to the house buyer. The task may be outlined in a class discussion but candidates need to plan how they are going to compare the houses  what data they are going to collect, how they are going to use that data and how they are going to present their findings. N2.1.2 Confirm with an appropriate person how you plan to tackle it. Evidence of planning must include: details of how you intend to obtain relevant data and information a clear sequence of tasks showing how you intend to use this information Evidence must be in the form of notes produced by the candidate (by hand or electronically). This requires the candidates to write a clear plan which needs to be individual. Careful planning for this criterion also provides coverage for: Planning could follow the structure shown in the Notes/Example column. Once the plan is complete it should be checked by a teacher/tutor/trainer that it is appropriate and should be signed by the tutor/trainer. What do I want to find out? Why do I want to find it? What data do I need to find it out? Where will I get this data? What calculations will I need to perform? Why perform those calculations? How will I check that those calculations make sense? How will I present the findings effectively? Why use that method to present? How will I know if I've found out what I wanted to find? 9
10 N2.1.3 Collect relevant numerical data and information from a range of sources to meet the purpose of your task. Your sources must include at least two of a table, a chart, a graph or a diagram. candidate is clear about how the data/information you obtain meets your purpose. Evidence must include: data/information collected from at least three sources at least one source must require the candidate to collect and record data/information copies of source material details of the site/s of observation/measurement records of data and information obtained The candidates need to make use of data from three different sources and show how they have used these sources. (These should have been identified in the planning stage.) Of these, at least two of the sources need to be different charts / graphs / diagrams or tables. Candidates are required to collect relevant data this could include: sampling from a larger data set survey/questionnaire gathering information from the internet/books direct measurement. maps & scale diagrams ALL SOURCES NEED TO BE SHOWN AND THEIR USE NEEDS TO BE EXPLICIT. I.E. The candidate needs to show how they have used each source. E.g. by marking on graphs. For example, in the house task: One source could be a table of records of houses in a certain area from which the candidate could sample appropriately. (This meets the requirement of collecting relevant data and a table source.) For the second source  the candidates could use the internet to gather information on houses in another area for comparison. (Again requiring the candidate to collect relevant information this is good practice since it gives the work individuality). A third source could be a graph showing house prices in different areas over a period of time. (This source could be provided for them.) Other sources that the candidate themselves may decide to consider could include, e.g. floor plans of houses, crime rates, council tax bands, commuting distances, amenities dependant on the initial purposes of the task. Again this will give the candidates' work individuality. 10
11 N2.2 Carry out calculations N2.2.1 Use appropriate methods to get the results you need and explain the methods you have used. N2.2.2 Use the data and information you have obtained to carry out calculations relevant to your task to do with: a) amounts or sizes b) scales or proportion c) handling statistics d) using formulae candidate can: independently choose and use appropriate methods for getting the results you need explain why these methods are appropriate Evidence must be in the form of notes produced by the candidate (by hand or electronically). candidate: has used data and information from N2.2.1 is clear about the purpose and relevance of your calculations. Overall, evidence of calculations must include at least one example from each category: amounts or sizes scales or proportion handling statistics using formulae And must show how the candidate has checked your methods and calculations. Evidence must show methods and levels of accuracy, with justifications. This criterion could be met during the planning stage of the task. The candidate should identify the methods themselves and not be told which calculation to perform. However, they can seek advice. The candidate needs to explain the purpose of the calculation not merely describe how to perform it. Answering the questions: What calculations will I need to perform? Why perform those calculations? should give evidence for this criterion. For example: I want to know in which area the houses are least expensive. To do this I will compare the average price of houses in two areas by using mean, median and mode. For each category (a, b, c, and d) below there is a requirement of a minimum of one purposeful calculation accompanied by evidence of the methods used and checking the accuracy of the results. Candidates should not claim the same calculation for (a), (b) and (c). However, they can claim the use of a formula in (d) with any other category. Proportional percentage calculations may be claimed for (a) or (b) but cannot be claimed for both simultaneously. Use of ICT for the purpose of calculation is acceptable. However, in order to claim the work for candidates must show evidence of more than merely inputting data into a spreadsheet. e.g. If the candidates produce their own spreadsheet they need to show evidence of the creation and evidence of the formulae used. Suitable levels of accuracy should be used. E.g. Money to 2 decimal places. a) Amounts or Sizes All calculations at level 2 need to be more complex than those acceptable at level 1. Calculations should be multistep, i.e. should involve more than one operation. See appendix For example: Calculation of floor space could include conversion of room measurements from Imperial to Metric (if necessary). Must be more complex than those expected at level 1. What percentage of houses in each area is terraced, semidetached and detached? If candidates chose to compare locations in different countries they could convert between currencies in order to compare. 11
12 Evidence must include records of how the candidate has checked: your methods and calculations that the results make sense in relation to the purpose of the task Evidence must be in the form of written notes produced by the candidate (by hand or electronically). b) Scale or Proportion All calculations for scale diagrams must be shown and the scale and measurements must be of a suitable difficulty. See appendix c) Handling statistics Evidence needs to include calculation of mean, median, mode and range. Statistics need to be used for comparison of two sets of data. See appendix Draw a scale diagram of the average house in each area to compare the sizes of the houses. The candidates should use a suitable scale so that the diagram fits on the given piece of paper all calculations should be shown. What percentage of houses in each area is terraced, semidetached and detached? What percentage of houses is in the price category that the house buyer can afford? Calculating the statistics for houses in two areas and using them to compare. d) Using formulae The formulae need not be shown as an algebraic formula but values need to be shown substituted into the formula. If spreadsheets are used for this criterion then the formulae must be input by the candidate and evidence of the formulae must be shown. Use of functions such as AVERAGE, MEDIAN, STDEV does not constitute suitable evidence. See appendix Use of formulae such as: Mean = total / number 12
13 Checking Candidate must show evidence of checking results of at least one calculation in each category (a, b, c). Checking of (d) will usually be covered within the checks of (a, b, c) Checking areas by estimation. Using spreadsheet to calculate mean/median/mode/range to check manually calculated values. Checking statistics are sensible. Reverse calculation of percentage calculations. 13
14 N2.3 Interpret results and present findings N2.3.1 Select two different candidate can ways to present your choose how to present your results, using charts or results, using two graphs, and tables or appropriate ways (i.e. charts diagrams appropriate and/or graphs, and tables to your audience. and/or diagrams) explain why these ways are appropriate to your audience Evidence must be in the form of written notes produced by the candidate (by hand or electronically). Candidates need to choose the most appropriate method to present their findings. All presentations must be accompanied by an explanation of why they are appropriate to the audience. This may be covered in the planning stage. They do not need to illustrate the same data using several different methods unless there is a purpose in doing so and this should then be explained. The presentations need to be of a level 2 standard, e.g. pie charts, line graphs, frequency polygon, scale drawing of suitable standard. The candidates must have at least one type of presentation from each of the following categories: Category 1: Graph or chart Category 2: Diagram or table For example: Category 1: GRAPH I am going to use pie chart to show the distribution of types of houses in each area. I am using a pie chart because it is appropriate for showing proportions and is easy to understand. Category 2: DIAGRAM I am going to draw a scale diagram of an average priced house in both areas in order to compare the sizes of the houses to see which gives more room. It is important that I use the same scale for both diagrams so that it is a fair comparison. N2.3.2 Present and explain your methods and findings and explain how they meet the purpose of your task and are appropriate to your audience. candidate can present your methods and findings effectively explain the methods you have used describe and explain what results of your calculations mean in relation to the problem/task you have tackled, emphasising the key points Good practise would be to consider which ONE graph/chart and which ONE table/diagram would be the best way to present the findings of their task to the target audience. As above candidates should choose the most appropriate method of presentation. Any presentations/findings should be accompanied by an explanation of what it shows in relation to the task. Candidates need to show an understanding of their results in the context of the task. They should be answering: What do the results tell them? Have they found out what they want to find out? For example: Correctly drawn presentations accompanied by explanations linked back to the original task as set out in Comments such as: I have found that the mean house price in Area A is more than in Area B. However, the mean house in Area A has a larger floor space than the mean house in Area B. 34% of houses in area A are in the price range whereas 46% of houses in area B are in the price range. 14
15 Evidence must be in the form of written notes produced by the candidate (by hand or electronically). Whether or not ICT is used to produce graphics, evidence must show that the candidate has checked their accuracy and can explain them fully. Evidence of this understanding may be in the form of a witness statement. All presentations must be labelled correctly (suitable heading, correctly labelled axes, suitable scales on axes). Use of ICT to draw presentations is acceptable but they must be accurate and correctly labelled. I would suggest buying a house in area B because they are cheaper and there is more choice. 15
16 LEVEL 3 At level 3 tasks should follow the whole process of: Understanding and tackling a problem collecting and interpreting data carrying out calculations checking results interpreting results presenting findings reflecting and reviewing For tasks to be meaningful it is advised that candidates attempt to produce a portfolio based on a meaningful real life task that gives opportunities to meet all the criteria. One task must include evidence that covers the entire process of 3.1, 3.2 and 3.3. However, should candidates be unable to meet all the criteria of in the context of one task then they can produce a supplementary task for the missing criteria this evidence must also have a meaningful reallife purpose and must include evidence of either 3.1 or
17 N3.1 Understand numerical data N3.1.1 Identify, analyse and accurately describe at least one practical problem or task that involves a range of numerical data and information. Evidence requirements Clarification of Evidence Requirement Notes/Examples candidate has independently identified, analysed and described the problem or task about which you have been briefed or which you have chosen. Evidence must be in the form of notes produced by the candidate (by hand or electronically). All tasks must have a clear reallife purpose and all work needs to be in the context of the task. i.e. why do we need to know this? Who needs to know this i.e. who are the audience? There must be evidence of significant candidate input to the task. The problem must have sufficient opportunities for the candidate to select data and analysis methods suitable for the level. Candidates' work needs to have an element of individuality and independence. This must be done at the beginning of the task this cannot be completed retrospectively. For example  A person wants to buy a house and needs to choose between two different locations your brief is to compare the houses in two different areas and present your findings to the house buyer. The class could be given the topic but candidates need to plan how they are going to compare the houses  what data they are going to collect, how they are going to use that data and how they are going to present their findings. N3.1.2 Plan how you will tackle it. N3.1.3 Collect relevant numerical data and information from a range of sources to meet the purpose of your task. Evidence of planning must include: details of how the candidate intends to obtain relevant data and information a clear sequence of tasks showing how you intend to use this information Evidence must be in the form of notes produced by the candidate (by hand or electronically). Evidence must include data/information collected from at least three sources, one of which must be an appropriate data set. candidate can: collect relevant data and information This requires the candidates to write a clear plan which needs to be individual. Careful planning for this criterion also provides coverage for: Planning could follow the structure shown in the Notes/Example column. The candidates need to make use of data from three different sources and show how they have used these sources. (These should have been identified in the planning stage.) Of these, at least two of the sources need to be different charts / graphs / diagrams or tables one of these needs to be 'complex' i.e. contains more data than is required for the task, e.g. a multiple line graph. 17 What do I want to find out? Why do I want to find it? What data do I need to find it out? Where will I get this data? What calculations will I need to perform? Why perform those calculations? How will I check that those calculations make sense? How will I present the findings effectively? Why use that method to present? How will I know if I've found out what I wanted to find? For example, in the house task: One source could be a table of one hundred records of houses in a certain area from which the candidate samples appropriately. (This meets the requirement of collecting relevant data, a table source and a large data set.)
In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.
MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target
More informationKnowing and Using Number Facts
Knowing and Using Number Facts Use knowledge of place value and Use knowledge of place value and addition and subtraction of twodigit multiplication facts to 10 10 to numbers to derive sums and derive
More informationMATHS LEVEL DESCRIPTORS
MATHS LEVEL DESCRIPTORS Number Level 3 Understand the place value of numbers up to thousands. Order numbers up to 9999. Round numbers to the nearest 10 or 100. Understand the number line below zero, and
More informationRevision Notes Adult Numeracy Level 2
Revision Notes Adult Numeracy Level 2 Place Value The use of place value from earlier levels applies but is extended to all sizes of numbers. The values of columns are: Millions Hundred thousands Ten thousands
More informationNumeracy and mathematics Experiences and outcomes
Numeracy and mathematics Experiences and outcomes My learning in mathematics enables me to: develop a secure understanding of the concepts, principles and processes of mathematics and apply these in different
More informationFOREWORD. Executive Secretary
FOREWORD The Botswana Examinations Council is pleased to authorise the publication of the revised assessment procedures for the Junior Certificate Examination programme. According to the Revised National
More informationCharlesworth School Year Group Maths Targets
Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve
More informationNew York State Mathematics Content Strands, Grade 6, Correlated to Glencoe MathScape, Course 1 and Quick Review Math Handbook Book 1
New York State Mathematics Content Strands, Grade 6, Correlated to Glencoe MathScape, Course 1 and The lessons that address each Performance Indicator are listed, and those in which the Performance Indicator
More informationYear 1 maths expectations (New Curriculum)
Year 1 maths expectations Counts to and across 100, forwards and backwards, beginning with 0 or one, or from any given number Counts, reads and writes numbers to 100 in numerals; counts in multiples of
More informationLevel 1  Maths Targets TARGETS. With support, I can show my work using objects or pictures 12. I can order numbers to 10 3
Ma Data Hling: Interpreting Processing representing Ma Shape, space measures: position shape Written Mental method s Operations relationship s between them Fractio ns Number s the Ma1 Using Str Levels
More informationKey Stage 2 Mathematics Programme of Study
Deeloping numerical reasoning Identify processes and connections Represent and communicate Reiew transfer mathematical to a ariety of contexts and eeryday situations identify the appropriate steps and
More informationMathematics standards
Mathematics standards Grade 6 Summary of students performance by the end of Grade 6 Reasoning and problem solving Students represent and interpret routine and nonroutine mathematical problems in a range
More informationEDEXCEL FUNCTIONAL SKILLS PILOT TEACHER S NOTES. Maths Level 2. Chapter 5. Shape and space
Shape and space 5 EDEXCEL FUNCTIONAL SKILLS PILOT TEACHER S NOTES Maths Level 2 Chapter 5 Shape and space SECTION H 1 Perimeter 2 Area 3 Volume 4 2D Representations of 3D Objects 5 Remember what you
More informationNumeracy Targets. I can count at least 20 objects
Targets 1c I can read numbers up to 10 I can count up to 10 objects I can say the number names in order up to 20 I can write at least 4 numbers up to 10. When someone gives me a small number of objects
More informationBridging Documents for Mathematics
Bridging Documents for Mathematics 5 th /6 th Class, Primary Junior Cycle, PostPrimary Primary PostPrimary Card # Strand(s): Number, Measure Number (Strand 3) 25 Strand: Shape and Space Geometry and
More informationMedium term Plans for Spring Year 5
Medium term Plans for Spring Year 5 Help these children be in a better position to achieve good results in the Y6 Sats in 2015. Although these tests will officially be based on the old curriculum, it is
More informationScope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B
Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced
More informationAutumn  12 Weeks. Spring 11 Weeks. Summer 12 Weeks. Not As We Know It Limited 2014
A Year 5 Mathematician Planning of coverage and resources. Autumn  12 Weeks Spring 11 Weeks Summer 12 Weeks TARGETS NHM YR 5 Collins 5 Abacus 5 Abacus 6 LA Prior Step NHM 4 CPM 4 Ginn 4 Number, place
More informationPrimary Curriculum 2014
Primary Curriculum 2014 Suggested Key Objectives for Mathematics at Key Stages 1 and 2 Year 1 Maths Key Objectives Taken from the National Curriculum 1 Count to and across 100, forwards and backwards,
More informationA level is a level. Compiled for 2008
Level5opaedia A level is a level Compiled for www.glosmaths.org, 2008 Please note that Using and Applying assessment criteria are not included within the Levelopaedia Numbers and the Number System Use
More informationNorthumberland Knowledge
Northumberland Knowledge Know Guide How to Analyse Data  November 2012  This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about
More informationIQ Functional Skills Qualification in Mathematics at. Entry Level 1 Entry Level 2 Entry Level 3 Level 1 Level 2. Qualification Guide
IQ Functional Skills Qualification in Mathematics at Entry Level 1 Entry Level 2 Entry Level 3 Level 1 Level 2 Qualification Guide Version 2.0 Contents Gateway Qualifications and Industry Qualifications...
More informationMath syllabus Kindergarten 1
Math syllabus Kindergarten 1 Number strand: Count forward and backwards to 10 Identify numbers to 10 on a number line Use ordinal numbers first (1 st ) to fifth (5 th ) correctly Recognize and play with
More informationNEW MEXICO Grade 6 MATHEMATICS STANDARDS
PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical
More informationAreas of numeracy covered by the professional skills test
Areas of numeracy covered by the professional skills test December 2014 Contents Averages 4 Mean, median and mode 4 Mean 4 Median 4 Mode 5 Avoiding common errors 8 Bar charts 9 Worked examples 11 Box and
More informationMy Year 1 Maths Targets
My Year 1 Maths Targets Number number and place value I can count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number. I can count in multiples of twos, fives and
More informationKey Topics What will ALL students learn? What will the most able students learn?
2013 2014 Scheme of Work Subject MATHS Year 9 Course/ Year Term 1 Key Topics What will ALL students learn? What will the most able students learn? Number Written methods of calculations Decimals Rounding
More informationPrentice Hall Mathematics: Course 1 2008 Correlated to: Arizona Academic Standards for Mathematics (Grades 6)
PO 1. Express fractions as ratios, comparing two whole numbers (e.g., ¾ is equivalent to 3:4 and 3 to 4). Strand 1: Number Sense and Operations Every student should understand and use all concepts and
More information MartensdaleSt. Marys Community School Math Curriculum
 MartensdaleSt. Marys Community School Standard 1: Students can understand and apply a variety of math concepts. Benchmark; The student will: A. Understand and apply number properties and operations.
More informationIntroduction. The Aims & Objectives of the Mathematical Portion of the IBA Entry Test
Introduction The career world is competitive. The competition and the opportunities in the career world become a serious problem for students if they do not do well in Mathematics, because then they are
More informationCAMI Education linked to CAPS: Mathematics
 1  TOPIC 1.1 Whole numbers _CAPS curriculum TERM 1 CONTENT Mental calculations Revise: Multiplication of whole numbers to at least 12 12 Ordering and comparing whole numbers Revise prime numbers to
More informationMathematics. Steps to Success. and. Top Tips. Year 6
Pownall Green Primary School Mathematics and Year 6 1 Contents Page 1. Multiply and Divide Decimals 3 2. Multiply Whole Numbers 3. Order Decimals 4 4. Reduce Fractions 5. Find Fractions of Numbers 5 6.
More informationPaper 2. Year 9 mathematics test. Calculator allowed. Remember: First name. Last name. Class. Date
Ma KEY STAGE 3 Year 9 mathematics test Tier 6 8 Paper 2 Calculator allowed First name Last name Class Date Please read this page, but do not open your booklet until your teacher tells you to start. Write
More informationGrade 5 Math Content 1
Grade 5 Math Content 1 Number and Operations: Whole Numbers Multiplication and Division In Grade 5, students consolidate their understanding of the computational strategies they use for multiplication.
More informationAutumn 1 Maths Overview. Year groups Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 1 Number and place value. Counting. 2 Sequences and place value.
Autumn 1 Maths Overview. Year groups Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 1 Number and place Counting. 2 Sequences and place Number facts and counting. Money and time. Length, position and
More informationBiggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress
Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation
More informationMathematical goals. Starting points. Materials required. Time needed
Level S6 of challenge: B/C S6 Interpreting frequency graphs, cumulative cumulative frequency frequency graphs, graphs, box and box whisker and plots whisker plots Mathematical goals Starting points Materials
More informationGreater Nanticoke Area School District Math Standards: Grade 6
Greater Nanticoke Area School District Math Standards: Grade 6 Standard 2.1 Numbers, Number Systems and Number Relationships CS2.1.8A. Represent and use numbers in equivalent forms 43. Recognize place
More informationNational Curriculum for England 2014 Abacus Year 4 Medium Term Plan
National Curriculum for England 2014 Year 4 always covers the content of the National Curriculum within the paired age range (i.e. Y1/2, Y3/4, 5/6). Very occasionally postpones something from the first
More informationGrade 6 Mathematics Assessment. Eligible Texas Essential Knowledge and Skills
Grade 6 Mathematics Assessment Eligible Texas Essential Knowledge and Skills STAAR Grade 6 Mathematics Assessment Mathematical Process Standards These student expectations will not be listed under a separate
More informationSt Ninian s High School. I understand this part of the course = I am unsure of this part of the course =
St Ninian s High School Mathematics Department Curriculum for Excellence TJ Book E Pupil Learning Log I understand this part of the course = I am unsure of this part of the course = I do not understand
More information1. Number 2. Addition and Subtraction 3. Multiplication and Division 4. Fractions
Numeracy assessment guidelines: 1 Name 1. Number 2. Addition and Subtraction 3. Multiplication and Division 4. Fractions 1 Count to and across 100, forwards and backwards, beginning with 0 or 1, or from
More informationN13/5/MATSD/SP2/ENG/TZ0/XX. mathematical STUDIES. Tuesday 12 November 2013 (morning) 1 hour 30 minutes. instructions to candidates
88137402 mathematical STUDIES STANDARD level Paper 2 Tuesday 12 November 2013 (morning) 1 hour 30 minutes instructions to candidates Do not open this examination paper until instructed to do so. A graphic
More informationISAT Mathematics Performance Definitions Grade 4
ISAT Mathematics Performance Definitions Grade 4 EXCEEDS STANDARDS Fourthgrade students whose measured performance exceeds standards are able to identify, read, write, represent, and model whole numbers
More informationGlencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 33, 58 84, 87 16, 49
Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 68 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,
More informationMathematics in hair and beauty studies principal learning
Mathematics in hair and beauty studies principal learning There are opportunities to develop mathematics to support and enhance the business and scientific aspects of the hair and beauty studies principal
More informationIllinois State Standards Alignments Grades Three through Eleven
Illinois State Standards Alignments Grades Three through Eleven Trademark of Renaissance Learning, Inc., and its subsidiaries, registered, common law, or pending registration in the United States and other
More informationCurriculum Overview YR 9 MATHS. SUPPORT CORE HIGHER Topics Topics Topics Powers of 10 Powers of 10 Significant figures
Curriculum Overview YR 9 MATHS AUTUMN Thursday 28th August Friday 19th December SUPPORT CORE HIGHER Topics Topics Topics Powers of 10 Powers of 10 Significant figures Rounding Rounding Upper and lower
More informationEngineering Problem Solving and Excel. EGN 1006 Introduction to Engineering
Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques
More informationEveryday Mathematics GOALS
Copyright Wright Group/McGrawHill GOALS The following tables list the GradeLevel Goals organized by Content Strand and Program Goal. Content Strand: NUMBER AND NUMERATION Program Goal: Understand the
More informationPA Common Core Standards Standards for Mathematical Practice Grade Level Emphasis*
Habits of Mind of a Productive Thinker Make sense of problems and persevere in solving them. Attend to precision. PA Common Core Standards The Pennsylvania Common Core Standards cannot be viewed and addressed
More informationPrentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)
New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct
More informationCommon Core Unit Summary Grades 6 to 8
Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity 8G18G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations
More informationYear 6 Mathematics  Student Portfolio Summary
Year 6  Student Portfolio Summary WORK SAMPLE PORTFOLIOS These work sample portfolios have been designed to illustrate satisfactory achievement in the relevant aspects of the achievement standard. The
More informationThe National Curriculum 2014 Programmes of Study for Mathematics
The National Curriculum 2014 Programmes of Study for Mathematics Information inserted by the Lancashire Mathematics Team to support schools and teachers in identifying elements of the curriculum that have
More informationYear 2 Maths Objectives
Year 2 Maths Objectives Counting Number  number and place value Count in steps of 2, 3, and 5 from 0, and in tens from any number, forward and backward Place Value Comparing and Ordering Read and write
More informationCurrent Standard: Mathematical Concepts and Applications Shape, Space, and Measurement Primary
Shape, Space, and Measurement Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two and threedimensional shapes by demonstrating an understanding of:
More informationPrimary Years Programme Mathematics Curriculum
Primary Years Programme Mathematics Curriculum The following document seeks to lay out the minimum requirement to be taught in Mathematics for each grade level in each of the areas of Number, Pattern and
More informationEveryday Mathematics CCSS EDITION CCSS EDITION. Content Strand: Number and Numeration
CCSS EDITION Overview of 6 GradeLevel Goals CCSS EDITION Content Strand: Number and Numeration Program Goal: Understand the Meanings, Uses, and Representations of Numbers Content Thread: Rote Counting
More informationDay 1. Mental Arithmetic Questions KS3 MATHEMATICS
Mental Arithmetic Questions. The tally chart shows the number of questions a teacher asked in a lesson. How many questions did the teacher ask? KS3 MATHEMATICS 2. How many seconds are there in two minutes?
More informationEDEXCEL FUNCTIONAL SKILLS PILOT TEACHER S NOTES. Maths Level 2. Chapter 2. Working with fractions, decimals and percentages
EDEXCEL FUNCTIONAL SKILLS PILOT TEACHER S NOTES Maths Level 2 Chapter 2 Working with fractions, decimals and percentages SECTION B Types of fraction 5 2 Using a calculator for fractions 7 Fractions of
More informationFlorida Department of Education/Office of Assessment January 2012. Grade 6 FCAT 2.0 Mathematics Achievement Level Descriptions
Florida Department of Education/Office of Assessment January 2012 Grade 6 FCAT 2.0 Mathematics Achievement Level Descriptions Grade 6 FCAT 2.0 Mathematics Reporting Category Fractions, Ratios, Proportional
More informationThe Utah Basic Skills Competency Test Framework Mathematics Content and Sample Questions
The Utah Basic Skills Competency Test Framework Mathematics Content and Questions Utah law (53A1611) requires that all high school students pass The Utah Basic Skills Competency Test in order to receive
More informationExploring Mathematics Through ProblemSolving and Student Voice
Exploring Mathematics Through ProblemSolving and Student Voice Created By: Lisa Bolduc, Aileen BurkeTsakmakas, Shelby Monaco, Antonietta Scalzo Contributions By: Churchill Public School Professional
More informationConsumer Math 15 INDEPENDENT LEAR NING S INC E 1975. Consumer Math
Consumer Math 15 INDEPENDENT LEAR NING S INC E 1975 Consumer Math Consumer Math ENROLLED STUDENTS ONLY This course is designed for the student who is challenged by abstract forms of higher This math. course
More informationGrade Level Expectations for the Sunshine State Standards
for the Sunshine State Standards Mathematics Grades 68 FLORIDA DEPARTMENT OF EDUCATION http://www.myfloridaeducation.com/ Strand A: Number Sense, Concepts, and Operations Standard 1: The student understands
More informationWednesday 13 June 2012 Morning
THIS IS A NEW SPECIFICATION F Wednesday 13 June 2012 Morning GCSE MATHEMATICS B J567/02 Paper 2 (Foundation Tier) *J517120612* Candidates answer on the Question Paper. OCR supplied materials: None Other
More informationCRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide
Curriculum Map/Pacing Guide page 1 of 14 Quarter I start (CP & HN) 170 96 Unit 1: Number Sense and Operations 24 11 Totals Always Include 2 blocks for Review & Test Operating with Real Numbers: How are
More informationTeaching programme: Reception
Teaching programme: Reception Counting and recognising numbers 2 8 2 2, 3 4, 5 5 6 7 7 8 Counting Say and use the number names in order In familiar contexts such as number rhymes, songs, stories, counting
More informationAnnotated work sample portfolios are provided to support implementation of the Foundation Year 10 Australian Curriculum.
Work sample portfolio summary WORK SAMPLE PORTFOLIO Annotated work sample portfolios are provided to support implementation of the Foundation Year 10 Australian Curriculum. Each portfolio is an example
More informationEssential Skills Wales Essential Application of Number Skills (EAoNS) Level 2 controlled task Candidate pack
Essential Skills Wales Essential Application of Number Skills (EAoNS) Level 2 controlled task Candidate pack Compare the costs of holidays Sample 1 Candidate name: Candidate number: Unique Learner Number
More informationMaximum and minimum problems. Information sheet. Think about
Maximum and minimum problems This activity is about using graphs to solve some maximum and minimum problems which occur in industry and in working life. The graphs can be drawn using a graphic calculator
More information9 Areas and Perimeters
9 Areas and Perimeters This is is our next key Geometry unit. In it we will recap some of the concepts we have met before. We will also begin to develop a more algebraic approach to finding areas and perimeters.
More informationStandards and progression point examples
Mathematics Progressing towards Foundation Progression Point 0.5 At 0.5, a student progressing towards the standard at Foundation may, for example: connect number names and numerals with sets of up to
More informationUnit 9. Unit 10. Unit 11. Unit 12. Introduction Busy Ant Maths Year 2 MediumTerm Plans. Number  Geometry  Position & direction
Busy Ant Maths Year MediumTerm Plans Unit 9 Geometry  Position & direction Unit 0 ( Temperature) Unit Statistics Unit Fractions (time) 8 Busy Ant Maths Year MediumTerm Plans Introduction Unit Geometry
More informationStage 1: Integrate essential questions, big ideas and learning targets, and ensure it can be differentiated and assessed
Grade 5 Math Unit Title Time frame 21 st Century Themes Interdisciplinary focus and technology integration Unit 1: Understanding Place Value 3 weeks Critical Thinking and Problem Solving Communication
More informationEVERY DAY COUNTS CALENDAR MATH 2005 correlated to
EVERY DAY COUNTS CALENDAR MATH 2005 correlated to Illinois Mathematics Assessment Framework Grades 35 E D U C A T I O N G R O U P A Houghton Mifflin Company YOUR ILLINOIS GREAT SOURCE REPRESENTATIVES:
More information2. (a) Express the following numbers as products of their prime factors.
1. Jack and Jill share 18 in the ratio 2:3 Work out how much each person gets. Jack.. Jill... (Total 2 marks) 2. (a) Express the following numbers as products of their prime factors. (i) 56 (ii) 84.. (4)
More informationUnit 13 Handling data. Year 4. Five daily lessons. Autumn term. Unit Objectives. Link Objectives
Unit 13 Handling data Five daily lessons Year 4 Autumn term (Key objectives in bold) Unit Objectives Year 4 Solve a problem by collecting quickly, organising, Pages 114117 representing and interpreting
More informationMATHEMATICS LOWER KS2
MATHEMATICS LOWER KS2 The principal focus of mathematics teaching in lower key stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts
More informationMathematics. Mathematical Practices
Mathematical Practices 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with
More informationOpenEnded ProblemSolving Projections
MATHEMATICS OpenEnded ProblemSolving Projections Organized by TEKS Categories TEKSING TOWARD STAAR 2014 GRADE 7 PROJECTION MASTERS for PROBLEMSOLVING OVERVIEW The Projection Masters for ProblemSolving
More informationMathematics. Programme of study for key stage 3 and attainment targets (This is an extract from The National Curriculum 2007)
Mathematics Programme of study for key stage 3 and attainment targets (This is an extract from The National Curriculum 2007) Crown copyright 2007 Qualifications and Curriculum Authority 2007 Curriculum
More informationThree daily lessons. Year 5
Unit 6 Perimeter, coordinates Three daily lessons Year 4 Autumn term Unit Objectives Year 4 Measure and calculate the perimeter of rectangles and other Page 96 simple shapes using standard units. Suggest
More informationArea and Perimeter. Name: Class: Date: Short Answer
Name: Class: Date: ID: A Area and Perimeter Short Answer 1. The squares on this grid are 1 centimeter long and 1 centimeter wide. Outline two different figures with an area of 12 square centimeters and
More informationGRADE 5 UNIT PLANS LINKED TO THE BIG IDEAS
GRADE 5 UNIT PLANS LINKED TO THE BIG IDEAS STRAND: Patterning and Algebra TERM: 1 First Instructional Strand Patterns and Relationships 1. Experience with a wide variety of patterns helps students recognize
More informationGeneral Certificate of Secondary Education January 2014. Mathematics Unit T3 (With calculator) Higher Tier [GMT31] FRIDAY 10 JANUARY, 9.15am 11.
Centre Number 71 Candidate Number General Certificate of Secondary Education January 2014 Mathematics Unit T3 (With calculator) Higher Tier [GMT31] MV18 FRIDAY 10 JANUARY, 9.15am 11.15 am TIME 2 hours,
More informationNUMBER CORNER YEARLONG CONTENT OVERVIEW
August & September Workouts Calendar Grid Quilt Block Symmetries Identifying shapes and symmetries Calendar Collector Two Penny Toss Probability and data analysis Computational Fluency Mental Math Fluently
More informationSuch As Statements, Kindergarten Grade 8
Such As Statements, Kindergarten Grade 8 This document contains the such as statements that were included in the review committees final recommendations for revisions to the mathematics Texas Essential
More informationProblem Solving and Data Analysis
Chapter 20 Problem Solving and Data Analysis The Problem Solving and Data Analysis section of the SAT Math Test assesses your ability to use your math understanding and skills to solve problems set in
More informationManitoba Curriculum. Alignment with Mathletics. Supported by independent evidencebased research and practice. Powerful reporting.
Supported by independent evidencebased research practice. Follows provincial curricula Powerful reporting Student centred Content Kindergarten Grade 1 Grade 2 02 04 08 Grade 10 Applied & PreCalculus
More informationGrade 5 Mathematics Curriculum Guideline Scott Foresman  Addison Wesley 2008. Chapter 1: Place, Value, Adding, and Subtracting
Grade 5 Math Pacing Guide Page 1 of 9 Grade 5 Mathematics Curriculum Guideline Scott Foresman  Addison Wesley 2008 Test Preparation Timeline Recommendation: September  November Chapters 15 December
More informationAppendix A. Comparison. Number Concepts and Operations. Math knowledge learned not matched by chess
Appendix A Comparison Number Concepts and Operations s s K to 1 s 2 to 3 Recognize, describe, and use numbers from 0 to 100 in a variety of familiar settings. Demonstrate and use a variety of methods to
More informationChapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School
Middle School 111.B. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter B. Middle School Statutory Authority: The provisions of this Subchapter B issued under the Texas Education
More informationYOU CAN COUNT ON NUMBER LINES
Key Idea 2 Number and Numeration: Students use number sense and numeration to develop an understanding of multiple uses of numbers in the real world, the use of numbers to communicate mathematically, and
More informationFlorida Algebra 1 EndofCourse Assessment Item Bank, Polk County School District
Benchmark: MA.912.A.2.3; Describe the concept of a function, use function notation, determine whether a given relation is a function, and link equations to functions. Also assesses MA.912.A.2.13; Solve
More informationWashington State K 8 Mathematics Standards April 2008
Washington State K 8 Mathematics Standards Data Analysis, Statistics, and Probability Strand In kindergarten through grade 5, students learn a variety of ways to display data, and they interpret data to
More informationExercise Worksheets. Copyright. 2002 Susan D. Phillips
Exercise Worksheets Copyright 00 Susan D. Phillips Contents WHOLE NUMBERS. Adding. Subtracting. Multiplying. Dividing. Order of Operations FRACTIONS. Mixed Numbers. Prime Factorization. Least Common Multiple.
More informationMATHEMATICS A A502/01 Unit B (Foundation Tier)
THIS IS A NEW SPECIFICATION F GENERAL CERTIFICATE OF SECONDARY EDUCATION MATHEMATICS A A502/01 Unit B (Foundation Tier) *A533721112* Candidates answer on the question paper. OCR supplied materials: None
More informationLESSON 4 Missing Numbers in Multiplication Missing Numbers in Division LESSON 5 Order of Operations, Part 1 LESSON 6 Fractional Parts LESSON 7 Lines,
Saxon Math 7/6 Class Description: Saxon mathematics is based on the principle of developing math skills incrementally and reviewing past skills daily. It also incorporates regular and cumulative assessments.
More information