# Decimals and other fractions

Size: px
Start display at page:

Transcription

1 Chapter 2 Decimals and other fractions How to deal with the bits and pieces When drugs come from the manufacturer they are in doses to suit most adult patients. However, many of your patients will be very young or very old and they need smaller doses. You may need to calculate the correct amount by taking part or a fraction of the standard dose, so you need to understand how to work out fractions. When you have completed this chapter, you should be able to: Add, subtract, multiply and divide vulgar fractions. Add, subtract, multiply and divide decimal fractions.

2 CHAPTER 2 DECIMALS AND OTHER FRACTIONS In Chapter you got to grips with the four basic operations of arithmetic using whole numbers. This chapter takes you a small step further in using the skills that you have already learned, so that you can tackle calculations that involve parts of a whole number, known as fractions. 2. ADDITION OF VULGAR FRACTIONS YOUR STARTING POINT FOR ADDITION OF FRACTIONS Without using a calculator, write down the answers to the following in their simplest form: (a) >4 + >2 = (b) >4 + 2>3 = (c) 3>7 + 2>5 = (d) 5>8 + 3>6 = (e) 3>5 + 7>0 = (f) 3>4 + 5>6 = 5 (g) (i) (h) Answers: (a) 3/4 (b) /2 (c) (d) (e) (f) 7 (g) 8 (h) 5 29 (i) If you had all these correct, well done; now go to Section 2.2, the starting point for subtraction of fractions. Vulgar fractions are written with one number over another, separated by a line. If you remember Table., this was one way of indicating that a number was divided by another. You are probably very familiar with some vulgar fractions: for example, a half is written as /2, which also means one divided by two. Fractions can also be written as 2 or /2. The number below the line is called the denominator and tells you how many parts into which the whole has been split. The number above the line is the numerator and tells you the number of parts of the whole number that are being used. If you have an apple pie and it is cut into five equal pieces, then each piece is 5 (one-fifth) of the whole pie (Figure 2.). If you, your brother and a friend each take a slice, then you will have two pieces 2 3 left. This can be written as 5 of the whole are left (Figure 2.2) and 5 of the whole have been eaten. (There will be none left shortly, so do the calculation quickly.) If you add the fraction representing the number of pieces left to the number of pieces eaten, you will get = 5 5 = 32

3 ADDITION OF VULGAR FRACTIONS Figure 2. A pie cut into five equal pieces Figure 2.2 Two fifths of the pie are left If you say this aloud, you will hear that the sum says Two fifths plus three fifths. The denominators of each fraction indicate the number of parts into which the whole has been divided. In this case they are the same, fifths, so these are not changed. If you add the numerators together then, again, you have 5 as the number on top. Do you remember the meaning of the line between the two fives? It is another way of saying divide, so 5, 5 =. Back to the whole. Magic! (a) (b) (c) = 8 = = (d) (e) (f) = 0 = 2 = Answers: (a) (b) (c) (d) (e) 9/0 (f) /2. If you need more practice, there are further examples at the end of the chapter. APPLYING THE THEORY Surveys and reports often use fractions to describe the results of the investigation being undertaken. It is really important that you are able to check that what is being claimed matches the data presented, so that you can make well-structured arguments in your assignments. You may find that when you add the fractions together, they do not do add up to one. You need to question the data. KEY POINTS The numerator is divided by the denominator in vulgar fractions. The denominator shows the number of parts into which the whole has been broken. The numerator tells you how many parts are being used. 33

4 CHAPTER 2 DECIMALS AND OTHER FRACTIONS So far you have seen examples where the denominators are the same for each fraction. The rule for adding these is just to add the numerators and place them over the denominator. Equivalent fractions Think about the following fractions: These all have different denominators, but are equivalent fractions they all have the same value of /2. Don t believe it? Look at Figure 2.3. The pies (a) (d) are equal in size and you can see that each fraction occupies the same amount of space as shown by the tinted area on the right of each diagram. To prove that they are equivalent, they can be simplified and made more userfriendly by simplifying or cancelling. The first step is to find a number that divides into both the top and bottom numbers. Whatever you do to the top line you must do the same to the bottom. In all these fractions, the numerator can be divided by itself, making on the top. The denominator can be divided by the numerator with the answer 2. All the fractions are reduced to /2. Although these all have different numerators and denominators, they are equivalent fractions they all have the same value of /2. These are straightforward examples and you could probably see that the denominator is twice the numerator. Look at the following examples. 7 5 (a) (b) 2 45 Find numbers that divide into both the top and bottom figures and cancel the original number and put in the new one: 7 (a) Seven divides into both numbers so the fraction is reduced to (b) Five divides into both numbers to give. This can be further reduced. 9 Three divides into both numbers to give (a) (b) (c) (d) Figure 2.3 Equivalent fractions

7 ADDITION OF VULGAR FRACTIONS Dividing by 4 If the last two digits of a number are 00 or the number formed by the last two digits is divisible by 4, then the number itself can be divided by 4, e.g. 00 is divisible by 4. The number ends in 2 and it is divisible by 4, so the whole number can be divided by 4. (This is also useful in working out which years are leap years.) Prime numbers There are some numbers that can only be divided by and the number itself, with no remainder. This means that sometimes there is no way to make them any simpler. These are called prime numbers (Table 2.). Table 2. Prime numbers up to Now look at these fractions and use the same method to reduce each to the smallest possible fraction. (Don t forget the handy tips to help choose your divisor.) (a) (b) (c) These are also equivalent fractions and you should have cancelled them down to /3. You have a choice of numbers that will divide into both the numerator and denominator. If you need more practice, there are further examples at the end of the chapter APPLYING THE THEORY Vulgar fractions are sometimes encountered in the calculation of drug doses so it is useful to be able to do them quickly and accurately. Having confidence in your ability to carry out the calculations will free you up to concentrate on other aspects of drug administration. What if? So far you have added fractions with the same denominator or have equivalent fractions that can be changed to the same by simplifying. What happens when the numbers of the denominator are not the same? You change them to equivalent fractions so that the denominators become the same. We say that they have a common denominator. Consider

11 SUBTRACTION OF VULGAR FRACTIONS Give the answers to the following in the simplest form. (a) 3>4 - >2 = (b) >2 - >3 = (c) 4>9 - >4 = (d) 3>5 - >0 = (e) 2>24-5>2 = (f) 7>0-3>5 = Answers: (a) /4 (b) /6 (c) 7/36 (d) /2 (e) /24 (f) /0. If you need more practice, there are further examples at the end of the chapter. If you have mixed numbers, then you treat them in the same way as you did when you did the addition. First, change the mixed numbers to improper fractions, then find the common denominator and work from there as in this example: = = Now simplify to a mixed number = 4 9 = 5 9 (a) = (b) = (c) = (d) 5 9 (e) 4 (f) = = = Answers: (a) 5/2 (b) 5/8 (c) (d) (e) 4/9 (f) If you need more practice, there are further examples at the end of the chapter. As you have now found, subtraction and addition of fractions is straightforward if you remember the key points. KEY POINTS When adding or subtracting fractions: First, change any mixed numbers to improper fractions. Find the common denominator. Give the answer in its simplest form. 4

12 CHAPTER 2 DECIMALS AND OTHER FRACTIONS 2.3 MULTIPLICATION AND DIVISION OF VULGAR FRACTIONS YOUR STARTING POINT FOR MULTIPLICATION AND DIVISION OF VULGAR FRACTIONS Without using a calculator, write down the answers to the following in their simplest form. (a) >2 * 2>5 = (b) >7 * 3>4 = (c) 2>3 * 3>5 = (d) 2>5 * 3>4 = (e) 9>0 * 2>5 = (f) 2 3 * 3 5 = (g) 2>3, >2 = (h) 4>5, >4 = (i) 3>5, 3>4 = (j) >2, >4 = (k) 3>4, 2>7 = (l) 3 3, 22 5 = Answers: (a) /5 (b) 3/28 (c) 6/5 (d) 3/0 (e) 9/25 (f) (g) (h) (i) 4/5 (j) 2 (k) (l) If you feel confident about all these examples, go to Section 2.4 for the addition and subtraction of decimal fractions. Multiplication of vulgar fractions Multiplication of fractions is straightforward honestly. You just multiply the numerators together, then multiply the denominators together and simplify the answer, if necessary. Look at this example: 2 * 2 3 = 2 6 The answer can be simplified to /3. If the calculation involves mixed numbers, then you do as you did in the addition and subtraction sections. Change the numbers to improper fractions, and then multiply. Work through this example: * 3 8 Change these mixed numbers to improper fractions: 8 3 * 8 Multiply the numerators together Multiply the denominators together 8 * 3 * 8 =

13 MULTIPLICATION AND DIVISION OF VULGAR FRACTIONS Simplify the answer by dividing the numerator and denominator by 8: = 3 = 32 3 If you are multiplying a fraction by a whole number on its own, it is safer to put as the denominator so that you do not mistakenly use it as a numerator. (Did you remember that any number divided or multiplied by remains unchanged?) For example, 3 * 4 5 = 3 * 4 5 = 2 5 = 22 5 (a) 2>5 * 4>7 = (b) >3 * 3>5 = (c) 7>0 * 3>7 = (d) 2 2 * 4 4 = (e) 22 (f) * 5 * 0> = 0 = Answers: (a) 8/35 (b) /5 (c) 3/0 (d) (e) (f) If you need more practice, there are further examples at the end of the chapter. KEY POINTS When multiplying vulgar fractions you need to: First change any mixed numbers to improper fractions. Multiply the numerators together. Multiply the denominators. Simplify the answer. Division of vulgar fractions You have already come across the idea of division of fractions at the beginning of the chapter. Fractions are already a division of a whole. You saw that one cake was divided into five parts which were called fifths and written as /5. Division of fractions is carried out in a similar way to multiplication except that the second fraction is turned upside down (inverted) and then the two fractions are multiplied. After inverting the second fraction, you can simplify before multiplying. Smaller numbers are easier to use, but, again, use the method that suits you best. 43

14 CHAPTER 2 DECIMALS AND OTHER FRACTIONS EXAMPLE This could also be written as 2 3, This is quite clumsy but underlies the reason for inverting the dividing fraction (see website at the end of the chapter). First, invert the second fraction and replace the division sign with a multiplication one: 2 3 * 2 Multiply the numerators and denominators = 4 3 Now simplify to a mixed number = 3 You can apply the method that you used for multiplying mixed numbers to division problems. EXAMPLE 3 3, 22 7 Change to improper fractions = 0 3, 6 7 Invert the second fraction and replace the division sign with a multiplication one In this case you can simplify the sum to make multiplication easier. Remember that whatever you do to the denominator is done to the numerator. It doesn t matter which denominator or numerator is simplified. = 05 3 * = = 24 (a) 3>7, >3 = (b) >5, >4 = (c) >0, >20 = (d) 2 2, 4 = (e) 3 (f) 3 5 3, 22 3 = 7, 2 6 = Answers: (a) (b) 4/5 (c) 22 (d) 2 (e) (f). 2 7 If you need more practice, there are further examples at the end of the chapter. 44

15 ADDITION AND SUBTRACTION OF DECIMAL FRACTIONS KEY POINTS When dividing vulgar fractions: First change any mixed numbers to improper fractions. Invert (turn upside down) the second fraction. Multiply the numerators. Multiply the denominators. Simplify the answer. 2.4 ADDITION AND SUBTRACTION OF DECIMAL FRACTIONS YOUR STARTING POINT FOR ADDITION AND SUBTRACTION OF DECIMAL FRACTIONS Add the following decimal fractions. (a) = (b) = (c) = Subtract the following fractions. (d) = (e) = (f) = Answers: (a).02 (b) 3.39 (c) (d).9 (e).06 (f) If you have answered all these correctly, congratulations. Move on to multiplication and division, Section 2.5. Decimal fractions You are already very familiar with decimal fractions since you use them every time you go shopping. A pound and thirty-one pence can be written as.3. Pence are a decimal fraction of a pound. In Chapter we saw the importance of place value and used columns to indicate units, tens, hundreds, thousands and so on. The decimal point marks the division between whole numbers and decimal fractions. These fractions are tenths, hundredths, thousandths and so on. It is vital that you are clear about the placement of the decimal point in the number. There is only one decimal place difference between.3 and 3.0 but you have 0 times as much money when you have

16 CHAPTER 2 DECIMALS AND OTHER FRACTIONS! LOOK OUT You need to make sure that when you give drugs that you are certain of the position of the decimal point, otherwise you can give a patient 0 times the prescribed dose. Table 2.2 Writing and saying decimal fractions In the number , you can see from Table 2.2 that the figures to the left of the decimal point are the whole numbers and those to the right are the decimal fractions. This number represents before the decimal point, and 7/0, 5/00 and 9/000 to the right of the decimal point. Thousands Hundreds Tens Units Decimal point Tenths Hundredths Thousandths It is accepted practice when saying the decimal part of the number to say each individual figure rather than saying seven hundred and fifty-nine, so that there is no confusion with whole numbers. When we write whole numbers the decimal point is not used, but you should remember that it is there in theory to the right of the figure, e.g. we write 5 or 7 rather than 5.0 or 7.0. APPLYING THE THEORY Many clinical measurements and calculations involve decimal fractions. Body temperature is measured in degrees Celsius. Normal temperature is 37 C but there is a significant difference between 37 C and 38 C so each degree is divided into tenths so that a temperature can be recorded more accurately, e.g C. Adding and subtracting decimals Addition and subtraction of decimals is very little different from addition and subtraction of whole numbers that you did in Chapter. It is important to align the decimal points under each other. Just as you did with whole numbers, you start the sum from the figure furthest to the right. EXAMPLES (a) (b) You may find it helpful to put zeros in spaces to keep decimal columns aligned as in 2.3 in example (b) above. 46

17 MULTIPLICATION AND DIVISION OF DECIMAL FRACTIONS Subtraction of decimal fractions is also similar to the subtraction of whole numbers. As with addition, you need to make sure that you keep the decimal points under each other. EXAMPLES (a) = (b) = (c) = (d) = (e) = (f) = Answers: (a) 5.89 (b) 0.2 (c) 3.99 (d).2 (e) 2.2 (f) If you need more practice, there are further examples at the end of the chapter. KEY POINT When adding and subtracting decimal fractions, they are done in the same way as whole numbers, except that the decimal points must be aligned. 2.5 MULTIPLICATION AND DIVISION OF DECIMAL FRACTIONS YOUR STARTING POINT FOR MULTIPLICATION AND DIVISION OF DECIMAL FRACTIONS Change the vulgar fractions to decimal fractions correct to two decimal places. (a) 2/9 (b) 3/7 (c) 4/9 Multiply the following: (d) 7.5 * 3.4 = (e) 5.92 * 6.8 = (f) *.94 = Divide the following: (g) 4.2,.5 = (h) 3.95,.5 = (i) 4.44,.2 = Answers: (a) 0.22 (b) 0.43 (c) 0.44 (d) (e) (f) (g) 2.80 (h) 2.63 (i) If you are happy with your answers, go to Section 2.6, read the section on exponents and do the calculations. 47

20 CHAPTER 2 DECIMALS AND OTHER FRACTIONS (a) 4.2 * 3.6 = (b) 3.5 *.2 = (c) 6.4 * 4.25 = (d) 2.56 * 5.9 = (e) 2.35 *.25 = (f) 2.72 * 2.43 = Answers: (a) 5.2 (b) 4.2 (c) 27.2 (d) 5.04 (e) (f) If you need more practice, there are further examples at the end of the chapter. Division of decimal fractions Division of decimals is just like division of whole numbers except that we don t have a remainder if the numbers don t divide exactly. The number of decimal places, in theory, is unlimited but the number of places is restricted in everyday life to manageable limits. We will start off with division of whole numbers by 0, 00 and 000. You are already familiar with multiplication by these numbers and division is just as straightforward. When you divide a number, you expect your answer to be smaller: 5000, 0 = , 00 = , 000 = 5 Again a pattern is emerging. It seems that the number of zeros removed from 5000 is the same number of zeros in the divisor one when dividing by 0, two when dividing by 00 and three with 000. Think about what is happening. We said earlier that in whole numbers the decimal point is not usually shown but in theory is after the last figure. You can then see that when 5000 is divided by 0, the decimal point moves one place to the left, making the number smaller. When divided by 00 the decimal point moves two places to the left and three places when divided by 000. Now try this one: 5000, = How many places do you need to move the decimal point? It might help if you put the decimal point in. That is, 5000 # 0, # 0, 0 50 # 0, 0 5 # 0, 0 0 # 5 So your answer is 0.5. Chapter 3 conversion of units. 50

21 MULTIPLICATION AND DIVISION OF DECIMAL FRACTIONS (a) 2.7, 0 = (b) 45., 000 = (c) , 00 = (d) 234, = (e) , = (f) 945, 00 = Answers: (a) 0.27 (b) (c) (d) (e) 5 (f) If you need more practice, there are further examples at the end of the chapter. Vulgar fractions can be easily changed to the decimal equivalent by dividing the numerator into the denominator. A half is written as /2 as a vulgar fraction and 0.5 as a decimal fraction; /2 means divided by 2 (, 2). This is a straightforward example, in which you may not have even considered how one is changed to the other. You treat it like a long-division sum. Go back to Chapter if you need to refresh your memory (page 22). Now 2 divided into won t go, so you put a zero and a decimal point on the line and a decimal point after the and add a zero. You now have 2 dividing into 0, which goes five times, so you put 5 on the line, giving you the answer 0.5: Another straightforward example: /4 means divided by You need to take care that the decimal point of the quotient is above the decimal point of the dividend, otherwise you might make a mistake in your calculation. When you are dividing numbers to make them into decimal fractions, you may find that you could keep on dividing and have 0 or more numbers after the decimal point. This is not usually practical so we need to know how accurate the calculation needs to be. Usually, you need an answer correct to two decimal places. This means that you need to divide until you have three numbers after the decimal point. You then need to look at the third figure after the decimal point. If it is less than five, then the second number remains the same. If the third figure is five or more, then the second number is increased by. EXAMPLES (a) >3 =, The third figure is less than five, so the answer, correct to two decimal places, is

22 CHAPTER 2 DECIMALS AND OTHER FRACTIONS (b) 2>3 = 2, The third figure is more than five, so the answer, correct to two decimal places, is 0.67.! LOOK OUT You will have noticed that there is a zero before the decimal point. It ensures that the figures are a decimal fraction and not whole numbers. A decimal point on its own could easily be missed, which could result in a potentially serious drug error. For example, a patient might receive 00 times the dose if someone mistook 0.25 for 25. APPLYING THE THEORY When calculating drug doses, particularly those involving small parts of a normal size dose, you need to ensure how accurate the final dose has to be. It is most common to have the dose correct to one or two decimal places. In some measurements, such as calculation of fluid intake, there may be no need to be as accurate, so the answer may be correct to the nearest whole number. You can change any vulgar fraction to a decimal fraction. It is useful to learn the common ones. Change these vulgar fractions to decimal fractions. (a) /5 (b) /8 (c) 3/4 (d) /0 (e) 2/5 (f) /2 Answers: (a) 0.2 (b) 0.25 (c) 0.75 (d) 0. (e) 0.4 (f) 0.5. You are more than halfway to dividing decimal fractions! If you need to divide a decimal fraction by another decimal fraction, you first need to put them in a form that is easily manageable. Look at this example: 3.2, 2.5 The first thing to do is to get rid of the decimal point in the divisor so that you have a whole number to carry out the calculation. To do this you need to multiply both numbers by 0. So 3.2 * 0 = 32 and 2.5 * 0 = 25 The sum is now 32, 25, so you can set it out like an ordinary division, making sure that the decimal points of the dividend and the quotient are kept aligned. 52

23 MULTIPLICATION AND DIVISION OF DECIMAL FRACTIONS You can set out the sum as you did in Chapter : Or like this divides into 32 once, remainder 7 25 into 70 goes twice, remainder into 200 goes eight times exactly Use whichever method you prefer. You do not have to worry about the position of the decimal point because you multiplied both numbers by the same amount, so it will make no difference to the final answer. Not sure? Think about this example: Now divide 40 and 20 by 0 to get 4 and 2: 40, 20 = 2 4, 2 = 2 same answer Calculate the following, correct to two decimal places. (a) 2.5, 0.5 = (b) 3.66, 2.4 = (c) 43.52, 3.2 = (d) 42.94, 3.8 = (e) 5.25, 0.75 = (f) 26.6, 4.2 = Answers: (a) 5.00 (b).53 (c) 3.60 (d).30 (e) 7 (f) There are more examples if you need them at the end of the chapter. APPLYING THE THEORY Being able to calculate accurately is very important for patient safety. You may have to decide whether you use vulgar or decimal fractions for your calculations. Sometimes it is easier to start off with vulgar fractions and convert the answer to a decimal fraction. The main advantage of working with decimal fractions is that they can be easily checked with a calculator. 53

24 CHAPTER 2 DECIMALS AND OTHER FRACTIONS KEY POINTS Any vulgar fraction can be converted to a decimal fraction by dividing the numerator by the denominator. When dividing by 0, 00 and 000, the decimal point is moved to the left, making the number smaller. If you divide decimal fractions, get rid of the decimal point in the divisor by multiplying it by 0, 00 or a larger multiple of 0. You must remember also to multiply the dividend by the same number. Keep decimal points aligned. 2.6 MORE ABOUT EXPONENTS In Chapter you learned how exponents can be used to simplify large numbers. Powers of 0 are often used in calculations of physiological measurements. This is called scientific notation. You will learn about this in the chapter on physiological measurements. Do you remember what 0 6 means? It means 0 * 0 * 0 * 0 * 0 * 0 = And. 0 * 0 * 0 * can be simplified to Now /0 4 can also be written as * 0-4 which is said as One times 0 to the minus four. This is called a negative exponent and is another way of saying divided by What would this be as a decimal fraction? Answer: Write these exponents in full. (a) 0 3 = (b) 0 8 = (c) 0 7 = (d) 0 9 = (e) 0-3 = (f) 0-8 = (g) 0-7 = (h) 0-9 = Answers: (a) 000 (b) (c) (d) (e) 0.00 (f) (g) (h)

25 WHAT DID YOU LEARN? You will use exponents again with SI units in the next chapter. You have covered a lot of ground so now is the time to see what you have understood. RUNNING WORDS common denominator correct to two decimal places decimal fractions denominator equivalent fractions improper fraction inverted mixed number numerator scientific notation vulgar fractions Answers to the following questions can be found at the end of the book. What did you learn? (a) Add the following fractions, giving the answer in its simplest form. (i) /3 + /3 = (ii) /2 + /4 = (iii) /4 + /8 = (iv) 2/3 + /6 = (v) /5 + 3/0 = (vi) /7 + 4/2 = (b) If I divide a cake into 2 equal slices and eat 3 slices, what fraction of the cake is left? Write the answer as a vulgar fraction in its simplest form. (c) A patient uses a glass that holds /5 of a jug s volume. The patient drinks eight full glasses during the course of the day. What fraction of the second jug is left at the end of the day? (d) You make a survey of the number of times the staff in the department wash their hands. You find that /4 wash their hands three times during the shift, /3 four times and the remainder five times. If there is a total of 2 staff, how many people washed their hands five times? (e) A patient s temperature is 39. C. You are asked to monitor it regularly after the patient has some medicine to reduce it. You are asked report to the nurse in charge when it has been reduced by.5 C because the patient s condition needs to be reviewed. What temperature will be recorded when that point is reached? (f) You work.25 hours per week as a care assistant. The hourly rate is How much do you earn per week, to the nearest penny? 55

26 CHAPTER 2 DECIMALS AND OTHER FRACTIONS More Time to Try examples Addition of fractions, page 33 (a) 3/7 + 3/7 = (b) /5 + 3/5 = (c) 6/5 + 5/5 = (d) 2/4 + /4 = (e) 5/7 + 2/7 = (f) 3/ + 5/ = Equivalent fractions, page 35 Which fraction in each of the following is not equivalent?. (a) 2/3 (b) /7 (c) 4/28 (d) 2/4 2. (a) /3 (b) 3/6 (c) 2/4 (d) 9/8 3. (a) 2/3 (b) 0/5 (c) /2 (d) 4/6 4. (a) 9/36 (b) /6 (c) 3/2 (d) /4 Equivalent fractions, page 37 Reduce each of these to the smallest possible fraction. (a) 45/35 = (b) 80/420 = (c) 42/92 = (d) 44/56 = (e) 4/26 = (f) 39/7 = Equivalent fractions, page 38 (a) /4 + /3 = (b) /2 + 2/7 = (c) /6 + 2/3 = (d) /8 + /2 = (e) 2/7 + /3 = (f) /0 + /5 = Mixed numbers, page 39 (a) = (b) = (c) (d) 20 = = (e) 6 5 (f) = = Subtraction of fractions, page 4 Give the answers to the following in the simplest form. (a) /4 - /5 = (b) 2/3 - /2 = (c) 5/9 - /6 = (d) 3/0 - /5 = (e) 7/2 - /36 = (f) 9/20-2/5 =

27 MORE EXAMPLES Mixed numbers, page 4 (a) = (b) = (c) (d) 20 = = (e) 4 (f) = = Multiplication of fractions, page 43 (a) 3/5 * /4 = (b) /3 * 3/4 = (c) 3/0 * 2/3 = (d) 33 * 2 4 = (e) 2 (f) * 3 = 5 * 3/0 = Division of fractions, page 44 (a) 5/7, /5 = (b) /4, /2 = (c) /0, /5 = (d) 3 2, 3 = (e) 32 (f) 2 5, 2 3 = 7, 3 3 = 2 3 Addition and subtraction of decimal fractions, page 47 (a) = (b) = (c) = (d) = (e) = (f) = Multiplication of decimal fractions, page 48 (a) 3.5 * 0 = (b) 5.7 * 000 = (c) 3.42 * 00 = (d).49 * = (e) 34.5 * = (f).753 * 00 = Multiplication of decimal fractions, page 50 (a) 2.4 *.7 = (b) 4.8 * 5.4 = (c).79 * 3.45 = (d) 6.34 * 2.8 = (e) 3.62 * 4.9 = (f) 2.72 * 3. = Division of decimal fractions, page 5 (a) 42.3, 0 = (b) 3676., 000 = (c) 3.46, 00 = (d) 6 522, = (e) , = (f) 2008, 00 = 57

28 CHAPTER 2 DECIMALS AND OTHER FRACTIONS Division of decimal fractions, page 53 Calculate the following, correct to two decimal places. (a) 2.5,.25 = (b) 4.86, 2.4 = (c) 8.92, 3.2 = (d) 46.6, 36.6 = (e) 0.75,.5 = (f) , 3.4 Web resources This site covers all aspects of playing with vulgar fractions. In the division section there is an explanation of the reason for inverting the divisor when fractions are divided if you feel strong. If you can t cope, just accept it! A step-by-step animated website with plenty of examples for you to do. A list of prime numbers that might be useful in finding factors. Try the fractions game. Useful for consolidating fractions. Choose the sections on fractions, although this site is useful for all aspects of maths. 58

### + = has become. has become. Maths in School. Fraction Calculations in School. by Kate Robinson

+ has become 0 Maths in School has become 0 Fraction Calculations in School by Kate Robinson Fractions Calculations in School Contents Introduction p. Simplifying fractions (cancelling down) p. Adding

### Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.

Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material

### All the examples in this worksheet and all the answers to questions are available as answer sheets or videos.

BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com Numbers 3 In this section we will look at - improper fractions and mixed fractions - multiplying and dividing fractions - what decimals mean and exponents

### Welcome to Basic Math Skills!

Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots

### Fractions to decimals

Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of

### Pre-Algebra Lecture 6

Pre-Algebra Lecture 6 Today we will discuss Decimals and Percentages. Outline: 1. Decimals 2. Ordering Decimals 3. Rounding Decimals 4. Adding and subtracting Decimals 5. Multiplying and Dividing Decimals

### Fractions Packet. Contents

Fractions Packet Contents Intro to Fractions.. page Reducing Fractions.. page Ordering Fractions page Multiplication and Division of Fractions page Addition and Subtraction of Fractions.. page Answer Keys..

### PREPARATION FOR MATH TESTING at CityLab Academy

PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST

### The Crescent Primary School Calculation Policy

The Crescent Primary School Calculation Policy Examples of calculation methods for each year group and the progression between each method. January 2015 Our Calculation Policy This calculation policy has

### Fractions. If the top and bottom numbers of a fraction are the same then you have a whole one.

What do fractions mean? Fractions Academic Skills Advice Look at the bottom of the fraction first this tells you how many pieces the shape (or number) has been cut into. Then look at the top of the fraction

### Paramedic Program Pre-Admission Mathematics Test Study Guide

Paramedic Program Pre-Admission Mathematics Test Study Guide 05/13 1 Table of Contents Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page

### Solution Guide Chapter 14 Mixing Fractions, Decimals, and Percents Together

Solution Guide Chapter 4 Mixing Fractions, Decimals, and Percents Together Doing the Math from p. 80 2. 0.72 9 =? 0.08 To change it to decimal, we can tip it over and divide: 9 0.72 To make 0.72 into a

### Fractions. Chapter 3. 3.1 Understanding fractions

Chapter Fractions This chapter will show you how to find equivalent fractions and write a fraction in its simplest form put fractions in order of size find a fraction of a quantity use improper fractions

### How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

### DIVISION OF DECIMALS. 1503 9. We then we multiply by the

Tallahassee Community College 0 DIVISION OF DECIMALS To divide 9, we write these fractions: reciprocal of the divisor 0 9. We then we multiply by the 0 67 67 = = 9 67 67 The decimal equivalent of is. 67.

### Sunny Hills Math Club Decimal Numbers Lesson 4

Are you tired of finding common denominators to add fractions? Are you tired of converting mixed fractions into improper fractions, just to multiply and convert them back? Are you tired of reducing fractions

### Mathematical goals. Starting points. Materials required. Time needed

Level N of challenge: B N Mathematical goals Starting points Materials required Time needed Ordering fractions and decimals To help learners to: interpret decimals and fractions using scales and areas;

1 Decimals Adding and Subtracting Decimals are a group of digits, which express numbers or measurements in units, tens, and multiples of 10. The digits for units and multiples of 10 are followed by a decimal

### A Numeracy Refresher

A Numeracy Refresher V2. January 2005 This material was developed and trialled by staff of the University of Birmingham Careers Centre and subsequently used widely throughout the HE Sector. The contributions

### The gas can has a capacity of 4.17 gallons and weighs 3.4 pounds.

hundred million\$ ten------ million\$ million\$ 00,000,000 0,000,000,000,000 00,000 0,000,000 00 0 0 0 0 0 0 0 0 0 Session 26 Decimal Fractions Explain the meaning of the values stated in the following sentence.

### Maths Workshop for Parents 2. Fractions and Algebra

Maths Workshop for Parents 2 Fractions and Algebra What is a fraction? A fraction is a part of a whole. There are two numbers to every fraction: 2 7 Numerator Denominator 2 7 This is a proper (or common)

### Unit 11 Fractions and decimals

Unit 11 Fractions and decimals Five daily lessons Year 4 Spring term (Key objectives in bold) Unit Objectives Year 4 Use fraction notation. Recognise simple fractions that are Page several parts of a whole;

### Preliminary Mathematics

Preliminary Mathematics The purpose of this document is to provide you with a refresher over some topics that will be essential for what we do in this class. We will begin with fractions, decimals, and

### Math Refresher. Book #2. Workers Opportunities Resources Knowledge

Math Refresher Book #2 Workers Opportunities Resources Knowledge Contents Introduction...1 Basic Math Concepts...2 1. Fractions...2 2. Decimals...11 3. Percentages...15 4. Ratios...17 Sample Questions...18

### Basic numerical skills: FRACTIONS, DECIMALS, PROPORTIONS, RATIOS AND PERCENTAGES

Basic numerical skills: FRACTIONS, DECIMALS, PROPORTIONS, RATIOS AND PERCENTAGES. Introduction (simple) This helpsheet is concerned with the ways that we express quantities that are not whole numbers,

### 47 Numerator Denominator

JH WEEKLIES ISSUE #22 2012-2013 Mathematics Fractions Mathematicians often have to deal with numbers that are not whole numbers (1, 2, 3 etc.). The preferred way to represent these partial numbers (rational

### Exponents. Exponents tell us how many times to multiply a base number by itself.

Exponents Exponents tell us how many times to multiply a base number by itself. Exponential form: 5 4 exponent base number Expanded form: 5 5 5 5 25 5 5 125 5 625 To use a calculator: put in the base number,

### JobTestPrep's Numeracy Review Decimals & Percentages

JobTestPrep's Numeracy Review Decimals & Percentages 1 Table of contents What is decimal? 3 Converting fractions to decimals 4 Converting decimals to fractions 6 Percentages 6 Adding and subtracting decimals

### Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20

SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed

### Revision Notes Adult Numeracy Level 2

Revision Notes Adult Numeracy Level 2 Place Value The use of place value from earlier levels applies but is extended to all sizes of numbers. The values of columns are: Millions Hundred thousands Ten thousands

### Introduction to Fractions, Equivalent and Simplifying (1-2 days)

Introduction to Fractions, Equivalent and Simplifying (1-2 days) 1. Fraction 2. Numerator 3. Denominator 4. Equivalent 5. Simplest form Real World Examples: 1. Fractions in general, why and where we use

### Session 7 Fractions and Decimals

Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,

### Decimal Notations for Fractions Number and Operations Fractions /4.NF

Decimal Notations for Fractions Number and Operations Fractions /4.NF Domain: Cluster: Standard: 4.NF Number and Operations Fractions Understand decimal notation for fractions, and compare decimal fractions.

Arithmetic 1 Progress Ladder Maths Makes Sense Foundation End-of-year objectives page 2 Maths Makes Sense 1 2 End-of-block objectives page 3 Maths Makes Sense 3 4 End-of-block objectives page 4 Maths Makes

### Five daily lessons. Page 23. Page 25. Page 29. Pages 31

Unit 4 Fractions and decimals Five daily lessons Year 5 Spring term Unit Objectives Year 5 Order a set of fractions, such as 2, 2¾, 1¾, 1½, and position them on a number line. Relate fractions to division

### Accuplacer Arithmetic Study Guide

Accuplacer Arithmetic Study Guide Section One: Terms Numerator: The number on top of a fraction which tells how many parts you have. Denominator: The number on the bottom of a fraction which tells how

### WSMA Decimal Numbers Lesson 4

Thousands Hundreds Tens Ones Decimal Tenths Hundredths Thousandths WSMA Decimal Numbers Lesson 4 Are you tired of finding common denominators to add fractions? Are you tired of converting mixed fractions

### Chapter 1: Order of Operations, Fractions & Percents

HOSP 1107 (Business Math) Learning Centre Chapter 1: Order of Operations, Fractions & Percents ORDER OF OPERATIONS When finding the value of an expression, the operations must be carried out in a certain

### DECIMAL COMPETENCY PACKET

DECIMAL COMPETENCY PACKET Developed by: Nancy Tufo Revised: Sharyn Sweeney 2004 Student Support Center North Shore Community College 2 In this booklet arithmetic operations involving decimal numbers are

### Simplifying Improper Fractions Poster

Simplifying Improper Fractions Poster Congratulations on your purchase of this Really Good Stuff Simplifying Improper Fractions Poster a reference tool showing students how to change improper fractions

### Maths Refresher. Working with Fractions

Maths Refresher Working with Fractions Working with fractions Learning intentions. Become familiar with fractions Equivalent fractions Converting mixed numbers to improper fractions Converting improper

### YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!

DETAILED SOLUTIONS AND CONCEPTS - DECIMALS AND WHOLE NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! YOU MUST

### Unit 6 Number and Operations in Base Ten: Decimals

Unit 6 Number and Operations in Base Ten: Decimals Introduction Students will extend the place value system to decimals. They will apply their understanding of models for decimals and decimal notation,

### north seattle community college

INTRODUCTION TO FRACTIONS If we divide a whole number into equal parts we get a fraction: For example, this circle is divided into quarters. Three quarters, or, of the circle is shaded. DEFINITIONS: The

### QM0113 BASIC MATHEMATICS I (ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION)

SUBCOURSE QM0113 EDITION A BASIC MATHEMATICS I (ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION) BASIC MATHEMATICS I (ADDITION, SUBTRACTION, MULTIPLICATION AND DIVISION) Subcourse Number QM 0113 EDITION

### Numeracy Preparation Guide. for the. VETASSESS Test for Certificate IV in Nursing (Enrolled / Division 2 Nursing) course

Numeracy Preparation Guide for the VETASSESS Test for Certificate IV in Nursing (Enrolled / Division Nursing) course Introduction The Nursing course selection (or entrance) test used by various Registered

### REVIEW SHEETS BASIC MATHEMATICS MATH 010

REVIEW SHEETS BASIC MATHEMATICS MATH 010 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts that are taught in the specified math course. The sheets

### FRACTIONS COMMON MISTAKES

FRACTIONS COMMON MISTAKES 0/0/009 Fractions Changing Fractions to Decimals How to Change Fractions to Decimals To change fractions to decimals, you need to divide the numerator (top number) by the denominator

### 3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼

cups cups cup Fractions are a form of division. When I ask what is / I am asking How big will each part be if I break into equal parts? The answer is. This a fraction. A fraction is part of a whole. The

### Chapter 4 -- Decimals

Chapter 4 -- Decimals \$34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789

### Decimals are absolutely amazing We have only 10 symbols, yet can represent any number, large or small We use zero (0) as a place holder to allow us

Decimals 1 Decimals are absolutely amazing We have only 10 symbols, yet can represent any number, large or small We use zero (0) as a place holder to allow us to do this 2 Some Older Number Systems 3 Can

### Working with whole numbers

1 CHAPTER 1 Working with whole numbers In this chapter you will revise earlier work on: addition and subtraction without a calculator multiplication and division without a calculator using positive and

### Integers, I, is a set of numbers that include positive and negative numbers and zero.

Grade 9 Math Unit 3: Rational Numbers Section 3.1: What is a Rational Number? Integers, I, is a set of numbers that include positive and negative numbers and zero. Imagine a number line These numbers are

UNDERSTANDING ALGEBRA JAMES BRENNAN Copyright 00, All Rights Reserved CONTENTS CHAPTER 1: THE NUMBERS OF ARITHMETIC 1 THE REAL NUMBER SYSTEM 1 ADDITION AND SUBTRACTION OF REAL NUMBERS 8 MULTIPLICATION

### Sect 3.2 - Least Common Multiple

Let's start with an example: Sect 3.2 - Least Common Multiple Ex. 1 Suppose a family has two different pies. If they have 2 3 of one type of pie and 3 of another pie, is it possible to combine the pies

### CALCULATIONS. Understand the operation of addition and the associated vocabulary, and its relationship to subtraction

CALCULATIONS Pupils should be taught to: Understand the operation of addition and the associated vocabulary, and its relationship to subtraction As outcomes, Year 4 pupils should, for example: Use, read

### Addition Methods. Methods Jottings Expanded Compact Examples 8 + 7 = 15

Addition Methods Methods Jottings Expanded Compact Examples 8 + 7 = 15 48 + 36 = 84 or: Write the numbers in columns. Adding the tens first: 47 + 76 110 13 123 Adding the units first: 47 + 76 13 110 123

### MATH-0910 Review Concepts (Haugen)

Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,

### CHAPTER 4 DIMENSIONAL ANALYSIS

CHAPTER 4 DIMENSIONAL ANALYSIS 1. DIMENSIONAL ANALYSIS Dimensional analysis, which is also known as the factor label method or unit conversion method, is an extremely important tool in the field of chemistry.

### c sigma & CEMTL

c sigma & CEMTL Foreword The Regional Centre for Excellence in Mathematics Teaching and Learning (CEMTL) is collaboration between the Shannon Consortium Partners: University of Limerick, Institute of Technology,

### Chapter 11 Number Theory

Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

### Previously, you learned the names of the parts of a multiplication problem. 1. a. 6 2 = 12 6 and 2 are the. b. 12 is the

Tallahassee Community College 13 PRIME NUMBERS AND FACTORING (Use your math book with this lab) I. Divisors and Factors of a Number Previously, you learned the names of the parts of a multiplication problem.

### MathSphere MATHEMATICS. Equipment. Y6 Fractions 6365 Round decimals. Equivalence between decimals and fractions

MATHEMATICS Y6 Fractions 6365 Round decimals. Equivalence between decimals and fractions Paper, pencil, ruler Fraction cards Calculator Equipment MathSphere 6365 Round decimals. Equivalence between fractions

### NF5-12 Flexibility with Equivalent Fractions and Pages 110 112

NF5- Flexibility with Equivalent Fractions and Pages 0 Lowest Terms STANDARDS preparation for 5.NF.A., 5.NF.A. Goals Students will equivalent fractions using division and reduce fractions to lowest terms.

### Numerical and Algebraic Fractions

Numerical and Algebraic Fractions Aquinas Maths Department Preparation for AS Maths This unit covers numerical and algebraic fractions. In A level, solutions often involve fractions and one of the Core

### Numerator Denominator

Fractions A fraction is any part of a group, number or whole. Fractions are always written as Numerator Denominator A unitary fraction is one where the numerator is always 1 e.g 1 1 1 1 1...etc... 2 3

### Using Proportions to Solve Percent Problems I

RP7-1 Using Proportions to Solve Percent Problems I Pages 46 48 Standards: 7.RP.A. Goals: Students will write equivalent statements for proportions by keeping track of the part and the whole, and by solving

### Prime Factorization 0.1. Overcoming Math Anxiety

0.1 Prime Factorization 0.1 OBJECTIVES 1. Find the factors of a natural number 2. Determine whether a number is prime, composite, or neither 3. Find the prime factorization for a number 4. Find the GCF

### If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

### 1004.6 one thousand, four AND six tenths 3.042 three AND forty-two thousandths 0.0063 sixty-three ten-thousands Two hundred AND two hundreds 200.

Section 4 Decimal Notation Place Value Chart 00 0 0 00 000 0000 00000 0. 0.0 0.00 0.000 0.0000 hundred ten one tenth hundredth thousandth Ten thousandth Hundred thousandth Identify the place value for

### Dr Brian Beaudrie pg. 1

Multiplication of Decimals Name: Multiplication of a decimal by a whole number can be represented by the repeated addition model. For example, 3 0.14 means add 0.14 three times, regroup, and simplify,

### Section 1.5 Exponents, Square Roots, and the Order of Operations

Section 1.5 Exponents, Square Roots, and the Order of Operations Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Identify perfect squares.

### Mathematics Navigator. Misconceptions and Errors

Mathematics Navigator Misconceptions and Errors Introduction In this Guide Misconceptions and errors are addressed as follows: Place Value... 1 Addition and Subtraction... 4 Multiplication and Division...

### Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

### FRACTIONS MODULE Part I

FRACTIONS MODULE Part I I. Basics of Fractions II. Rewriting Fractions in the Lowest Terms III. Change an Improper Fraction into a Mixed Number IV. Change a Mixed Number into an Improper Fraction BMR.Fractions

### Section 4.1 Rules of Exponents

Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells

### LESSON 5 - DECIMALS INTRODUCTION

LESSON 5 - DECIMALS INTRODUCTION Now that we know something about whole numbers and fractions, we will begin working with types of numbers that are extensions of whole numbers and related to fractions.

### 5 Mathematics Curriculum

New York State Common Core 5 Mathematics Curriculum G R A D E GRADE 5 MODULE 1 Topic B Decimal Fractions and Place Value Patterns 5.NBT.3 Focus Standard: 5.NBT.3 Read, write, and compare decimals to thousandths.

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

### NWT Apprenticeship Support Materials

NWT Apprenticeship Support Materials Math Reading Comprehension Science * Module 1 Foundations * Module 2 Patterns and Relations * Module 3 Variables and Equations * Module 4 Measuring Time, Shapes and

### Order of Operations More Essential Practice

Order of Operations More Essential Practice We will be simplifying expressions using the order of operations in this section. Automatic Skill: Order of operations needs to become an automatic skill. Failure

### Quick Reference ebook

This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed

### 1. The Fly In The Ointment

Arithmetic Revisited Lesson 5: Decimal Fractions or Place Value Extended Part 5: Dividing Decimal Fractions, Part 2. The Fly In The Ointment The meaning of, say, ƒ 2 doesn't depend on whether we represent

### ACCUPLACER. Testing & Study Guide. Prepared by the Admissions Office Staff and General Education Faculty Draft: January 2011

ACCUPLACER Testing & Study Guide Prepared by the Admissions Office Staff and General Education Faculty Draft: January 2011 Thank you to Johnston Community College staff for giving permission to revise

### Everything you wanted to know about using Hexadecimal and Octal Numbers in Visual Basic 6

Everything you wanted to know about using Hexadecimal and Octal Numbers in Visual Basic 6 Number Systems No course on programming would be complete without a discussion of the Hexadecimal (Hex) number

### Converting from Fractions to Decimals

.6 Converting from Fractions to Decimals.6 OBJECTIVES. Convert a common fraction to a decimal 2. Convert a common fraction to a repeating decimal. Convert a mixed number to a decimal Because a common fraction

### Week 13 Trigonometric Form of Complex Numbers

Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working

### BASIC MATHEMATICS. WORKBOOK Volume 2

BASIC MATHEMATICS WORKBOOK Volume 2 2006 Veronique Lankar A r ef resher o n t he i mp o rt a nt s ki l l s y o u l l ne e d b efo r e y o u ca n s t a rt Alg e b ra. This can be use d a s a s elf-teaching

### Seriously Simple Sums! Vedic Maths Free Tutorial. Maths Tips and Tricks to Improve Your Math Abilities

Copyright Notice This e-book is free! Maths Tips and Tricks to Improve Your Math Abilities This publication is protected by international copyright laws. You have the author s permission to transmit this

### Fraction Competency Packet

Fraction Competency Packet Developed by: Nancy Tufo Revised 00: Sharyn Sweeney Student Support Center North Shore Community College To use this booklet, review the glossary, study the examples, then work

### NUMBER SYSTEMS. William Stallings

NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html

### Multiplying Fractions

. Multiplying Fractions. OBJECTIVES 1. Multiply two fractions. Multiply two mixed numbers. Simplify before multiplying fractions 4. Estimate products by rounding Multiplication is the easiest of the four

### Multiplying and Dividing Fractions

Multiplying and Dividing Fractions 1 Overview Fractions and Mixed Numbers Factors and Prime Factorization Simplest Form of a Fraction Multiplying Fractions and Mixed Numbers Dividing Fractions and Mixed

### LESSON PLANS FOR PERCENTAGES, FRACTIONS, DECIMALS, AND ORDERING Lesson Purpose: The students will be able to:

LESSON PLANS FOR PERCENTAGES, FRACTIONS, DECIMALS, AND ORDERING Lesson Purpose: The students will be able to: 1. Change fractions to decimals. 2. Change decimals to fractions. 3. Change percents to decimals.

### Arithmetic Review ORDER OF OPERATIONS WITH WHOLE NUMBERS

Arithmetic Review The arithmetic portion of the Accuplacer Placement test consists of seventeen multiple choice questions. These questions will measure skills in computation of whole numbers, fractions,

### FRACTIONS. The student will be able to: Essential Fraction Vocabulary

FRACTIONS The student will be able to:. Perform basic operations with common fractions: addition, subtraction, multiplication, and division. Common fractions, such as /, /, and /, are used on the GED Test

### Math Matters: Why Do I Need To Know This? 1 Probability and counting Lottery likelihoods

Math Matters: Why Do I Need To Know This? Bruce Kessler, Department of Mathematics Western Kentucky University Episode Four 1 Probability and counting Lottery likelihoods Objective: To demonstrate the