Monitoring Frequency of Change By Li Qin

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Monitoring Frequency of Change By Li Qin"

Transcription

1 Monitoring Frequency of Change By Li Qin Abstract Control charts are widely used in rocess monitoring roblems. This aer gives a brief review of control charts for monitoring a roortion and some initial ideas of using them to monitor the change frequency of a web age, whose estimator can be exressed as the function of a roortion. Exeriment and/or simulation should be done to comare the erformance of these control charts.. Introduction Control charts like Shewhart -chart, various CUSUM chart and SPRT chart have been widely used in rocess monitoring roblems such as quality control in manufacturing. All the items can be insected or samles can be taken from the rocess when % insection is economically or ractically imossible. Items are classified as defective or nondefective (nonconforming or conforming) based on the test result. Alications usually focus on the change (usually increase) of the roortion of defective items. In estimating the change frequency of a web age, the crawler may visit it eriodically and find whether it has changed or not by comuting the checksum for the web age at each access. A web age has been shown to change by a Poisson rocess. The frequency ratio is defined to be the ratio of the change frequenc y to the access frequency. We can estimate the frequency ratio first and estimate the change frequency indirectly from the frequency ratio by multilying it with the access frequency. The frequency ratio can be estimated by log(x/n) [CGMa], where n is the total number of accesses and X is the number of times the age does not change during the checking eriod. The estimated change frequency can be alied to imrove the freshness of data warehouse, web caching olicy and data mining [CGMb]. One of the challenges to these alications is the change frequency itself may change and a roer solution to monitor the shift of the change frequency has to be roosed. So, this aer is about the ossibility of using existing control

2 charts to monitor the change frequency. Similarly, we can monitor the change frequency indirectly by monitoring the frequency ratio. This aer is organized as follows: section is a review on how to estimate the change frequency; Section 3 is to introduce various control cha rts to be considered; Section 4 is about some initial ideas of using control charts to monitor the change frequency and some questions to be considered; Section 5 concludes this aer.. Estimating the Change Frequency In most cases, when we try to estimate the change frequency of web ages, we don t have the comlete change history of web ages, i.e. we don t know when exactly each web age changes and how many times it has changed between consecutive accesses. So, our discussion below is based on an incomlete change history of web ages. In order to estimate the change frequency, [CGMa] traced the daily change history of 7, web ages from 7 sites for four months. The exeriment shows that web ages change by following a Poisson rocess. The frequency ratio r is defined to be the ratio of the change frequency? to the access frequency f, so r =? / f. An intuitive estimator for the frequency ratio is X/T, where X is the number of detected changes and T is the monitoring eriod. This estimator has been roved to be biased and not consistent since the bias does not decrease as the samle size increases. Due to the drawbacks of this intuitive estimator, [CGMa] roosed an imroved estimator exressed as - log(x/n), where n is the total number of accesses and X is the number of accesses in which the web age does not change. For examle, if we access a web age once a day for days and the web age does not change in 7 accesses, the frequency ratio r = - log(7/) =.36. This result is slightly larger than the intuitive estimator 3/ =.3 since some changes may have been missed between accesses. Similar erformance analysis shows that this estimator is better than X/n in bias, more efficient and consistent.

3 The change frequency, λ,can change in ractice. We don t have any exeriment so far to show how the change frequency itself can change. If the change frequency changes very quickly, it will be difficult and imractical to estimate λ and really use it in alications. So, we assum e that the change frequency will remain relatively stable for at least some eriod of time. What we can do is to test it eriodically and see whether it has changed and whether the change is beyond a redefined threshold. Since the frequency ratio r can be estimated as log(x/n), the roortion to be monitored,, will be X/n. We are interested in finding out both the increase and decrease of. In order not to miss too many changes, the crawler should access the web age as frequently as ossible. Usually, the crawler can not access web ages more than once a day and we are not interested in the web ages which change more than once a day, so the access frequency can be chosen as one access er day. 3. Control Charts [W997] gives a review and bibliograhy on control charts based on attribute data. Here, we focus on the Shewhart -chart, Bernoulli CUSUM chart, Binomial CUSUM chart and SPRT chart [RSa, RSb, RS999, and RS998]. For our alication, since the crawler can not visit all the web ages once a day, continuous % insection is not ossible. Therefore, our insection will be based on samles taken from the rocess. 3. The Shewhart -chart When samles of n items are taken from the rocess, the Shewhart -chart is to lot the fraction of defective items in the samles. So, if T is the total number of defective items in a samle of size n, then T/n is lotted on the -chart. T has a binomial distribution assuming is constant and items are indeendent. If the crawler visits a web age once a day for n days and X is number of accesses in which the web age doesn t change, the roortion of X/n can be lotted on the 3

4 Shewhart -chart. Here, X has a binomial distribution with arameter n and, where is the robability that the web age doesn t change between two consecutive accesses and = e -r, where r is the frequency ratio. So, the result of ith access, X i, takes the value of with robability and of with robability Bernoulli CUSUM Chart The Bernoulli CUSUM chart is based on the individual observations X, X,. In order to detect an increase in, the Bernoulli CUSUM control statistic is B i = max (, B i- ) + (X i r), i=,, r is the reference value. This CUSUM chart will signal there has been an increase in if B k = h, where h > is the control limit. For detecting a decrease in, the corresonding CUSUM control statistic is B i = min (, B i- ) + (X i r), i=,, r is the reference value. It will signal there has been a decrease in if B k = h, where h < is the control limit. In order to get the value of r, we have to secify an out-of-control value which we want to be detected quickly. Constants r and r are defined to be r = log Then, the reference value r = r/ r r ( ) = log ( ) Usually, is adjusted slightly so that r takes the value of the recirocal of an integer m, i.e. r = /m. The control limit h is obtained by making the false alarm rate (i.e. the average number of observations/samles to signal when =) satisfy some redefined value. 3.3 Binomial CUSUM Chart Binomial CUSUM chart is to lot a cumulative sum of defective items in a samle of n consecutive items, T, T,, where each T k has a binomial distribution. For detecting an increase in, the binomial CUSUM control statistic is Sk = max (, Sk-) + (Tk nr), k=,..., where nr is the reference value. The Binomial CUSUM chart will signal there has been an increase in if S k =h, where h> is the 4

5 control limit. For detecting a decrease in, the binomial CUSUM control statistic is Sk = min (, Sk-) + (Tk nr), k=,..., where nr is the reference value. The Binomial CUSUM chart will signal there has been a decrease in if Sk= h,where h< is the control limit. Similar to the Bernoulli CUSUM chart, the control limit h for the binomial CUSUM chart is also obtained by making the false alarm rate satisfy some redefined value. 3.4 SPRT Chart In most alications, both the -chart and the CUSUM chart take a fixed samle size of n items using a fixed samling interval between samles. SPRT is to use a varied samle size which is determined dynamically. It is a sequential test of null hyothesis H: = against H: =. For each item, Xi = if the ith item is defective (in our alication, if the web age does not change) and X i = otherwise. The statistic used by SPRT is S j = r T j r j, where j T j = Xi. Here, r and r are defined as in 3.. i= The SPRT requires sec ifying two constants a and b, b<a. The following rules are used for samling and making decisions to accet or reject H : If b<s j <a, then continue samling; If S j = a, then sto samling and reject H ; If Sj= b, then sto samling and accet H. The constants a and b are usually chosen to satisfy some redefined error robabilities (robabilities for tye I and II errors). 3.5 Comarison of Control Charts The erformance of the above control charts can be measured by ANSS (average number of samles to signal), ANOS (average number of observations to signal) and ATS (average time to signal). Since the samle size is not fixed for SPRT chart and ATS is deendent on the length of non-insecting eriod, we suggest using ANOS to comare the erformance of control charts. 5

6 A corrected diffusion (CD) theory aroximation to the ANOS has been develoed for CUSUM chart and SPRT chart. For each tye of control chart, ANOS can be obtained for a range of in-control value and out-of-control value. When the Bernoulli CUSUM chart is used, the CD aroximation to the ANOS when = is ANOS( e ) h r r h r r We can find the required value of h to give a desired value for in-control ANOS (average false alarm rate). Then, by using h = h + ε ( ) q where e () can be aroximated by.376 (log()) 4 -.8(log()) 7, if.= <.5; 3, if <<.; (log()) -.39(log()) 3, if otherwise. We can find the control limit h. Also, the CD aroximation to the ANOS when = is ANOS( ) e h r h r r r When the SPRT chart is used, let a be the robability for a tye I error and ß be the robability for a tye II error, using h β ln r α β g ln α r and h = h + ( - )/3, we can find the values for h and g. Since g =b/r, h = a/r, we can get a and b. The ANOS ( ) and ANOS ( ) can be obtained using,, r, r, g and h. 6

7 The Shewhart -chart has the advantage of simlicity, and it also has some disadvantages: if the control limit is set to be three standard deviations from the target value, the false alarm rate will be much different from that for a normal distribution. The Shewhart -chart is not effective for detecting small changes in. The erformance of the -chart for detecting small shifts can be imroved by using a larger samle size, but it will not be very effective in detecting large shifts. The Bernoulli CUSUM chart detects shifts in much faster than the -chart. The binomial CUSUM chart is a little slower than the Bernoulli CUSUM chart for small shifts in and considerably slower for very large shifts, since a binomial CUSUM would have to wait until the end of a samle to signal. The SPRT chart has much better erformance than the -chart or the CUSUM chart. 4. Monitoring the Change Frequency Based on the erformance analysis of the control charts and the characteristics of our alications, Bernoulli CUSUM chart or SPRT chart would be more aroriate for our urose since they both are good for detecting small shifts. Also, we need to consider the following questions: a. determining how we check the change frequency, either eriodically or randomly. If eriodically, then determine how often we should check; b. determining the samle size since the samle size could have an imortant effect on the insection result; c. determining the out-of-control value ; d. determining the false alarm rate for CUSUM chart so that the control limit h can be determined or the error robabilities for SPRT chart so that the two constants a and b can be determined; For examle, we have the knowledge that the current change frequency is.693 er day, which means the web age changes.693 times a day. Based on.693 = - log(x/n), this change frequency corresonds to X/n =.5. We want to detect the shift when the change frequency becomes.3567, which corresonds to X/n =.7. In this case, our in-control value =.5 and out-of -control value =.7. These values are 7

8 relatively large comared with those used in quality control. If we use the Bernoulli CUSUM chart, we can get the reference value r using and. Then, given a desired value for ANOS ( ), we can find the value for the control limit h. Next, we can get ANOS ( ). If the SPRT chart is used, for some desired values of a andß, we can find the values for a and b, and further find the aroximation of ANOS (). In order to comare the erformance of these control charts, we can try to adjust the values so that they give similar values for ANOS ( ) and comare ANOS ( ) for different values of and. 5. Conclusion & Future Work This aer gives a brief review of control charts and some initial ideas of alying these control charts to monitor the change frequency of a web age. However, in order to show the aroriateness of the control charts, exeriments or simulation should be done and secific data to measure the erformance of these control charts should be obtained and comared. Reference [RSa] M Reynolds, Jr. and Z. Stoumbos, Monitoring a Proortion Using CUSUM and SPRT Control Charts. Frontiers in Statistical Quality Control 6, () [RSb] M Reynolds, Jr. and Z. Stoumbos, A General Aroach to Modeling CUSUM charts for a Proortion, IIE Transactions() 3, [RS999] M Reynolds, Jr. and Z. Stoumbos, A CUSUM Chart for Monitoring a Proortion When Insecting Continuously, Journal of Quality Technology, Vol. 3, No., Jan 999 [RS998] M Reynolds, Jr. and Z. Stoumbos, The SPRT Chart for Monitoring a Proortion, IIE Transactions (998) 3, [W997] W. Woodall, Control Charts Based on Attribute Data: Bibliograhy and Review, Journal of Quality Technology, Vol. 9, No., Aril 997 [CGMa] Junghoo Cho and Hector Garcia -Molina, Estimating Frequency of Change 8

9 [CGMb] Junghoo Cho and Hector Garcia -Molina, The Evolution of the Web and Imlications for an Incremental crawler, VLDB, Exerience/Alication track,. 9

Chapter 9, Part B Hypothesis Tests. Learning objectives

Chapter 9, Part B Hypothesis Tests. Learning objectives Chater 9, Part B Hyothesis Tests Slide 1 Learning objectives 1. Able to do hyothesis test about Poulation Proortion 2. Calculatethe Probability of Tye II Errors 3. Understand ower of the test 4. Determinethe

More information

Implementation of Statistic Process Control in a Painting Sector of a Automotive Manufacturer

Implementation of Statistic Process Control in a Painting Sector of a Automotive Manufacturer 4 th International Conference on Industrial Engineering and Industrial Management IV Congreso de Ingeniería de Organización Donostia- an ebastián, etember 8 th - th Imlementation of tatistic Process Control

More information

An important observation in supply chain management, known as the bullwhip effect,

An important observation in supply chain management, known as the bullwhip effect, Quantifying the Bullwhi Effect in a Simle Suly Chain: The Imact of Forecasting, Lead Times, and Information Frank Chen Zvi Drezner Jennifer K. Ryan David Simchi-Levi Decision Sciences Deartment, National

More information

A MOST PROBABLE POINT-BASED METHOD FOR RELIABILITY ANALYSIS, SENSITIVITY ANALYSIS AND DESIGN OPTIMIZATION

A MOST PROBABLE POINT-BASED METHOD FOR RELIABILITY ANALYSIS, SENSITIVITY ANALYSIS AND DESIGN OPTIMIZATION 9 th ASCE Secialty Conference on Probabilistic Mechanics and Structural Reliability PMC2004 Abstract A MOST PROBABLE POINT-BASED METHOD FOR RELIABILITY ANALYSIS, SENSITIVITY ANALYSIS AND DESIGN OPTIMIZATION

More information

The risk of using the Q heterogeneity estimator for software engineering experiments

The risk of using the Q heterogeneity estimator for software engineering experiments Dieste, O., Fernández, E., García-Martínez, R., Juristo, N. 11. The risk of using the Q heterogeneity estimator for software engineering exeriments. The risk of using the Q heterogeneity estimator for

More information

Index Numbers OPTIONAL - II Mathematics for Commerce, Economics and Business INDEX NUMBERS

Index Numbers OPTIONAL - II Mathematics for Commerce, Economics and Business INDEX NUMBERS Index Numbers OPTIONAL - II 38 INDEX NUMBERS Of the imortant statistical devices and techniques, Index Numbers have today become one of the most widely used for judging the ulse of economy, although in

More information

Compensating Fund Managers for Risk-Adjusted Performance

Compensating Fund Managers for Risk-Adjusted Performance Comensating Fund Managers for Risk-Adjusted Performance Thomas S. Coleman Æquilibrium Investments, Ltd. Laurence B. Siegel The Ford Foundation Journal of Alternative Investments Winter 1999 In contrast

More information

POISSON PROCESSES. Chapter 2. 2.1 Introduction. 2.1.1 Arrival processes

POISSON PROCESSES. Chapter 2. 2.1 Introduction. 2.1.1 Arrival processes Chater 2 POISSON PROCESSES 2.1 Introduction A Poisson rocess is a simle and widely used stochastic rocess for modeling the times at which arrivals enter a system. It is in many ways the continuous-time

More information

Two-resource stochastic capacity planning employing a Bayesian methodology

Two-resource stochastic capacity planning employing a Bayesian methodology Journal of the Oerational Research Society (23) 54, 1198 128 r 23 Oerational Research Society Ltd. All rights reserved. 16-5682/3 $25. www.algrave-journals.com/jors Two-resource stochastic caacity lanning

More information

Managing specific risk in property portfolios

Managing specific risk in property portfolios Managing secific risk in roerty ortfolios Andrew Baum, PhD University of Reading, UK Peter Struemell OPC, London, UK Contact author: Andrew Baum Deartment of Real Estate and Planning University of Reading

More information

Web Application Scalability: A Model-Based Approach

Web Application Scalability: A Model-Based Approach Coyright 24, Software Engineering Research and Performance Engineering Services. All rights reserved. Web Alication Scalability: A Model-Based Aroach Lloyd G. Williams, Ph.D. Software Engineering Research

More information

Risk in Revenue Management and Dynamic Pricing

Risk in Revenue Management and Dynamic Pricing OPERATIONS RESEARCH Vol. 56, No. 2, March Aril 2008,. 326 343 issn 0030-364X eissn 1526-5463 08 5602 0326 informs doi 10.1287/ore.1070.0438 2008 INFORMS Risk in Revenue Management and Dynamic Pricing Yuri

More information

Safety evaluation of digital post-release environment sensor data interface for distributed fuzing systems

Safety evaluation of digital post-release environment sensor data interface for distributed fuzing systems Safety evaluation of digital ost-release environment sensor data interface for distributed fuzing systems 57 th Fuze Conference, Newark, NJ Wednesday, July 30 th, 2014 Oen Session IIIA, 3:20 PM S. Ebenhöch,

More information

A Multivariate Statistical Analysis of Stock Trends. Abstract

A Multivariate Statistical Analysis of Stock Trends. Abstract A Multivariate Statistical Analysis of Stock Trends Aril Kerby Alma College Alma, MI James Lawrence Miami University Oxford, OH Abstract Is there a method to redict the stock market? What factors determine

More information

Risk and Return. Sample chapter. e r t u i o p a s d f CHAPTER CONTENTS LEARNING OBJECTIVES. Chapter 7

Risk and Return. Sample chapter. e r t u i o p a s d f CHAPTER CONTENTS LEARNING OBJECTIVES. Chapter 7 Chater 7 Risk and Return LEARNING OBJECTIVES After studying this chater you should be able to: e r t u i o a s d f understand how return and risk are defined and measured understand the concet of risk

More information

Large-Scale IP Traceback in High-Speed Internet: Practical Techniques and Theoretical Foundation

Large-Scale IP Traceback in High-Speed Internet: Practical Techniques and Theoretical Foundation Large-Scale IP Traceback in High-Seed Internet: Practical Techniques and Theoretical Foundation Jun Li Minho Sung Jun (Jim) Xu College of Comuting Georgia Institute of Technology {junli,mhsung,jx}@cc.gatech.edu

More information

On the predictive content of the PPI on CPI inflation: the case of Mexico

On the predictive content of the PPI on CPI inflation: the case of Mexico On the redictive content of the PPI on inflation: the case of Mexico José Sidaoui, Carlos Caistrán, Daniel Chiquiar and Manuel Ramos-Francia 1 1. Introduction It would be natural to exect that shocks to

More information

An inventory control system for spare parts at a refinery: An empirical comparison of different reorder point methods

An inventory control system for spare parts at a refinery: An empirical comparison of different reorder point methods An inventory control system for sare arts at a refinery: An emirical comarison of different reorder oint methods Eric Porras a*, Rommert Dekker b a Instituto Tecnológico y de Estudios Sueriores de Monterrey,

More information

Beyond the F Test: Effect Size Confidence Intervals and Tests of Close Fit in the Analysis of Variance and Contrast Analysis

Beyond the F Test: Effect Size Confidence Intervals and Tests of Close Fit in the Analysis of Variance and Contrast Analysis Psychological Methods 004, Vol. 9, No., 164 18 Coyright 004 by the American Psychological Association 108-989X/04/$1.00 DOI: 10.1037/108-989X.9..164 Beyond the F Test: Effect Size Confidence Intervals

More information

On the (in)effectiveness of Probabilistic Marking for IP Traceback under DDoS Attacks

On the (in)effectiveness of Probabilistic Marking for IP Traceback under DDoS Attacks On the (in)effectiveness of Probabilistic Maring for IP Tracebac under DDoS Attacs Vamsi Paruchuri, Aran Durresi 2, and Ra Jain 3 University of Central Aransas, 2 Louisiana State University, 3 Washington

More information

CABRS CELLULAR AUTOMATON BASED MRI BRAIN SEGMENTATION

CABRS CELLULAR AUTOMATON BASED MRI BRAIN SEGMENTATION XI Conference "Medical Informatics & Technologies" - 2006 Rafał Henryk KARTASZYŃSKI *, Paweł MIKOŁAJCZAK ** MRI brain segmentation, CT tissue segmentation, Cellular Automaton, image rocessing, medical

More information

Normally Distributed Data. A mean with a normal value Test of Hypothesis Sign Test Paired observations within a single patient group

Normally Distributed Data. A mean with a normal value Test of Hypothesis Sign Test Paired observations within a single patient group ANALYSIS OF CONTINUOUS VARIABLES / 31 CHAPTER SIX ANALYSIS OF CONTINUOUS VARIABLES: COMPARING MEANS In the last chater, we addressed the analysis of discrete variables. Much of the statistical analysis

More information

Methods for Estimating Kidney Disease Stage Transition Probabilities Using Electronic Medical Records

Methods for Estimating Kidney Disease Stage Transition Probabilities Using Electronic Medical Records (Generating Evidence & Methods to imrove atient outcomes) Volume 1 Issue 3 Methods for CER, PCOR, and QI Using EHR Data in a Learning Health System Article 6 12-1-2013 Methods for Estimating Kidney Disease

More information

A Virtual Machine Dynamic Migration Scheduling Model Based on MBFD Algorithm

A Virtual Machine Dynamic Migration Scheduling Model Based on MBFD Algorithm International Journal of Comuter Theory and Engineering, Vol. 7, No. 4, August 2015 A Virtual Machine Dynamic Migration Scheduling Model Based on MBFD Algorithm Xin Lu and Zhuanzhuan Zhang Abstract This

More information

Load Balancing Mechanism in Agent-based Grid

Load Balancing Mechanism in Agent-based Grid Communications on Advanced Comutational Science with Alications 2016 No. 1 (2016) 57-62 Available online at www.isacs.com/cacsa Volume 2016, Issue 1, Year 2016 Article ID cacsa-00042, 6 Pages doi:10.5899/2016/cacsa-00042

More information

Penalty Interest Rates, Universal Default, and the Common Pool Problem of Credit Card Debt

Penalty Interest Rates, Universal Default, and the Common Pool Problem of Credit Card Debt Penalty Interest Rates, Universal Default, and the Common Pool Problem of Credit Card Debt Lawrence M. Ausubel and Amanda E. Dawsey * February 2009 Preliminary and Incomlete Introduction It is now reasonably

More information

Adaptive Routing Using a Virtual Waiting Time Technique

Adaptive Routing Using a Virtual Waiting Time Technique 76 EEE TRANSACTONS ON SOFTWARE ENGNEERNG, VOL. SE-8, NO. 1, JANUARY 1982 Adative Routing Using a Virtual Waiting Time Technique ASHOK K. AGRAWALA, SENOR MEMBER, EEE, SATSH K. TRPATH, AND GLENN RCART, MEMBER,

More information

Comparing Dissimilarity Measures for Symbolic Data Analysis

Comparing Dissimilarity Measures for Symbolic Data Analysis Comaring Dissimilarity Measures for Symbolic Data Analysis Donato MALERBA, Floriana ESPOSITO, Vincenzo GIOVIALE and Valentina TAMMA Diartimento di Informatica, University of Bari Via Orabona 4 76 Bari,

More information

Re-Dispatch Approach for Congestion Relief in Deregulated Power Systems

Re-Dispatch Approach for Congestion Relief in Deregulated Power Systems Re-Disatch Aroach for Congestion Relief in Deregulated ower Systems Ch. Naga Raja Kumari #1, M. Anitha 2 #1, 2 Assistant rofessor, Det. of Electrical Engineering RVR & JC College of Engineering, Guntur-522019,

More information

ECONOMIC OPTIMISATION AS A BASIS FOR THE CHOICE OF FLOOD PROTECTION STRATEGIES IN THE NETHERLANDS

ECONOMIC OPTIMISATION AS A BASIS FOR THE CHOICE OF FLOOD PROTECTION STRATEGIES IN THE NETHERLANDS THEME B: Floods 19 ECONOMIC OPTIMISATION AS A BASIS FOR THE CHOICE OF FLOOD PROTECTION STRATEGIES IN THE NETHERLANDS Jonkman S.N. 1,2, Kok M. 1,2,3 and Vrijling J.K. 1 1 Delt University o Technology, Faculty

More information

Softmax Model as Generalization upon Logistic Discrimination Suffers from Overfitting

Softmax Model as Generalization upon Logistic Discrimination Suffers from Overfitting Journal of Data Science 12(2014),563-574 Softmax Model as Generalization uon Logistic Discrimination Suffers from Overfitting F. Mohammadi Basatini 1 and Rahim Chiniardaz 2 1 Deartment of Statistics, Shoushtar

More information

6.042/18.062J Mathematics for Computer Science December 12, 2006 Tom Leighton and Ronitt Rubinfeld. Random Walks

6.042/18.062J Mathematics for Computer Science December 12, 2006 Tom Leighton and Ronitt Rubinfeld. Random Walks 6.042/8.062J Mathematics for Comuter Science December 2, 2006 Tom Leighton and Ronitt Rubinfeld Lecture Notes Random Walks Gambler s Ruin Today we re going to talk about one-dimensional random walks. In

More information

Effect Sizes Based on Means

Effect Sizes Based on Means CHAPTER 4 Effect Sizes Based on Means Introduction Raw (unstardized) mean difference D Stardized mean difference, d g Resonse ratios INTRODUCTION When the studies reort means stard deviations, the referred

More information

Multiperiod Portfolio Optimization with General Transaction Costs

Multiperiod Portfolio Optimization with General Transaction Costs Multieriod Portfolio Otimization with General Transaction Costs Victor DeMiguel Deartment of Management Science and Oerations, London Business School, London NW1 4SA, UK, avmiguel@london.edu Xiaoling Mei

More information

Machine Learning with Operational Costs

Machine Learning with Operational Costs Journal of Machine Learning Research 14 (2013) 1989-2028 Submitted 12/11; Revised 8/12; Published 7/13 Machine Learning with Oerational Costs Theja Tulabandhula Deartment of Electrical Engineering and

More information

Rummage Web Server Tuning Evaluation through Benchmark

Rummage Web Server Tuning Evaluation through Benchmark IJCSNS International Journal of Comuter Science and Network Security, VOL.7 No.9, Setember 27 13 Rummage Web Server Tuning Evaluation through Benchmark (Case study: CLICK, and TIME Parameter) Hiyam S.

More information

An Introduction to Risk Parity Hossein Kazemi

An Introduction to Risk Parity Hossein Kazemi An Introduction to Risk Parity Hossein Kazemi In the aftermath of the financial crisis, investors and asset allocators have started the usual ritual of rethinking the way they aroached asset allocation

More information

Efficient Training of Kalman Algorithm for MIMO Channel Tracking

Efficient Training of Kalman Algorithm for MIMO Channel Tracking Efficient Training of Kalman Algorithm for MIMO Channel Tracking Emna Eitel and Joachim Seidel Institute of Telecommunications, University of Stuttgart Stuttgart, Germany Abstract In this aer, a Kalman

More information

QoS-aware bandwidth provisioning for IP network links

QoS-aware bandwidth provisioning for IP network links Comuter Networks 5 (26) 631 647 www.elsevier.com/locate/comnet QoS-aware bandwidth rovisioning for IP network links Hans van den Berg a,b, Michel Mandjes c,b,1, Remco van de Meent b, Aiko Pras b, Frank

More information

An actuarial approach to pricing Mortgage Insurance considering simultaneously mortgage default and prepayment

An actuarial approach to pricing Mortgage Insurance considering simultaneously mortgage default and prepayment An actuarial aroach to ricing Mortgage Insurance considering simultaneously mortgage default and reayment Jesús Alan Elizondo Flores Comisión Nacional Bancaria y de Valores aelizondo@cnbv.gob.mx Valeria

More information

DAY-AHEAD ELECTRICITY PRICE FORECASTING BASED ON TIME SERIES MODELS: A COMPARISON

DAY-AHEAD ELECTRICITY PRICE FORECASTING BASED ON TIME SERIES MODELS: A COMPARISON DAY-AHEAD ELECTRICITY PRICE FORECASTING BASED ON TIME SERIES MODELS: A COMPARISON Rosario Esínola, Javier Contreras, Francisco J. Nogales and Antonio J. Conejo E.T.S. de Ingenieros Industriales, Universidad

More information

TRANSMISSION Control Protocol (TCP) has been widely. On Parameter Tuning of Data Transfer Protocol GridFTP for Wide-Area Networks

TRANSMISSION Control Protocol (TCP) has been widely. On Parameter Tuning of Data Transfer Protocol GridFTP for Wide-Area Networks On Parameter Tuning of Data Transfer Protocol GridFTP for Wide-Area etworks Takeshi Ito, Hiroyuki Ohsaki, and Makoto Imase Abstract In wide-area Grid comuting, geograhically distributed comutational resources

More information

Synopsys RURAL ELECTRICATION PLANNING SOFTWARE (LAPER) Rainer Fronius Marc Gratton Electricité de France Research and Development FRANCE

Synopsys RURAL ELECTRICATION PLANNING SOFTWARE (LAPER) Rainer Fronius Marc Gratton Electricité de France Research and Development FRANCE RURAL ELECTRICATION PLANNING SOFTWARE (LAPER) Rainer Fronius Marc Gratton Electricité de France Research and Develoment FRANCE Synosys There is no doubt left about the benefit of electrication and subsequently

More information

IEEM 101: Inventory control

IEEM 101: Inventory control IEEM 101: Inventory control Outline of this series of lectures: 1. Definition of inventory. Examles of where inventory can imrove things in a system 3. Deterministic Inventory Models 3.1. Continuous review:

More information

Alpha Channel Estimation in High Resolution Images and Image Sequences

Alpha Channel Estimation in High Resolution Images and Image Sequences In IEEE Comuter Society Conference on Comuter Vision and Pattern Recognition (CVPR 2001), Volume I, ages 1063 68, auai Hawaii, 11th 13th Dec 2001 Alha Channel Estimation in High Resolution Images and Image

More information

Buffer Capacity Allocation: A method to QoS support on MPLS networks**

Buffer Capacity Allocation: A method to QoS support on MPLS networks** Buffer Caacity Allocation: A method to QoS suort on MPLS networks** M. K. Huerta * J. J. Padilla X. Hesselbach ϒ R. Fabregat O. Ravelo Abstract This aer describes an otimized model to suort QoS by mean

More information

Forensic Science International

Forensic Science International Forensic Science International 214 (2012) 33 43 Contents lists available at ScienceDirect Forensic Science International jou r nal h o me age: w ww.els evier.co m/lo c ate/fo r sc iin t A robust detection

More information

Large firms and heterogeneity: the structure of trade and industry under oligopoly

Large firms and heterogeneity: the structure of trade and industry under oligopoly Large firms and heterogeneity: the structure of trade and industry under oligooly Eddy Bekkers University of Linz Joseh Francois University of Linz & CEPR (London) ABSTRACT: We develo a model of trade

More information

Characterizing and Modeling Network Traffic Variability

Characterizing and Modeling Network Traffic Variability Characterizing and Modeling etwork Traffic Variability Sarat Pothuri, David W. Petr, Sohel Khan Information and Telecommunication Technology Center Electrical Engineering and Comuter Science Deartment,

More information

The impact of metadata implementation on webpage visibility in search engine results (Part II) q

The impact of metadata implementation on webpage visibility in search engine results (Part II) q Information Processing and Management 41 (2005) 691 715 www.elsevier.com/locate/inforoman The imact of metadata imlementation on webage visibility in search engine results (Part II) q Jin Zhang *, Alexandra

More information

Pressure Drop in Air Piping Systems Series of Technical White Papers from Ohio Medical Corporation

Pressure Drop in Air Piping Systems Series of Technical White Papers from Ohio Medical Corporation Pressure Dro in Air Piing Systems Series of Technical White Paers from Ohio Medical Cororation Ohio Medical Cororation Lakeside Drive Gurnee, IL 600 Phone: (800) 448-0770 Fax: (847) 855-604 info@ohiomedical.com

More information

Local Connectivity Tests to Identify Wormholes in Wireless Networks

Local Connectivity Tests to Identify Wormholes in Wireless Networks Local Connectivity Tests to Identify Wormholes in Wireless Networks Xiaomeng Ban Comuter Science Stony Brook University xban@cs.sunysb.edu Rik Sarkar Comuter Science Freie Universität Berlin sarkar@inf.fu-berlin.de

More information

Methods for Estimating Kidney Disease Stage Transition Probabilities Using Electronic Medical Records

Methods for Estimating Kidney Disease Stage Transition Probabilities Using Electronic Medical Records EDM Forum EDM Forum Community egems (Generating Evidence & Methods to imrove atient outcomes) Publish 12-2013 Methods for Estimating Kidney Disease Stage Transition Probabilities Using Electronic Medical

More information

THE RELATIONSHIP BETWEEN EMPLOYEE PERFORMANCE AND THEIR EFFICIENCY EVALUATION SYSTEM IN THE YOTH AND SPORT OFFICES IN NORTH WEST OF IRAN

THE RELATIONSHIP BETWEEN EMPLOYEE PERFORMANCE AND THEIR EFFICIENCY EVALUATION SYSTEM IN THE YOTH AND SPORT OFFICES IN NORTH WEST OF IRAN THE RELATIONSHIP BETWEEN EMPLOYEE PERFORMANCE AND THEIR EFFICIENCY EVALUATION SYSTEM IN THE YOTH AND SPORT OFFICES IN NORTH WEST OF IRAN *Akbar Abdolhosenzadeh 1, Laya Mokhtari 2, Amineh Sahranavard Gargari

More information

Binomial Random Variables. Binomial Distribution. Examples of Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Distribution. Examples of Binomial Random Variables. Binomial Random Variables Binomial Random Variables Binomial Distribution Dr. Tom Ilvento FREC 8 In many cases the resonses to an exeriment are dichotomous Yes/No Alive/Dead Suort/Don t Suort Binomial Random Variables When our

More information

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 4, APRIL 2011 757. Load-Balancing Spectrum Decision for Cognitive Radio Networks

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 4, APRIL 2011 757. Load-Balancing Spectrum Decision for Cognitive Radio Networks IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 4, APRIL 20 757 Load-Balancing Sectrum Decision for Cognitive Radio Networks Li-Chun Wang, Fellow, IEEE, Chung-Wei Wang, Student Member, IEEE,

More information

where a, b, c, and d are constants with a 0, and x is measured in radians. (π radians =

where a, b, c, and d are constants with a 0, and x is measured in radians. (π radians = Introduction to Modeling 3.6-1 3.6 Sine and Cosine Functions The general form of a sine or cosine function is given by: f (x) = asin (bx + c) + d and f(x) = acos(bx + c) + d where a, b, c, and d are constants

More information

Static and Dynamic Properties of Small-world Connection Topologies Based on Transit-stub Networks

Static and Dynamic Properties of Small-world Connection Topologies Based on Transit-stub Networks Static and Dynamic Proerties of Small-world Connection Toologies Based on Transit-stub Networks Carlos Aguirre Fernando Corbacho Ramón Huerta Comuter Engineering Deartment, Universidad Autónoma de Madrid,

More information

4 Perceptron Learning Rule

4 Perceptron Learning Rule Percetron Learning Rule Objectives Objectives - Theory and Examles - Learning Rules - Percetron Architecture -3 Single-Neuron Percetron -5 Multile-Neuron Percetron -8 Percetron Learning Rule -8 Test Problem

More information

Finding a Needle in a Haystack: Pinpointing Significant BGP Routing Changes in an IP Network

Finding a Needle in a Haystack: Pinpointing Significant BGP Routing Changes in an IP Network Finding a Needle in a Haystack: Pinointing Significant BGP Routing Changes in an IP Network Jian Wu, Zhuoqing Morley Mao University of Michigan Jennifer Rexford Princeton University Jia Wang AT&T Labs

More information

On tests for multivariate normality and associated simulation studies

On tests for multivariate normality and associated simulation studies Journal of Statistical Comutation & Simulation Vol. 00, No. 00, January 2006, 1 14 On tests for multivariate normality and associated simulation studies Patrick J. Farrell Matias Salibian-Barrera Katarzyna

More information

Effects of Math Tutoring

Effects of Math Tutoring Requestor: Math Deartment Researcher(s): Steve Blohm Date: 6/30/15 Title: Effects of Math Tutoring Effects of Math Tutoring The urose of this study is to measure the effects of math tutoring at Cabrillo

More information

Supplemental material for: Dynamic jump intensities and risk premiums: evidence from S&P500 returns and options

Supplemental material for: Dynamic jump intensities and risk premiums: evidence from S&P500 returns and options Sulemental material for: Dynamic jum intensities and risk remiums: evidence from S&P5 returns and otions Peter Christo ersen University of Toronto, CBS and CREATES Kris Jacobs University of Houston and

More information

The fast Fourier transform method for the valuation of European style options in-the-money (ITM), at-the-money (ATM) and out-of-the-money (OTM)

The fast Fourier transform method for the valuation of European style options in-the-money (ITM), at-the-money (ATM) and out-of-the-money (OTM) Comutational and Alied Mathematics Journal 15; 1(1: 1-6 Published online January, 15 (htt://www.aascit.org/ournal/cam he fast Fourier transform method for the valuation of Euroean style otions in-the-money

More information

On-the-Job Search, Work Effort and Hyperbolic Discounting

On-the-Job Search, Work Effort and Hyperbolic Discounting On-the-Job Search, Work Effort and Hyerbolic Discounting Thomas van Huizen March 2010 - Preliminary draft - ABSTRACT This aer assesses theoretically and examines emirically the effects of time references

More information

Time-Cost Trade-Offs in Resource-Constraint Project Scheduling Problems with Overlapping Modes

Time-Cost Trade-Offs in Resource-Constraint Project Scheduling Problems with Overlapping Modes Time-Cost Trade-Offs in Resource-Constraint Proect Scheduling Problems with Overlaing Modes François Berthaut Robert Pellerin Nathalie Perrier Adnène Hai February 2011 CIRRELT-2011-10 Bureaux de Montréal

More information

THE WELFARE IMPLICATIONS OF COSTLY MONITORING IN THE CREDIT MARKET: A NOTE

THE WELFARE IMPLICATIONS OF COSTLY MONITORING IN THE CREDIT MARKET: A NOTE The Economic Journal, 110 (Aril ), 576±580.. Published by Blackwell Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 50 Main Street, Malden, MA 02148, USA. THE WELFARE IMPLICATIONS OF COSTLY MONITORING

More information

STATISTICAL CHARACTERIZATION OF THE RAILROAD SATELLITE CHANNEL AT KU-BAND

STATISTICAL CHARACTERIZATION OF THE RAILROAD SATELLITE CHANNEL AT KU-BAND STATISTICAL CHARACTERIZATION OF THE RAILROAD SATELLITE CHANNEL AT KU-BAND Giorgio Sciascia *, Sandro Scalise *, Harald Ernst * and Rodolfo Mura + * DLR (German Aerosace Centre) Institute for Communications

More information

ANALYSING THE OVERHEAD IN MOBILE AD-HOC NETWORK WITH A HIERARCHICAL ROUTING STRUCTURE

ANALYSING THE OVERHEAD IN MOBILE AD-HOC NETWORK WITH A HIERARCHICAL ROUTING STRUCTURE AALYSIG THE OVERHEAD I MOBILE AD-HOC ETWORK WITH A HIERARCHICAL ROUTIG STRUCTURE Johann Lóez, José M. Barceló, Jorge García-Vidal Technical University of Catalonia (UPC), C/Jordi Girona 1-3, 08034 Barcelona,

More information

Design of A Knowledge Based Trouble Call System with Colored Petri Net Models

Design of A Knowledge Based Trouble Call System with Colored Petri Net Models 2005 IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific Dalian, China Design of A Knowledge Based Trouble Call System with Colored Petri Net Models Hui-Jen Chuang, Chia-Hung

More information

Ambiguity, Risk and Earthquake Insurance Premiums: An Empirical Analysis. Toshio FUJIMI, Hirokazu TATANO

Ambiguity, Risk and Earthquake Insurance Premiums: An Empirical Analysis. Toshio FUJIMI, Hirokazu TATANO 京 都 大 学 防 災 研 究 所 年 報 第 49 号 C 平 成 8 年 4 月 Annuals 6 of Disas. Prev. Res. Inst., Kyoto Univ., No. 49 C, 6 Ambiguity, Risk and Earthquake Insurance Premiums: An Emirical Analysis Toshio FUJIMI, Hirokazu

More information

An Associative Memory Readout in ESN for Neural Action Potential Detection

An Associative Memory Readout in ESN for Neural Action Potential Detection g An Associative Memory Readout in ESN for Neural Action Potential Detection Nicolas J. Dedual, Mustafa C. Ozturk, Justin C. Sanchez and José C. Princie Abstract This aer describes how Echo State Networks

More information

An effective multi-objective approach to prioritisation of sewer pipe inspection

An effective multi-objective approach to prioritisation of sewer pipe inspection An effective multi-objective aroach to rioritisation of sewer ie insection L. Berardi 1 *, O.Giustolisi 1, D.A. Savic 2 and Z. Kaelan 2 1 Technical University of Bari, Civil and Environmental Engineering

More information

Expert Systems with Applications

Expert Systems with Applications Exert Systems with Alications 38 (2011) 11984 11997 Contents lists available at ScienceDirect Exert Systems with Alications journal homeage: www.elsevier.com/locate/eswa Review On the alication of genetic

More information

1 Gambler s Ruin Problem

1 Gambler s Ruin Problem Coyright c 2009 by Karl Sigman 1 Gambler s Ruin Problem Let N 2 be an integer and let 1 i N 1. Consider a gambler who starts with an initial fortune of $i and then on each successive gamble either wins

More information

Failure Behavior Analysis for Reliable Distributed Embedded Systems

Failure Behavior Analysis for Reliable Distributed Embedded Systems Failure Behavior Analysis for Reliable Distributed Embedded Systems Mario Tra, Bernd Schürmann, Torsten Tetteroo {tra schuerma tetteroo}@informatik.uni-kl.de Deartment of Comuter Science, University of

More information

(This result should be familiar, since if the probability to remain in a state is 1 p, then the average number of steps to leave the state is

(This result should be familiar, since if the probability to remain in a state is 1 p, then the average number of steps to leave the state is How many coin flis on average does it take to get n consecutive heads? 1 The rocess of fliing n consecutive heads can be described by a Markov chain in which the states corresond to the number of consecutive

More information

Drinking water systems are vulnerable to

Drinking water systems are vulnerable to 34 UNIVERSITIES COUNCIL ON WATER RESOURCES ISSUE 129 PAGES 34-4 OCTOBER 24 Use of Systems Analysis to Assess and Minimize Water Security Risks James Uber Regan Murray and Robert Janke U. S. Environmental

More information

ChE 120B Lumped Parameter Models for Heat Transfer and the Blot Number

ChE 120B Lumped Parameter Models for Heat Transfer and the Blot Number ChE 0B Lumed Parameter Models for Heat Transfer and the Blot Number Imagine a slab that has one dimension, of thickness d, that is much smaller than the other two dimensions; we also assume that the slab

More information

A Study of Active Queue Management for Congestion Control

A Study of Active Queue Management for Congestion Control In IEEE INFOCOM 2 A Study of Active Queue Management for Congestion Control Victor Firoiu Marty Borden 1 vfiroiu@nortelnetworks.com mborden@tollbridgetech.com Nortel Networks TollBridge Technologies 6

More information

Title: Stochastic models of resource allocation for services

Title: Stochastic models of resource allocation for services Title: Stochastic models of resource allocation for services Author: Ralh Badinelli,Professor, Virginia Tech, Deartment of BIT (235), Virginia Tech, Blacksburg VA 2461, USA, ralhb@vt.edu Phone : (54) 231-7688,

More information

Simulink Implementation of a CDMA Smart Antenna System

Simulink Implementation of a CDMA Smart Antenna System Simulink Imlementation of a CDMA Smart Antenna System MOSTAFA HEFNAWI Deartment of Electrical and Comuter Engineering Royal Military College of Canada Kingston, Ontario, K7K 7B4 CANADA Abstract: - The

More information

The predictability of security returns with simple technical trading rules

The predictability of security returns with simple technical trading rules Journal of Emirical Finance 5 1998 347 359 The redictability of security returns with simle technical trading rules Ramazan Gençay Deartment of Economics, UniÕersity of Windsor, 401 Sunset, Windsor, Ont.,

More information

The Optimal Sequenced Route Query

The Optimal Sequenced Route Query The Otimal Sequenced Route Query Mehdi Sharifzadeh, Mohammad Kolahdouzan, Cyrus Shahabi Comuter Science Deartment University of Southern California Los Angeles, CA 90089-0781 [sharifza, kolahdoz, shahabi]@usc.edu

More information

Probabilistic models for mechanical properties of prestressing strands

Probabilistic models for mechanical properties of prestressing strands Probabilistic models for mechanical roerties of restressing strands Luciano Jacinto a, Manuel Pia b, Luís Neves c, Luís Oliveira Santos b a Instituto Suerior de Engenharia de Lisboa, Rua Conselheiro Emídio

More information

TOWARDS REAL-TIME METADATA FOR SENSOR-BASED NETWORKS AND GEOGRAPHIC DATABASES

TOWARDS REAL-TIME METADATA FOR SENSOR-BASED NETWORKS AND GEOGRAPHIC DATABASES TOWARDS REAL-TIME METADATA FOR SENSOR-BASED NETWORKS AND GEOGRAPHIC DATABASES C. Gutiérrez, S. Servigne, R. Laurini LIRIS, INSA Lyon, Bât. Blaise Pascal, 20 av. Albert Einstein 69621 Villeurbanne, France

More information

2D Modeling of the consolidation of soft soils. Introduction

2D Modeling of the consolidation of soft soils. Introduction D Modeling of the consolidation of soft soils Matthias Haase, WISMUT GmbH, Chemnitz, Germany Mario Exner, WISMUT GmbH, Chemnitz, Germany Uwe Reichel, Technical University Chemnitz, Chemnitz, Germany Abstract:

More information

Evaluating a Web-Based Information System for Managing Master of Science Summer Projects

Evaluating a Web-Based Information System for Managing Master of Science Summer Projects Evaluating a Web-Based Information System for Managing Master of Science Summer Projects Till Rebenich University of Southamton tr08r@ecs.soton.ac.uk Andrew M. Gravell University of Southamton amg@ecs.soton.ac.uk

More information

NOISE ANALYSIS OF NIKON D40 DIGITAL STILL CAMERA

NOISE ANALYSIS OF NIKON D40 DIGITAL STILL CAMERA NOISE ANALYSIS OF NIKON D40 DIGITAL STILL CAMERA F. Mojžíš, J. Švihlík Detartment of Comuting and Control Engineering, ICT Prague Abstract This aer is devoted to statistical analysis of Nikon D40 digital

More information

Storage Basics Architecting the Storage Supplemental Handout

Storage Basics Architecting the Storage Supplemental Handout Storage Basics Architecting the Storage Sulemental Handout INTRODUCTION With digital data growing at an exonential rate it has become a requirement for the modern business to store data and analyze it

More information

Concurrent Program Synthesis Based on Supervisory Control

Concurrent Program Synthesis Based on Supervisory Control 010 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 30-July 0, 010 ThB07.5 Concurrent Program Synthesis Based on Suervisory Control Marian V. Iordache and Panos J. Antsaklis Abstract

More information

On Multicast Capacity and Delay in Cognitive Radio Mobile Ad-hoc Networks

On Multicast Capacity and Delay in Cognitive Radio Mobile Ad-hoc Networks On Multicast Caacity and Delay in Cognitive Radio Mobile Ad-hoc Networks Jinbei Zhang, Yixuan Li, Zhuotao Liu, Fan Wu, Feng Yang, Xinbing Wang Det of Electronic Engineering Det of Comuter Science and Engineering

More information

An Analysis Model of Botnet Tracking based on Ant Colony Optimization Algorithm

An Analysis Model of Botnet Tracking based on Ant Colony Optimization Algorithm An Analysis Model of Botnet Tracing based on Ant Colony Otimization Algorithm Ping Wang Tzu Chia Wang* Pu-Tsun Kuo Chin Pin Wang Deartment of Information Management Kun Shan University, Taiwan TEL: 886+6-05-0545

More information

INFERRING APP DEMAND FROM PUBLICLY AVAILABLE DATA 1

INFERRING APP DEMAND FROM PUBLICLY AVAILABLE DATA 1 RESEARCH NOTE INFERRING APP DEMAND FROM PUBLICLY AVAILABLE DATA 1 Rajiv Garg McCombs School of Business, The University of Texas at Austin, Austin, TX 78712 U.S.A. {Rajiv.Garg@mccombs.utexas.edu} Rahul

More information

Principles of Hydrology. Hydrograph components include rising limb, recession limb, peak, direct runoff, and baseflow.

Principles of Hydrology. Hydrograph components include rising limb, recession limb, peak, direct runoff, and baseflow. Princiles of Hydrology Unit Hydrograh Runoff hydrograh usually consists of a fairly regular lower ortion that changes slowly throughout the year and a raidly fluctuating comonent that reresents the immediate

More information

Point Location. Preprocess a planar, polygonal subdivision for point location queries. p = (18, 11)

Point Location. Preprocess a planar, polygonal subdivision for point location queries. p = (18, 11) Point Location Prerocess a lanar, olygonal subdivision for oint location ueries. = (18, 11) Inut is a subdivision S of comlexity n, say, number of edges. uild a data structure on S so that for a uery oint

More information

4. Discrete Probability Distributions

4. Discrete Probability Distributions 4. Discrete Probabilit Distributions 4.. Random Variables and Their Probabilit Distributions Most of the exeriments we encounter generate outcomes that can be interreted in terms of real numbers, such

More information

Modeling and Simulation of an Incremental Encoder Used in Electrical Drives

Modeling and Simulation of an Incremental Encoder Used in Electrical Drives 10 th International Symosium of Hungarian Researchers on Comutational Intelligence and Informatics Modeling and Simulation of an Incremental Encoder Used in Electrical Drives János Jób Incze, Csaba Szabó,

More information

A Novel Architecture Style: Diffused Cloud for Virtual Computing Lab

A Novel Architecture Style: Diffused Cloud for Virtual Computing Lab A Novel Architecture Style: Diffused Cloud for Virtual Comuting Lab Deven N. Shah Professor Terna College of Engg. & Technology Nerul, Mumbai Suhada Bhingarar Assistant Professor MIT College of Engg. Paud

More information

Forensic Science International

Forensic Science International Forensic Science International 207 (2011) 135 144 Contents lists available at ScienceDirect Forensic Science International journal homeage: www.elsevier.com/locate/forsciint Analysis and alication of relationshi

More information