FINITE DIFFERENCE METHODS

Size: px
Start display at page:

Download "FINITE DIFFERENCE METHODS"

Transcription

1 FINITE DIFFERENCE METHODS LONG CHEN Te best known metods, finite difference, consists of replacing eac derivative by a difference quotient in te classic formulation. It is simple to code and economic to compute. In a sense, a finite difference formulation offers a more direct approac to te numerical solution of partial differential equations tan does a metod based on oter formulations. Te drawback of te finite difference metods is accuracy and flexibility. Standard finite difference metods requires more regularity of te solution (e.g. u C 2 (Ω)) and te triangulation (e.g. uniform grids). Difficulties also arises in imposing boundary conditions. 1. FINITE DIFFERENCE FORMULA In tis section, for simplicity, we discuss Poisson equation posed on te unit square Ω = (0, 1) (0, 1). Variable coefficients and more complex domains will be discussed in finite element metods. Furtermore we assume u is smoot enoug to enable us use Taylor expansion freely. Given two integer m, n 2, we construct a rectangular grids T by te tensor product of two grids of (0, 1): {x i = (i 1) x, i = 1, m, x = 1/(m 1)} and {y j = (j 1) y, j = 1, n, y = 1/(n 1)}. Let = max{ x, y } denote te size of T. We denote Ω = {(x i, y j ) Ω} and boundary Γ = {(x i, y j ) Ω}. We consider te discrete function space given by V = {u (x i, y j ), 1 i m, 1 j n} wic is isomorpism to R N wit N = m n. It is more convenient to use sub-index (i, j) for te discrete function: u i,j := u (x i, y j ). For a continuous function u C(Ω), te interpolation operator I : C(Ω) V maps u to a discrete function and will be denoted by u I. By te definition (u I ) i,j = u(x i, y j ). Note tat te value of a discrete function is only defined at grid points. Values inside eac cell can be obtained by interpolation of values at grid points. Similar definitions can be applied to one dimensional case. Coose a mes size and u V (0, 1). Popular difference formulas at an interior node x j for a discrete function u V include: Te backward difference: (D u) j = u j u j 1 ; Te forward difference: (D + u) j = u j+1 u j ; Te centered difference: (D ± u) j = u j+1 u j 1 ; 2 Te centered second difference: (D 2 u) j = u j+1 2u j + u j 1 2. It is easy to prove by Talyor expansion tat (D u) j u (x j ) = O(), (D + u) j u (x j ) = O(), (D ± u) j u (x j ) = O( 2 ), (D 2 u) j u (x j ) = O( 2 ). Date: Updated October 12,

2 2 LONG CHEN We sall use tese difference formulation, especially te centered second difference to approximate te Laplace operator at an interior node (x i, y j ): ( u) i,j = (D 2 xxu) i,j + (D 2 yyu) i,j = u i+1,j 2u i,j + u i 1,i 2 x + u i,j+1 2u i,j + u i,j 1 2. y It is called five point stencil since only five points are involved. Wen x = y, it is simplified to (1) ( u) i,j = 4u i,j u i+1,j u i 1,i u i,j+1 u i,j 1 2 and can be denoted by te following stencil symbol For te rigt and side, we simply take node values i.e. f i,j = (f I ) i,j = f(x i, y j ). Te finite difference metods for solving Poisson equation is simply (2) ( u) i,j = f i,j, 1 i m, 1 j n, wit appropriate processing of boundary conditions. Here in (2), we also use (1) for boundary points but drop terms involving grid points outside of te domain. Let us give an ordering of N = m n grids and use a single index k = 1 to N for u k = u i(k),j(k). For example, te index map k (i(k), j(k)) can be easily written out for te lexicograpical ordering. Wit any coosing ordering, (2) can be written as a linear algebraic equation: (3) Au = f, were A R N N, u R N and f R N. Remark 1.1. Tere exist different orderings for te grid points. Altoug tey give equivalent matrixes up to permutations, different ordering does matter wen solving linear algebraic equations. 2. BOUNDARY CONDITIONS We sall discuss ow to deal wit boundary conditions in finite difference metods. Te Diriclet boundary condition is relatively easy and te Neumann boundary condition requires te gost points. Diriclet boundary condition. For te Poisson equation wit Diriclet boundary condition (4) u = f in Ω, u = g on Γ = Ω, te value on te boundary is given by te boundary conditions. Namely u i,j = g(x i, y j ) for (x i, y j ) Ω and tus not unknowns in te equation. Tere are several ways to impose te Diriclet boundary condition. One approac is to let a ii = 1, a ij = 0, j i and f i = g(x i ) for nodes x i Γ. Note tat tis will destroy te symmetry of te corresponding matrix. Anoter approac is to modify te rigt and side at interior nodes and solve only equations at interior nodes. Let

3 FINITE DIFFERENCE METHODS 3 us consider a simple example wit 9 nodes. Te only unknowns is u 5 wit te lexicograpical ordering. By te formula of discrete Laplace operator at tat node, we obtain te adjusted equation 4 2 u 5 = f (u 2 + u 4 + u 6 + u 8 ). We use te following Matlab code to illustrate te implementation of Diriclet boundary condition. Let bdnode be a logic array representing boundary nodes: bdnode(k)=1 if (x k, y k ) Ω and bdnode(k)=0 oterwise. 1 freenode = bdnode; 2 u = zeros(n,1); 3 u(bdnode) = g(node(bdnode,:)); 4 f = f-a*u; 5 u(freenode) = A(freeNode,freeNode)\f(freeNode); Te matrix A(freeNode,freeNode) is symmetric and positive definite (SPD) (see Exercise 1) and tus ensure te existence of te solution. Neumann boundary condition. For te Poisson equation wit Neumann boundary condition u = f in Ω, = g on Γ, n tere is a compatible condition for f and g: (5) f dx = u dx = n ds = g ds. Ω Ω Ω A natural approximation to te normal derivative is a one sided difference, for example: Ω n (x 1, y j ) = u 1,j u 2,j + O(). But tis is only a first order approximation. To treat Neumann boundary condition more accurately, we introduce te gost points outside of te domain and next to te boundary. We extend te lattice by allowing te index 0 i, j n + 1. Ten we can use center difference sceme: n (x 1, y j ) = u 0,j u 2,j + O( 2 ). 2 Te value u 0,j is not well defined. We need to eliminate it from te equation. Tis is possible since on te boundary point (x 1, y j ), we ave two equations: (6) (7) 4u 1,j u 2,j u 0,j u 1,j+1 u 1,j 1 = 2 f 1,j u 0,j u 2,j = 2 g 1,j. From (7), we get u 0,j = 2 g 1,j + u 2,j. Substituting it into (6) and scaling by a factor 1/2, we get an equation at point (x 1, y j ): 2u 1,j u 2,j 0.5 u 1,j u j 1 = f 1,j + g 1,j. Te scaling is to preserve te symmetry of te matrix. We can deal wit oter boundary points by te same tecnique except te four corner points. At corner points, even te

4 4 LONG CHEN norm vector is not well defined. We will use average of two directional derivatives to get an approximation. Taking (0, 0) as an example, we ave (8) (9) (10) 4u 1,1 u 2,1 u 0,1 u 1,1 u 1,0 = 2 f 1,1, u 0,1 u 2,1 = 2 g 1,1, u 1,0 u 1,2 = 2 g 1,1. So we can solve u 0,1 and u 1,0 from (9) and (10), and substitute tem into (8). Again to maintain te symmetric of te matrix, we multiply (8) by 1/4. Tis gives an equation for te corner point (x 1, y 1 ) u 1,1 0.5 u 2,1 0.5 u 1,1 = f 1,1 + g 1,1. Similar tecnique will be used to deal wit oter corner points. We ten end wit a linear algebraic equation Au = f. It can be sown tat te corresponding matrix A is still symmetric but only semi-definite (see Exercise 2). Te kernel of A consists of constant vectors i.e. Au = 0 if and only if u = c. Tis requires a discrete version of te compatible condition (5): N (11) f i = 0 i=1 and can be satisfied by te modification f = f - mean(f). 3. ERROR ESTIMATE In order to analyze te error, we need to put te problem into a norm space. A natural norm for te finite linear space V is te maximum norm: for v V, v,ω = max 1 i n+1, 1 j m+1 { v i,j }. Te subscript indicates tis norm depends on te triangulation since for different, we ave different numbers of v i,j. Note tat tis is te l norm for R N. We sall prove 1 : (V,,Ω ) (V,,Ω ) is stable uniform to. Te proof will use te discrete maximal principal and barrier functions. Teorem 3.1 (Discrete Maximum Principle). Let v V satisfy v 0. Ten max v max v, Ω Γ and te equality olds if and only if v is constant. Proof. Suppose max Ω v > max Γ v. Ten we can take an interior node x 0 were te maximum is acieved. Let x 1, x 2, x 3, and x 4 be te four neigbors used in te stencil. Ten 4 4 4v(x 0 ) = v(x i ) 2 v(x 0 ) v(x i ) 4v(x 0 ). i=1 Tus equality olds trougout and v acieves its maximum at all te nearest neigbors of x 0 as well. Applying te same argument to te neigbors in te interior, and ten to teir neigbors, etc, we conclude tat v is constant wic contradicts to te assumption i=1

5 FINITE DIFFERENCE METHODS 5 max Ω v > max Γ v. Te second statement can be proved easily by a similar argument. Teorem 3.2. Let u be te equation of (12) u = f I at Ω \Γ, u = g I at Γ. Ten (13) u,ω 1 8 f I,Ω \Γ + g I Γ,. Proof. We introduce te comparison function φ = 1 [ (x )2 + (y 1 2 )2], wic satisfies φ I = 1 at Ω \Γ and 0 φ 1/8. Set M = f I,Ω \Γ. Ten so max Ω u max Ω (u + Mφ I ) = u + M 0, (u + Mφ I ) max(u + Mφ I ) max g I + 1 Γ 8 M. Γ Tus u is bounded above by te rigt-and side of (13). A similar argument applies to u giving te teorem. Corollary 3.3. Let u be te solution of te Diriclet problem (4) and u te solution of te discrete problem (12). Ten u I u,ω 1 8 u I ( u) I,Ω \Γ. Te next step is to study te consistence error u I ( u) I,. Te following Lemma can be easily proved by Taylor expansion. Lemma 3.4. If u C 4 (Ω), ten u I ( u) I,Ω \Γ 2 6 max{ 4 u x 4,Ω \Γ, 4 u y 4,Ω \Γ }. We summarize te convergence results on te finite difference metods in te following teorem. Teorem 3.5. Let u be te solution of te Diriclet problem (4) and u te solution of te discrete problem (12). If u C 4 (Ω), ten wit constant u I u,ω C 2, C = 1 48 max{ 4 u x 4, 4 u y 4 }. In practice, te second order of convergence can be observed even te solution u is less smoot tan C 4 (Ω), i.e. te requirement u C 4 (Ω). Tis restriction comes from te point-wise estimate. In finite element metod, we sall use integral norms to find te rigt setting of function spaces.

6 ~u =0 were ~u =(u, v) t, and ~ f =(f 1,f 2 ) t. 2. MAC DISCRETIZATION 6 LONG CHEN j j j i i i (A) index for p FIGURE 1. A cell centered uniform grid 4. CELL CENTERED FINITE DIFFERENCE METHODS (B) index for u FIGURE 1. Index for p, u, v. (C) index for v 2.1. MAC Sceme. Suppose we ave a rectangular decomposition, for eac cell, gree of freedoms for u and v are located on te vertical edge centers and orizont centers, respectively, and te degree of freedoms for pressure p are located at cell c Te MAC sceme is written as (µ =1) In some applications, notable te computational fluid dynamics (CFD), te Poisson equation is solved on sligtly different grids. In tis section, we consider FDM for te Poisson equation at cell centers; see Fig 4. At interior nodes, te standard (4, 1, 1, 1, 1) but boundary conditions will be treated differently. Te distance in axis direction between interior nodes is still but te near boundary nodes (centers of te cells toucing boundary) is /2 away from te boundary. One can ten easily verify tat for Neumann boundary condition, te stencil for near boundary nodes is (3, 1, 1, 1) and for corner cells (2, 1, 1). Of course te boundary condition g sould be evaluated and moved to te rigt and side. Te Diriclet boundary condition is more subtle for cell centered difference. We can still introduce te gost grid points and use standard (4, 1, 1, 1) stencil for near boundary nodes. But no grid points are on te boundary. Te gost value can be eliminated by linear extrapolation, i.e, requiring (u 0,j + u 1,j )/2 = g(0, y j ) := g 1/2,j. (14) (2.1) 4u i,j u i 1,j u i+1,j u i,j 1 u i,j pi,j p i,j 1 (2.2) 4v i,j v i 1,j v i+1,j v i,j 1 v i,j pi 1,j p i,j (2.3) u i,j+1 u i,j + vi,j v i+1,j =0 It s easy to see tat te above sceme as second order truncation error. 5u 1,j u 2,j u 1,j 1 u 1,j+1 2 = f 1,j + 2g 1/2,j 2. Te stencil will be (5, 1, 1, 1, 2) for near boundary nodes and (6, 1, 1, 2, 2) for corner nodes. Te symmetry of te corresponding matrix is still preserved. However, tis treatment is of low order (see Exercise 3). To obtain a better truncation error, we can use te quadratic extrapolation, tat is, use u 1/2,j, u 1,j, u 2,j to fit a quadratic function and evaluate at u 0,j, we get u 0,j = 2u 1,j u 2,j u 1/2,j, and obtain te modified boundary sceme sould be: (15) 6u 1,j 4 3 u 2,j u 1,j 1 u 1,j+1 2 = f 1,j g 1/2,j 2. We denote te near boundary stencil by (6, 4 3, 1, 1, 8 3 ). Te quadratic extrapolation will lead to a better rate of convergence since te truncation error is improved. Te disadvantage of tis treatment is tat te symmetry of te matrix is destroyed. For te Poisson equation, tere is anoter way to keep te second order truncation error and symmetry. For simplicity, let us consider te omogenous Diriclet boundary condition, i.e., u Ω = 0. Ten te tangential derivatives along te boundary is vanised, in particular, 2 t u = 0. Assume te equation u = f olds also on te boundary condition. Note tat on te boundary, te operator can be written as 2 t + 2 n. We ten get 2 nu = ±f on Ω. Te sign is determined by if te norm direction is te same as te axis direction. Ten we can use u 1, u 1/2 = 0 and 2 nu = f to fit a quadratic function and 1 = f i,j 1 = f i,j 2

7 FINITE DIFFERENCE METHODS 7 extrapolate to get an equation for te gost point u 1,j + u 0,j = 2 4 f 1/2,j and modify te boundary stencil as 5u 1,j u 2,j u 1,j 1 u 1,j+1 (16) 2 = f 1,j f 1/2,j. 5. EXERCISES (1) Prove te following properties of te matrix A formed in te finite difference metods for Poisson equation wit Diriclet boundary condition: (a) it is symmetric: a ij = a ji ; (b) it is diagonally dominant: a ii N j=1,j i a ij; (c) it is positive definite: u t Au 0 for any u R N and u t Au = 0 if and only if u = 0. (2) Let us consider te finite difference discritization of Poisson equation wit Neumann boundary condition. (a) Write out te 9 9 matrix A for = 1/2. (b) Prove tat in general te matrix corresponding to Neumann boundary condition is only semi-positive definite. (c) Sow tat te kernel of A consists of constant vectors: Au = 0 if and only if u = c. (3) Ceck te truncation error of scemes (14), (15) and (16) for different treatments of Diriclet boundary condition in te cell centered finite difference metods.

Verifying Numerical Convergence Rates

Verifying Numerical Convergence Rates 1 Order of accuracy Verifying Numerical Convergence Rates We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, suc as te grid size or time step, and

More information

In other words the graph of the polynomial should pass through the points

In other words the graph of the polynomial should pass through the points Capter 3 Interpolation Interpolation is te problem of fitting a smoot curve troug a given set of points, generally as te grap of a function. It is useful at least in data analysis (interpolation is a form

More information

Derivatives Math 120 Calculus I D Joyce, Fall 2013

Derivatives Math 120 Calculus I D Joyce, Fall 2013 Derivatives Mat 20 Calculus I D Joyce, Fall 203 Since we ave a good understanding of its, we can develop derivatives very quickly. Recall tat we defined te derivative f x of a function f at x to be te

More information

Instantaneous Rate of Change:

Instantaneous Rate of Change: Instantaneous Rate of Cange: Last section we discovered tat te average rate of cange in F(x) can also be interpreted as te slope of a scant line. Te average rate of cange involves te cange in F(x) over

More information

OPTIMAL DISCONTINUOUS GALERKIN METHODS FOR THE ACOUSTIC WAVE EQUATION IN HIGHER DIMENSIONS

OPTIMAL DISCONTINUOUS GALERKIN METHODS FOR THE ACOUSTIC WAVE EQUATION IN HIGHER DIMENSIONS OPTIMAL DISCONTINUOUS GALERKIN METHODS FOR THE ACOUSTIC WAVE EQUATION IN HIGHER DIMENSIONS ERIC T. CHUNG AND BJÖRN ENGQUIST Abstract. In tis paper, we developed and analyzed a new class of discontinuous

More information

SAT Subject Math Level 1 Facts & Formulas

SAT Subject Math Level 1 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses

More information

f(a + h) f(a) f (a) = lim

f(a + h) f(a) f (a) = lim Lecture 7 : Derivative AS a Function In te previous section we defined te derivative of a function f at a number a (wen te function f is defined in an open interval containing a) to be f (a) 0 f(a + )

More information

Part II: Finite Difference/Volume Discretisation for CFD

Part II: Finite Difference/Volume Discretisation for CFD Part II: Finite Difference/Volume Discretisation for CFD Finite Volume Metod of te Advection-Diffusion Equation A Finite Difference/Volume Metod for te Incompressible Navier-Stokes Equations Marker-and-Cell

More information

Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function

Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function Lecture 10: Wat is a Function, definition, piecewise defined functions, difference quotient, domain of a function A function arises wen one quantity depends on anoter. Many everyday relationsips between

More information

Math 113 HW #5 Solutions

Math 113 HW #5 Solutions Mat 3 HW #5 Solutions. Exercise.5.6. Suppose f is continuous on [, 5] and te only solutions of te equation f(x) = 6 are x = and x =. If f() = 8, explain wy f(3) > 6. Answer: Suppose we ad tat f(3) 6. Ten

More information

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider two-point

More information

A Multigrid Tutorial part two

A Multigrid Tutorial part two A Multigrid Tutorial part two William L. Briggs Department of Matematics University of Colorado at Denver Van Emden Henson Center for Applied Scientific Computing Lawrence Livermore National Laboratory

More information

Geometric Stratification of Accounting Data

Geometric Stratification of Accounting Data Stratification of Accounting Data Patricia Gunning * Jane Mary Horgan ** William Yancey *** Abstract: We suggest a new procedure for defining te boundaries of te strata in igly skewed populations, usual

More information

Tangent Lines and Rates of Change

Tangent Lines and Rates of Change Tangent Lines and Rates of Cange 9-2-2005 Given a function y = f(x), ow do you find te slope of te tangent line to te grap at te point P(a, f(a))? (I m tinking of te tangent line as a line tat just skims

More information

Solutions by: KARATUĞ OZAN BiRCAN. PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set in

Solutions by: KARATUĞ OZAN BiRCAN. PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set in KOÇ UNIVERSITY, SPRING 2014 MATH 401, MIDTERM-1, MARCH 3 Instructor: BURAK OZBAGCI TIME: 75 Minutes Solutions by: KARATUĞ OZAN BiRCAN PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set

More information

1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution

1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution 1.6 Analyse Optimum Volume and Surface Area Estimation and oter informal metods of optimizing measures suc as surface area and volume often lead to reasonable solutions suc as te design of te tent in tis

More information

Projective Geometry. Projective Geometry

Projective Geometry. Projective Geometry Euclidean versus Euclidean geometry describes sapes as tey are Properties of objects tat are uncanged by rigid motions» Lengts» Angles» Parallelism Projective geometry describes objects as tey appear Lengts,

More information

Chapter 7 Numerical Differentiation and Integration

Chapter 7 Numerical Differentiation and Integration 45 We ave a abit in writing articles publised in scientiþc journals to make te work as Þnised as possible, to cover up all te tracks, to not worry about te blind alleys or describe ow you ad te wrong idea

More information

The EOQ Inventory Formula

The EOQ Inventory Formula Te EOQ Inventory Formula James M. Cargal Matematics Department Troy University Montgomery Campus A basic problem for businesses and manufacturers is, wen ordering supplies, to determine wat quantity of

More information

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of

More information

ACT Math Facts & Formulas

ACT Math Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as

More information

Research on the Anti-perspective Correction Algorithm of QR Barcode

Research on the Anti-perspective Correction Algorithm of QR Barcode Researc on te Anti-perspective Correction Algoritm of QR Barcode Jianua Li, Yi-Wen Wang, YiJun Wang,Yi Cen, Guoceng Wang Key Laboratory of Electronic Tin Films and Integrated Devices University of Electronic

More information

Introduction to the Finite Element Method

Introduction to the Finite Element Method Introduction to the Finite Element Method 09.06.2009 Outline Motivation Partial Differential Equations (PDEs) Finite Difference Method (FDM) Finite Element Method (FEM) References Motivation Figure: cross

More information

CHAPTER 7. Di erentiation

CHAPTER 7. Di erentiation CHAPTER 7 Di erentiation 1. Te Derivative at a Point Definition 7.1. Let f be a function defined on a neigborood of x 0. f is di erentiable at x 0, if te following it exists: f 0 fx 0 + ) fx 0 ) x 0 )=.

More information

Determine the perimeter of a triangle using algebra Find the area of a triangle using the formula

Determine the perimeter of a triangle using algebra Find the area of a triangle using the formula Student Name: Date: Contact Person Name: Pone Number: Lesson 0 Perimeter, Area, and Similarity of Triangles Objectives Determine te perimeter of a triangle using algebra Find te area of a triangle using

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

6. Differentiating the exponential and logarithm functions

6. Differentiating the exponential and logarithm functions 1 6. Differentiating te exponential and logaritm functions We wis to find and use derivatives for functions of te form f(x) = a x, were a is a constant. By far te most convenient suc function for tis purpose

More information

ON LOCAL LIKELIHOOD DENSITY ESTIMATION WHEN THE BANDWIDTH IS LARGE

ON LOCAL LIKELIHOOD DENSITY ESTIMATION WHEN THE BANDWIDTH IS LARGE ON LOCAL LIKELIHOOD DENSITY ESTIMATION WHEN THE BANDWIDTH IS LARGE Byeong U. Park 1 and Young Kyung Lee 2 Department of Statistics, Seoul National University, Seoul, Korea Tae Yoon Kim 3 and Ceolyong Park

More information

Can a Lump-Sum Transfer Make Everyone Enjoy the Gains. from Free Trade?

Can a Lump-Sum Transfer Make Everyone Enjoy the Gains. from Free Trade? Can a Lump-Sum Transfer Make Everyone Enjoy te Gains from Free Trade? Yasukazu Icino Department of Economics, Konan University June 30, 2010 Abstract I examine lump-sum transfer rules to redistribute te

More information

New Vocabulary volume

New Vocabulary volume -. Plan Objectives To find te volume of a prism To find te volume of a cylinder Examples Finding Volume of a Rectangular Prism Finding Volume of a Triangular Prism 3 Finding Volume of a Cylinder Finding

More information

Optimized Data Indexing Algorithms for OLAP Systems

Optimized Data Indexing Algorithms for OLAP Systems Database Systems Journal vol. I, no. 2/200 7 Optimized Data Indexing Algoritms for OLAP Systems Lucian BORNAZ Faculty of Cybernetics, Statistics and Economic Informatics Academy of Economic Studies, Bucarest

More information

CHAPTER 8: DIFFERENTIAL CALCULUS

CHAPTER 8: DIFFERENTIAL CALCULUS CHAPTER 8: DIFFERENTIAL CALCULUS 1. Rules of Differentiation As we ave seen, calculating erivatives from first principles can be laborious an ifficult even for some relatively simple functions. It is clearly

More information

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here

More information

13 PERIMETER AND AREA OF 2D SHAPES

13 PERIMETER AND AREA OF 2D SHAPES 13 PERIMETER AND AREA OF D SHAPES 13.1 You can find te perimeter of sapes Key Points Te perimeter of a two-dimensional (D) sape is te total distance around te edge of te sape. l To work out te perimeter

More information

2 Limits and Derivatives

2 Limits and Derivatives 2 Limits and Derivatives 2.7 Tangent Lines, Velocity, and Derivatives A tangent line to a circle is a line tat intersects te circle at exactly one point. We would like to take tis idea of tangent line

More information

POISSON AND LAPLACE EQUATIONS. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078

POISSON AND LAPLACE EQUATIONS. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078 21 ELLIPTICAL PARTIAL DIFFERENTIAL EQUATIONS: POISSON AND LAPLACE EQUATIONS Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 2nd Computer

More information

Note nine: Linear programming CSE 101. 1 Linear constraints and objective functions. 1.1 Introductory example. Copyright c Sanjoy Dasgupta 1

Note nine: Linear programming CSE 101. 1 Linear constraints and objective functions. 1.1 Introductory example. Copyright c Sanjoy Dasgupta 1 Copyrigt c Sanjoy Dasgupta Figure. (a) Te feasible region for a linear program wit two variables (see tet for details). (b) Contour lines of te objective function: for different values of (profit). Te

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

The finite element immersed boundary method: model, stability, and numerical results

The finite element immersed boundary method: model, stability, and numerical results Te finite element immersed boundary metod: model, stability, and numerical results Lucia Gastaldi Università di Brescia ttp://dm.ing.unibs.it/gastaldi/ INdAM Worksop, Cortona, September 18, 2006 Joint

More information

5 Numerical Differentiation

5 Numerical Differentiation D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

More information

Chapter 10: Refrigeration Cycles

Chapter 10: Refrigeration Cycles Capter 10: efrigeration Cycles Te vapor compression refrigeration cycle is a common metod for transferring eat from a low temperature to a ig temperature. Te above figure sows te objectives of refrigerators

More information

Theoretical calculation of the heat capacity

Theoretical calculation of the heat capacity eoretical calculation of te eat capacity Principle of equipartition of energy Heat capacity of ideal and real gases Heat capacity of solids: Dulong-Petit, Einstein, Debye models Heat capacity of metals

More information

A New Cement to Glue Nonconforming Grids with Robin Interface Conditions: The Finite Element Case

A New Cement to Glue Nonconforming Grids with Robin Interface Conditions: The Finite Element Case A New Cement to Glue Nonconforming Grids wit Robin Interface Conditions: Te Finite Element Case Martin J. Gander, Caroline Japet 2, Yvon Maday 3, and Frédéric Nataf 4 McGill University, Dept. of Matematics

More information

Writing Mathematics Papers

Writing Mathematics Papers Writing Matematics Papers Tis essay is intended to elp your senior conference paper. It is a somewat astily produced amalgam of advice I ave given to students in my PDCs (Mat 4 and Mat 9), so it s not

More information

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

More information

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION Tis tutorial is essential pre-requisite material for anyone stuing mecanical engineering. Tis tutorial uses te principle of

More information

TRADING AWAY WIDE BRANDS FOR CHEAP BRANDS. Swati Dhingra London School of Economics and CEP. Online Appendix

TRADING AWAY WIDE BRANDS FOR CHEAP BRANDS. Swati Dhingra London School of Economics and CEP. Online Appendix TRADING AWAY WIDE BRANDS FOR CHEAP BRANDS Swati Dingra London Scool of Economics and CEP Online Appendix APPENDIX A. THEORETICAL & EMPIRICAL RESULTS A.1. CES and Logit Preferences: Invariance of Innovation

More information

Moving Least Squares Approximation

Moving Least Squares Approximation Chapter 7 Moving Least Squares Approimation An alternative to radial basis function interpolation and approimation is the so-called moving least squares method. As we will see below, in this method the

More information

An inquiry into the multiplier process in IS-LM model

An inquiry into the multiplier process in IS-LM model An inquiry into te multiplier process in IS-LM model Autor: Li ziran Address: Li ziran, Room 409, Building 38#, Peing University, Beijing 00.87,PRC. Pone: (86) 00-62763074 Internet Address: jefferson@water.pu.edu.cn

More information

Elasticity Theory Basics

Elasticity Theory Basics G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Average and Instantaneous Rates of Change: The Derivative

Average and Instantaneous Rates of Change: The Derivative 9.3 verage and Instantaneous Rates of Cange: Te Derivative 609 OBJECTIVES 9.3 To define and find average rates of cange To define te derivative as a rate of cange To use te definition of derivative to

More information

Numerical methods for American options

Numerical methods for American options Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment

More information

- 1 - Handout #22 May 23, 2012 Huffman Encoding and Data Compression. CS106B Spring 2012. Handout by Julie Zelenski with minor edits by Keith Schwarz

- 1 - Handout #22 May 23, 2012 Huffman Encoding and Data Compression. CS106B Spring 2012. Handout by Julie Zelenski with minor edits by Keith Schwarz CS106B Spring 01 Handout # May 3, 01 Huffman Encoding and Data Compression Handout by Julie Zelenski wit minor edits by Keit Scwarz In te early 1980s, personal computers ad ard disks tat were no larger

More information

f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line.

f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line. Derivative of f(z) Dr. E. Jacobs Te erivative of a function is efine as a limit: f (x) 0 f(x + ) f(x) We can visualize te expression f(x+) f(x) as representing te slope of a secant line. As goes to 0,

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a+) f(a)

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12.

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12. Capter 6. Fluid Mecanics Notes: Most of te material in tis capter is taken from Young and Freedman, Cap. 12. 6.1 Fluid Statics Fluids, i.e., substances tat can flow, are te subjects of tis capter. But

More information

1 The Collocation Method

1 The Collocation Method CS410 Assignment 7 Due: 1/5/14 (Fri) at 6pm You must wor eiter on your own or wit one partner. You may discuss bacground issues and general solution strategies wit oters, but te solutions you submit must

More information

2.1: The Derivative and the Tangent Line Problem

2.1: The Derivative and the Tangent Line Problem .1.1.1: Te Derivative and te Tangent Line Problem Wat is te deinition o a tangent line to a curve? To answer te diiculty in writing a clear deinition o a tangent line, we can deine it as te iting position

More information

Høgskolen i Narvik Sivilingeniørutdanningen

Høgskolen i Narvik Sivilingeniørutdanningen Høgskolen i Narvik Sivilingeniørutdanningen Eksamen i Faget STE6237 ELEMENTMETODEN Klassen: 4.ID 4.IT Dato: 8.8.25 Tid: Kl. 9. 2. Tillatte hjelpemidler under eksamen: Kalkulator. Bok Numerical solution

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

Distances in random graphs with infinite mean degrees

Distances in random graphs with infinite mean degrees Distances in random graps wit infinite mean degrees Henri van den Esker, Remco van der Hofstad, Gerard Hoogiemstra and Dmitri Znamenski April 26, 2005 Abstract We study random graps wit an i.i.d. degree

More information

Training Robust Support Vector Regression via D. C. Program

Training Robust Support Vector Regression via D. C. Program Journal of Information & Computational Science 7: 12 (2010) 2385 2394 Available at ttp://www.joics.com Training Robust Support Vector Regression via D. C. Program Kuaini Wang, Ping Zong, Yaoong Zao College

More information

Computer Science and Engineering, UCSD October 7, 1999 Goldreic-Levin Teorem Autor: Bellare Te Goldreic-Levin Teorem 1 Te problem We æx a an integer n for te lengt of te strings involved. If a is an n-bit

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

SAT Math Facts & Formulas

SAT Math Facts & Formulas Numbers, Sequences, Factors SAT Mat Facts & Formuas Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reas: integers pus fractions, decimas, and irrationas ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences:

More information

Schedulability Analysis under Graph Routing in WirelessHART Networks

Schedulability Analysis under Graph Routing in WirelessHART Networks Scedulability Analysis under Grap Routing in WirelessHART Networks Abusayeed Saifulla, Dolvara Gunatilaka, Paras Tiwari, Mo Sa, Cenyang Lu, Bo Li Cengjie Wu, and Yixin Cen Department of Computer Science,

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions

Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions Jennifer Zhao, 1 Weizhong Dai, Tianchan Niu 1 Department of Mathematics and Statistics, University of Michigan-Dearborn,

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis

More information

Cyber Epidemic Models with Dependences

Cyber Epidemic Models with Dependences Cyber Epidemic Models wit Dependences Maocao Xu 1, Gaofeng Da 2 and Souuai Xu 3 1 Department of Matematics, Illinois State University mxu2@ilstu.edu 2 Institute for Cyber Security, University of Texas

More information

How To Ensure That An Eac Edge Program Is Successful

How To Ensure That An Eac Edge Program Is Successful Introduction Te Economic Diversification and Growt Enterprises Act became effective on 1 January 1995. Te creation of tis Act was to encourage new businesses to start or expand in Newfoundland and Labrador.

More information

Solution of Linear Systems

Solution of Linear Systems Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start

More information

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact

More information

Scientic Computing 2013 Computer Classes: Worksheet 11: 1D FEM and boundary conditions

Scientic Computing 2013 Computer Classes: Worksheet 11: 1D FEM and boundary conditions Scientic Computing 213 Computer Classes: Worksheet 11: 1D FEM and boundary conditions Oleg Batrashev November 14, 213 This material partially reiterates the material given on the lecture (see the slides)

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.

Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3. 5 Potential Theory Reference: Introduction to Partial Differential Equations by G. Folland, 995, Chap. 3. 5. Problems of Interest. In what follows, we consider Ω an open, bounded subset of R n with C 2

More information

Linköping University Electronic Press

Linköping University Electronic Press Linköping University Electronic Press Report Well-posed boundary conditions for the shallow water equations Sarmad Ghader and Jan Nordström Series: LiTH-MAT-R, 0348-960, No. 4 Available at: Linköping University

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

The modelling of business rules for dashboard reporting using mutual information

The modelling of business rules for dashboard reporting using mutual information 8 t World IMACS / MODSIM Congress, Cairns, Australia 3-7 July 2009 ttp://mssanz.org.au/modsim09 Te modelling of business rules for dasboard reporting using mutual information Gregory Calbert Command, Control,

More information

Classification of Cartan matrices

Classification of Cartan matrices Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1)

M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1) Insertion and Deletion in VL Trees Submitted in Partial Fulfillment of te Requirements for Dr. Eric Kaltofen s 66621: nalysis of lgoritms by Robert McCloskey December 14, 1984 1 ackground ccording to Knut

More information

Catalogue no. 12-001-XIE. Survey Methodology. December 2004

Catalogue no. 12-001-XIE. Survey Methodology. December 2004 Catalogue no. 1-001-XIE Survey Metodology December 004 How to obtain more information Specific inquiries about tis product and related statistics or services sould be directed to: Business Survey Metods

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

Solving partial differential equations (PDEs)

Solving partial differential equations (PDEs) Solving partial differential equations (PDEs) Hans Fangor Engineering and te Environment University of Soutampton United Kingdom fangor@soton.ac.uk May 3, 2012 1 / 47 Outline I 1 Introduction: wat are

More information

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8 Spaces and bases Week 3: Wednesday, Feb 8 I have two favorite vector spaces 1 : R n and the space P d of polynomials of degree at most d. For R n, we have a canonical basis: R n = span{e 1, e 2,..., e

More information

Piecewise Cubic Splines

Piecewise Cubic Splines 280 CHAP. 5 CURVE FITTING Piecewise Cubic Splines The fitting of a polynomial curve to a set of data points has applications in CAD (computer-assisted design), CAM (computer-assisted manufacturing), and

More information

17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function

17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function 17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):

More information

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem

More information

Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area:

Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area: Pressure Pressure is force per unit area: F P = A Pressure Te direction of te force exerted on an object by a fluid is toward te object and perpendicular to its surface. At a microscopic level, te force

More information

Mean Value Coordinates

Mean Value Coordinates Mean Value Coordinates Michael S. Floater Abstract: We derive a generalization of barycentric coordinates which allows a vertex in a planar triangulation to be expressed as a convex combination of its

More information

Improved dynamic programs for some batcing problems involving te maximum lateness criterion A P M Wagelmans Econometric Institute Erasmus University Rotterdam PO Box 1738, 3000 DR Rotterdam Te Neterlands

More information

An Additive Neumann-Neumann Method for Mortar Finite Element for 4th Order Problems

An Additive Neumann-Neumann Method for Mortar Finite Element for 4th Order Problems An Additive eumann-eumann Method for Mortar Finite Element for 4th Order Problems Leszek Marcinkowski Department of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland, Leszek.Marcinkowski@mimuw.edu.pl

More information

Shell and Tube Heat Exchanger

Shell and Tube Heat Exchanger Sell and Tube Heat Excanger MECH595 Introduction to Heat Transfer Professor M. Zenouzi Prepared by: Andrew Demedeiros, Ryan Ferguson, Bradford Powers November 19, 2009 1 Abstract 2 Contents Discussion

More information

Derivative Approximation by Finite Differences

Derivative Approximation by Finite Differences Derivative Approximation by Finite Differences David Eberly Geometric Tools, LLC http://wwwgeometrictoolscom/ Copyright c 998-26 All Rights Reserved Created: May 3, 2 Last Modified: April 25, 25 Contents

More information