# 13. Poisson Regression Analysis

Size: px
Start display at page:

## Transcription

1 136 Poisson Regression Analysis 13. Poisson Regression Analysis We have so far considered situations where the outcome variable is numeric and Normally distributed, or binary. In clinical work one often encounters situations where the outcome variable is numeric, but in the form of counts. Often it is a count of rare events such as the number of new cases of lung cancer occurring in a population over a certain period of time. The aim of regression analysis in such instances is to model the dependent variable Y as the estimate of outcome using some or all of the explanatory variables (in mathematical terminology estimating the outcome as a function of some explanatory variables. When the response variable had a Normal distribution we found that its mean could be linked to a set of explanatory variables using a linear function like Y = β + β 1 X 1 + β 2 X 2.+ β k X k. In the case of binary regression the fact that probability lies between -1 imposes a constraint. The normality assumption of multiple linear regression is lost, and so also is the assumption of constant variance. Without these assumptions the F and t tests have no basis. The solution was to use the logistic transformation of the probability p or logit p, such that log e (p/1 p) = β + β 1 Χ 1 + β 2 Χ 2.β n Χ n. The β coefficients could now be interpreted as increasing or decreasing the log odds of an event, and expβ (the odds multiplier) could be used as the odds ratio for a unit increase or decrease in the explanatory variable. In survival analysis we used the natural logarithm of the hazard ratio, that is log e h(t)/h (t) = β +β 1 X β n X n When the response variable is in the form of a count we face a yet different constraint. Counts are all positive integers and for rare events the Poisson distribution (rather than the Normal) is more appropriate since the Poisson mean >. So the logarithm of the response variable is linked to a linear function of explanatory variables such that log e (Y) = β + β 1 Χ 1 + β 2 Χ 2 etc. and so Y = (e β ) (e β1χ1 ) (e β2χ2 ).. etc. In other words, the typical Poisson regression model expresses the log outcome rate as a linear function of a set of predictors. Assumptions in Poisson Regression The assumptions include: 1. Logarithm of the disease rate changes linearly with equal increment increases in the exposure variable. 2. Changes in the rate from combined effects of different exposures or risk factors are multiplicative. 3. At each level of the covariates the number of cases has variance equal to the mean. 4. Observations are independent. Methods to identify violations of assumption (3) i.e. to determine whether variances are too large or too small include plots of residuals versus the mean at different levels of the predictor variable. Recall that in the case of normal linear regression, diagnostics of the model used plots of residuals against fits (fitted values). This means that the same diagnostics can be used in the case of Poisson Regression.

2 Research methods II: Multivariate Analysis 137 The examples below illustrate the use of Poisson Regression. Example 1 Births by caesarean section are said to be more frequent in private (fee paying) hospitals as compared to non-fee paying public hospitals. Data about total annual births and the number of caesarean sections carried out were obtained from the records of 4 private hospitals and 16 public hospitals. These are tabulated below: Births Hospital Caesareans type = Private 1 = Public Hospital Hospitals The result of Poisson regression analysis is described below: [ In Genstat Stats Regression Analysis Generalized Linear General Model in the Analysis field Distribution Poisson ] We first regress the response variable Caesarean Sections against one explanatory variable viz. number of births ; then add one more explanatory variable number of obstetricians, and finally add a third variable in the form of indicator variable for public hospital (i.e. Public hospital =1; Private Hospital =) in the regression analysis.

3 138 Poisson Regression Analysis ***** Regression Analysis ***** Response variate: CAESAREA Distribution: Poisson Link function: Log Fitted terms: Constant, BIRTHS *** Summary of analysis *** mean deviance d.f. deviance deviance ratio Regression Residual Total Change * MESSAGE: The following units have large standardized residuals: * MESSAGE: The following units have high leverage: *** Estimates of regression coefficients *** estimate s.e. t(*) Constant BIRTHS * MESSAGE: s.e.s are based on dispersion parameter with value 1 The regression equation may now be written as: Log e (Y) = β + β 1 X 1 On substituting the values of Y and X, the equation can be written as: Log e (Caesarean) = Births Which leads to caesarean = (e) x (e).4 Births Recall that we have used poisson regression to model the data and thereby obtained estimates of caesarean sections based on just one explanatory variable viz. number of births. We next add a second term to the model, - type of hospital and obtain the following. ***** Regression Analysis ***** Response variate: CAESAREA Distribution: Poisson Link function: Log Fitted terms: Constant, BIRTHS, HOSP_TYP *** Summary of analysis ***

4 Research methods II: Multivariate Analysis 139 mean deviance d.f. deviance deviance ratio Regression Residual Total Change * MESSAGE: ratios are based on dispersion parameter with value 1 * MESSAGE: The following units have large standardized residuals: * MESSAGE: The following units have high leverage: 9.41 *** Estimates of regression coefficients *** estimate s.e. t(*) Constant BIRTHS HOSP_TYP MESSAGE: s.e.s are based on dispersion parameter with value 1 This is the full model for which the regression equation may be written as: Log (Y) = β + β 1 X 1 + β 2 X 2 On substituting the values we have Log e (Y) = Births Hosptype for Public Hospitals (For private hospitals X 2 is and β 2 X 2 = ). This leads to caesarean sections = (e) x (e).33 births x (e) 1.45 Public Hospitals Caesarean sections in Public Hospitals = 3.86 x 1 x 2.84 = 1.97 =approximately 11. Caesarean sections in Private Hospitals = 3.86 x 1 = 3.86 = Approximately 4. Conclusion According to evidence presented all things being equal it is the other way round. Caesarean sections are about twice as common in Public Hospitals than in Private ones. Of the two models presented which one gives best estimates? For the answer we look at the tables which give the values for deviance. Deviance serves the same purpose as sum of squares in multiple linear regression. An important use of deviance, and difference between deviances, is in the comparison of fits of two models when additional explanatory variable(s) get added to the initial simple model. In the case of the first analysis using just one explanatory variable, the deviance explained by the regression is This changes to when a second variable, Hospital Type is added to the model. The difference is ( = ) and the difference in degree of freedom is 1. Looking this up in the table of χ 2 at 1 degree of freedom, we find that the result is significant (P <.1). We can opt for this model.

5 14 Poisson Regression Analysis The next step is to check for the fit of the model by carrying out diagnostic plots of deviance against fits Plot of Residuals against Fittefd Values 2. Residuals Fitted Values Second Example to illustrate Poisson Regression Analysis A cohort of subjects, some non-smokers and others smokers, was observed for several years. The number of cases of cancer of the lung diagnosed among the different categories was recorded. Data regarding the number of years of smoking were also obtained from each individual. For each category the person-years of observation were calculated. The investigators wish to address the question of the relative risks of smoking. The following records were kept. CIGS No. Person Per years years Day smoking CASES

6 Research methods II: Multivariate Analysis In the above data set the average number of cigarettes smoked per day represents the daily dose, and the years of smoking together with the average number of cigarettes smoked daily represents the total dose inhaled over time. Both appear to be related to the outcome as illustrated in the charts below. Cases of Cancer of the Lung by average number of cigarettes smoked 1 CASES CIGS_DAY Cases of Cancer of the Lung by number of years of smoking 1 CASES SMOKING_YR

7 142 Poisson Regression Analysis Since over a number of years of observation some cases of cancer of the lung can be expected to arise from causes not related to smoking, we use this as our base line (uninformative) model and perform the first analysis as below ***** Regression Analysis ***** Response variate: CASES Distribution: Poisson Link function: Log Fitted terms: Constant, PERSONYR *** Summary of analysis *** mean deviance d.f. deviance deviance ratio Regression Residual Total Change * MESSAGE: ratios are based on dispersion parameter with value 1 *** Estimates of regression coefficients *** estimate s.e. t(*) Constant PERSONYR * MESSAGE: s.e.s are based on dispersion parameter with value 1 We next perform the second analysis using the full model as below: ***** Regression Analysis ***** Response variate: CASES Distribution: Poisson Link function: Log Fitted terms: Constant, PERSONYR, CIGS_DAY, SMOKING_ *** Summary of analysis *** mean deviance d.f. deviance deviance ratio Regression Residual Total Change * MESSAGE: ratios are based on dispersion parameter with value 1 *** Estimates of regression coefficients *** estimate s.e. t(*) Constant PERSONYR CIGS_DAY SMOKING_ MESSAGE: s.e.s are based on dispersion parameter with value 1

8 Research methods II: Multivariate Analysis 143 The difference in the deviance is = at 3 1 = 2 degrees of freedom. Entering the table for values of χ 2 at 2 degrees of freedom, we get a highly significant P value for This indicates a good fit for the model. We accept the model and obtain a regression equation which could be written as Log cases = α + β 1 Personyears + β 2 Cigarettes/day +β 3 Years of Smoking = Personyears +.559Cigarettes/day +.888Years of Smoking Cases = (e) (e).41personyears (e).559cigarettes/day.888years of smoking (e) The equation is useful for estimating the relative risk of developing lung cancer by the number of cigarettes smoked (i.e. strength of the dose), or by number of years of smoking (total dose). For example, all things being equal the relative risk of smoking 25 cigarettes/day as compared to 15 can be estimated at (e).559x25 (e).559x15 = (e).559x1, and so on. Similar estimates could be used for calculating the relative risk by different years of smoking. A plot of residuals against fitted values is shown below: Plot of Residuals against Fittefd Values Residuals Fitted Values 1 Summary The typical Poisson regression model expresses the natural logarithm of the event or outcome of interest as a linear function of a set of predictors. The dependent variable is a count of the occurrences of interest e.g. the number of cases of a disease that occur over a period of follow-up. Typically, one can estimate a rate ratio associated with a given predictor or exposure. A measure of the goodness of fit of the Poisson regression model is obtained by using the deviance statistic of a base-line model against a fuller model.

### Overview Classes. 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7)

Overview Classes 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7) 2-4 Loglinear models (8) 5-4 15-17 hrs; 5B02 Building and

### 11. Analysis of Case-control Studies Logistic Regression

Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:

### Generalized Linear Models

Generalized Linear Models We have previously worked with regression models where the response variable is quantitative and normally distributed. Now we turn our attention to two types of models where the

### VI. Introduction to Logistic Regression

VI. Introduction to Logistic Regression We turn our attention now to the topic of modeling a categorical outcome as a function of (possibly) several factors. The framework of generalized linear models

Mplus Short Courses Topic 2 Regression Analysis, Eploratory Factor Analysis, Confirmatory Factor Analysis, And Structural Equation Modeling For Categorical, Censored, And Count Outcomes Linda K. Muthén

### Poisson Models for Count Data

Chapter 4 Poisson Models for Count Data In this chapter we study log-linear models for count data under the assumption of a Poisson error structure. These models have many applications, not only to the

### Logistic regression modeling the probability of success

Logistic regression modeling the probability of success Regression models are usually thought of as only being appropriate for target variables that are continuous Is there any situation where we might

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Multiple logistic regression analysis of cigarette use among high school students

Multiple logistic regression analysis of cigarette use among high school students ABSTRACT Joseph Adwere-Boamah Alliant International University A binary logistic regression analysis was performed to predict

### MISSING DATA TECHNIQUES WITH SAS. IDRE Statistical Consulting Group

MISSING DATA TECHNIQUES WITH SAS IDRE Statistical Consulting Group ROAD MAP FOR TODAY To discuss: 1. Commonly used techniques for handling missing data, focusing on multiple imputation 2. Issues that could

### Tips for surviving the analysis of survival data. Philip Twumasi-Ankrah, PhD

Tips for surviving the analysis of survival data Philip Twumasi-Ankrah, PhD Big picture In medical research and many other areas of research, we often confront continuous, ordinal or dichotomous outcomes

: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

### Logistic Regression (a type of Generalized Linear Model)

Logistic Regression (a type of Generalized Linear Model) 1/36 Today Review of GLMs Logistic Regression 2/36 How do we find patterns in data? We begin with a model of how the world works We use our knowledge

Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models

### Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

### SAS Software to Fit the Generalized Linear Model

SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling

### Examining a Fitted Logistic Model

STAT 536 Lecture 16 1 Examining a Fitted Logistic Model Deviance Test for Lack of Fit The data below describes the male birth fraction male births/total births over the years 1931 to 1990. A simple logistic

### Introduction to Statistics and Quantitative Research Methods

Introduction to Statistics and Quantitative Research Methods Purpose of Presentation To aid in the understanding of basic statistics, including terminology, common terms, and common statistical methods.

### Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

### 2. Simple Linear Regression

Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

### Correlation. What Is Correlation? Perfect Correlation. Perfect Correlation. Greg C Elvers

Correlation Greg C Elvers What Is Correlation? Correlation is a descriptive statistic that tells you if two variables are related to each other E.g. Is your related to how much you study? When two variables

### Example: Boats and Manatees

Figure 9-6 Example: Boats and Manatees Slide 1 Given the sample data in Table 9-1, find the value of the linear correlation coefficient r, then refer to Table A-6 to determine whether there is a significant

### Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression

Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction

### SP10 From GLM to GLIMMIX-Which Model to Choose? Patricia B. Cerrito, University of Louisville, Louisville, KY

SP10 From GLM to GLIMMIX-Which Model to Choose? Patricia B. Cerrito, University of Louisville, Louisville, KY ABSTRACT The purpose of this paper is to investigate several SAS procedures that are used in

### Advanced Statistical Analysis of Mortality. Rhodes, Thomas E. and Freitas, Stephen A. MIB, Inc. 160 University Avenue. Westwood, MA 02090

Advanced Statistical Analysis of Mortality Rhodes, Thomas E. and Freitas, Stephen A. MIB, Inc 160 University Avenue Westwood, MA 02090 001-(781)-751-6356 fax 001-(781)-329-3379 trhodes@mib.com Abstract

### LOGISTIC REGRESSION ANALYSIS

LOGISTIC REGRESSION ANALYSIS C. Mitchell Dayton Department of Measurement, Statistics & Evaluation Room 1230D Benjamin Building University of Maryland September 1992 1. Introduction and Model Logistic

### Assumptions. Assumptions of linear models. Boxplot. Data exploration. Apply to response variable. Apply to error terms from linear model

Assumptions Assumptions of linear models Apply to response variable within each group if predictor categorical Apply to error terms from linear model check by analysing residuals Normality Homogeneity

### 3.1 Solving Systems Using Tables and Graphs

Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### Univariate Regression

Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is

### A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution

A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 4: September

### Logit Models for Binary Data

Chapter 3 Logit Models for Binary Data We now turn our attention to regression models for dichotomous data, including logistic regression and probit analysis. These models are appropriate when the response

### Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C

### APPLICATION OF LINEAR REGRESSION MODEL FOR POISSON DISTRIBUTION IN FORECASTING

APPLICATION OF LINEAR REGRESSION MODEL FOR POISSON DISTRIBUTION IN FORECASTING Sulaimon Mutiu O. Department of Statistics & Mathematics Moshood Abiola Polytechnic, Abeokuta, Ogun State, Nigeria. Abstract

### 7.1 The Hazard and Survival Functions

Chapter 7 Survival Models Our final chapter concerns models for the analysis of data which have three main characteristics: (1) the dependent variable or response is the waiting time until the occurrence

### Multivariate Logistic Regression

1 Multivariate Logistic Regression As in univariate logistic regression, let π(x) represent the probability of an event that depends on p covariates or independent variables. Then, using an inv.logit formulation

### Unit 12 Logistic Regression Supplementary Chapter 14 in IPS On CD (Chap 16, 5th ed.)

Unit 12 Logistic Regression Supplementary Chapter 14 in IPS On CD (Chap 16, 5th ed.) Logistic regression generalizes methods for 2-way tables Adds capability studying several predictors, but Limited to

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### MGT 267 PROJECT. Forecasting the United States Retail Sales of the Pharmacies and Drug Stores. Done by: Shunwei Wang & Mohammad Zainal

MGT 267 PROJECT Forecasting the United States Retail Sales of the Pharmacies and Drug Stores Done by: Shunwei Wang & Mohammad Zainal Dec. 2002 The retail sale (Million) ABSTRACT The present study aims

### Regression 3: Logistic Regression

Regression 3: Logistic Regression Marco Baroni Practical Statistics in R Outline Logistic regression Logistic regression in R Outline Logistic regression Introduction The model Looking at and comparing

### I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Beckman HLM Reading Group: Questions, Answers and Examples Carolyn J. Anderson Department of Educational Psychology I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Linear Algebra Slide 1 of

### Missing data and net survival analysis Bernard Rachet

Workshop on Flexible Models for Longitudinal and Survival Data with Applications in Biostatistics Warwick, 27-29 July 2015 Missing data and net survival analysis Bernard Rachet General context Population-based,

### SPSS Guide: Regression Analysis

SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

### Poisson Regression or Regression of Counts (& Rates)

Poisson Regression or Regression of (& Rates) Carolyn J. Anderson Department of Educational Psychology University of Illinois at Urbana-Champaign Generalized Linear Models Slide 1 of 51 Outline Outline

### MULTIPLE REGRESSION WITH CATEGORICAL DATA

DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS Posc/Uapp 86 MULTIPLE REGRESSION WITH CATEGORICAL DATA I. AGENDA: A. Multiple regression with categorical variables. Coding schemes. Interpreting

### Examples of Using R for Modeling Ordinal Data

Examples of Using R for Modeling Ordinal Data Alan Agresti Department of Statistics, University of Florida Supplement for the book Analysis of Ordinal Categorical Data, 2nd ed., 2010 (Wiley), abbreviated

### A Basic Introduction to Missing Data

John Fox Sociology 740 Winter 2014 Outline Why Missing Data Arise Why Missing Data Arise Global or unit non-response. In a survey, certain respondents may be unreachable or may refuse to participate. Item

### Basic Statistics and Data Analysis for Health Researchers from Foreign Countries

Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma siersma@sund.ku.dk The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association

### Outline. Dispersion Bush lupine survival Quasi-Binomial family

Outline 1 Three-way interactions 2 Overdispersion in logistic regression Dispersion Bush lupine survival Quasi-Binomial family 3 Simulation for inference Why simulations Testing model fit: simulating the

### POLYNOMIAL AND MULTIPLE REGRESSION. Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model.

Polynomial Regression POLYNOMIAL AND MULTIPLE REGRESSION Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model. It is a form of linear regression

### New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Introduction

Introduction New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Predictive analytics encompasses the body of statistical knowledge supporting the analysis of massive data sets.

### Statistics 305: Introduction to Biostatistical Methods for Health Sciences

Statistics 305: Introduction to Biostatistical Methods for Health Sciences Modelling the Log Odds Logistic Regression (Chap 20) Instructor: Liangliang Wang Statistics and Actuarial Science, Simon Fraser

### Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares

Topic 4 - Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test - Fall 2013 R 2 and the coefficient of correlation

### TRINITY COLLEGE. Faculty of Engineering, Mathematics and Science. School of Computer Science & Statistics

UNIVERSITY OF DUBLIN TRINITY COLLEGE Faculty of Engineering, Mathematics and Science School of Computer Science & Statistics BA (Mod) Enter Course Title Trinity Term 2013 Junior/Senior Sophister ST7002

### Basic Statistical and Modeling Procedures Using SAS

Basic Statistical and Modeling Procedures Using SAS One-Sample Tests The statistical procedures illustrated in this handout use two datasets. The first, Pulse, has information collected in a classroom

### Logistic Regression (1/24/13)

STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used

### ECON 142 SKETCH OF SOLUTIONS FOR APPLIED EXERCISE #2

University of California, Berkeley Prof. Ken Chay Department of Economics Fall Semester, 005 ECON 14 SKETCH OF SOLUTIONS FOR APPLIED EXERCISE # Question 1: a. Below are the scatter plots of hourly wages

### 1 Basic ANOVA concepts

Math 143 ANOVA 1 Analysis of Variance (ANOVA) Recall, when we wanted to compare two population means, we used the 2-sample t procedures. Now let s expand this to compare k 3 population means. As with the

### This chapter will demonstrate how to perform multiple linear regression with IBM SPSS

CHAPTER 7B Multiple Regression: Statistical Methods Using IBM SPSS This chapter will demonstrate how to perform multiple linear regression with IBM SPSS first using the standard method and then using the

### Simple Regression Theory II 2010 Samuel L. Baker

SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

### 2 Sample t-test (unequal sample sizes and unequal variances)

Variations of the t-test: Sample tail Sample t-test (unequal sample sizes and unequal variances) Like the last example, below we have ceramic sherd thickness measurements (in cm) of two samples representing

### HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

### Methods for Meta-analysis in Medical Research

Methods for Meta-analysis in Medical Research Alex J. Sutton University of Leicester, UK Keith R. Abrams University of Leicester, UK David R. Jones University of Leicester, UK Trevor A. Sheldon University

### LOGIT AND PROBIT ANALYSIS

LOGIT AND PROBIT ANALYSIS A.K. Vasisht I.A.S.R.I., Library Avenue, New Delhi 110 012 amitvasisht@iasri.res.in In dummy regression variable models, it is assumed implicitly that the dependent variable Y

### Module 5: Multiple Regression Analysis

Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College

### Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

### The Probit Link Function in Generalized Linear Models for Data Mining Applications

Journal of Modern Applied Statistical Methods Copyright 2013 JMASM, Inc. May 2013, Vol. 12, No. 1, 164-169 1538 9472/13/\$95.00 The Probit Link Function in Generalized Linear Models for Data Mining Applications

### business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel

### The Proportional Odds Model for Assessing Rater Agreement with Multiple Modalities

The Proportional Odds Model for Assessing Rater Agreement with Multiple Modalities Elizabeth Garrett-Mayer, PhD Assistant Professor Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University 1

### Guide to Biostatistics

MedPage Tools Guide to Biostatistics Study Designs Here is a compilation of important epidemiologic and common biostatistical terms used in medical research. You can use it as a reference guide when reading

### Tests for Two Survival Curves Using Cox s Proportional Hazards Model

Chapter 730 Tests for Two Survival Curves Using Cox s Proportional Hazards Model Introduction A clinical trial is often employed to test the equality of survival distributions of two treatment groups.

### Model Fitting in PROC GENMOD Jean G. Orelien, Analytical Sciences, Inc.

Paper 264-26 Model Fitting in PROC GENMOD Jean G. Orelien, Analytical Sciences, Inc. Abstract: There are several procedures in the SAS System for statistical modeling. Most statisticians who use the SAS

### HLM software has been one of the leading statistical packages for hierarchical

Introductory Guide to HLM With HLM 7 Software 3 G. David Garson HLM software has been one of the leading statistical packages for hierarchical linear modeling due to the pioneering work of Stephen Raudenbush

### III. INTRODUCTION TO LOGISTIC REGRESSION. a) Example: APACHE II Score and Mortality in Sepsis

III. INTRODUCTION TO LOGISTIC REGRESSION 1. Simple Logistic Regression a) Example: APACHE II Score and Mortality in Sepsis The following figure shows 30 day mortality in a sample of septic patients as

### Multiple Linear Regression

Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is

### IAPRI Quantitative Analysis Capacity Building Series. Multiple regression analysis & interpreting results

IAPRI Quantitative Analysis Capacity Building Series Multiple regression analysis & interpreting results How important is R-squared? R-squared Published in Agricultural Economics 0.45 Best article of the

### Scatter Plot, Correlation, and Regression on the TI-83/84

Scatter Plot, Correlation, and Regression on the TI-83/84 Summary: When you have a set of (x,y) data points and want to find the best equation to describe them, you are performing a regression. This page

### SPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing lsun@smu.edu.sg

SPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing lsun@smu.edu.sg IN SPSS SESSION 2, WE HAVE LEARNT: Elementary Data Analysis Group Comparison & One-way

### 5. Multiple regression

5. Multiple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/5 QBUS6840 Predictive Analytics 5. Multiple regression 2/39 Outline Introduction to multiple linear regression Some useful

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.

### 12.5: CHI-SQUARE GOODNESS OF FIT TESTS

125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability

### Section 14 Simple Linear Regression: Introduction to Least Squares Regression

Slide 1 Section 14 Simple Linear Regression: Introduction to Least Squares Regression There are several different measures of statistical association used for understanding the quantitative relationship

### Nominal and ordinal logistic regression

Nominal and ordinal logistic regression April 26 Nominal and ordinal logistic regression Our goal for today is to briefly go over ways to extend the logistic regression model to the case where the outcome

### Ordinal Regression. Chapter

Ordinal Regression Chapter 4 Many variables of interest are ordinal. That is, you can rank the values, but the real distance between categories is unknown. Diseases are graded on scales from least severe

### Modelling spousal mortality dependence: evidence of heterogeneities and implications

1/23 Modelling spousal mortality dependence: evidence of heterogeneities and implications Yang Lu Scor and Aix-Marseille School of Economics Lyon, September 2015 2/23 INTRODUCTION 3/23 Motivation It has

### Introduction to Quantitative Methods

Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................

### Confidence Intervals for the Difference Between Two Means

Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means

### Econometrics Simple Linear Regression

Econometrics Simple Linear Regression Burcu Eke UC3M Linear equations with one variable Recall what a linear equation is: y = b 0 + b 1 x is a linear equation with one variable, or equivalently, a straight

### Week 5: Multiple Linear Regression

BUS41100 Applied Regression Analysis Week 5: Multiple Linear Regression Parameter estimation and inference, forecasting, diagnostics, dummy variables Robert B. Gramacy The University of Chicago Booth School

### Correlation and Simple Linear Regression

Correlation and Simple Linear Regression We are often interested in studying the relationship among variables to determine whether they are associated with one another. When we think that changes in a

### Parametric Survival Models

Parametric Survival Models Germán Rodríguez grodri@princeton.edu Spring, 2001; revised Spring 2005, Summer 2010 We consider briefly the analysis of survival data when one is willing to assume a parametric

### Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

### GENERALIZED LINEAR MODELS IN VEHICLE INSURANCE

ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS Volume 62 41 Number 2, 2014 http://dx.doi.org/10.11118/actaun201462020383 GENERALIZED LINEAR MODELS IN VEHICLE INSURANCE Silvie Kafková

### Module 3: Correlation and Covariance

Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis

### DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,