Exponential Functions and Laplace Transforms for Alpha Derivatives

Size: px
Start display at page:

Download "Exponential Functions and Laplace Transforms for Alpha Derivatives"

Transcription

1 Exponential Functions and Laplace Transforms for Alpha Derivatives ELVAN AKIN BOHNER and MARTIN BOHNER Department of Mathematics, Florida Institute of Technology Melbourne, Florida 3291, USA Abstract We introduce the exponential function for alpha derivatives on generalized time scales. We also define the Laplace transform that helps to solve higher order linear alpha dynamic equations on generalized time scales. If α σ, the Hilger forward jump operator, then our theory contains the theory of delta dynamic equations on time scales as a special case. If α ρ, the Hilger backward jump operator, then our theory contains the theory of nabla dynamic equations on time scales as a special case. Hence differential equations, difference equations (using the forward or backward difference operator), or q-difference equations (using the forward or backward q-difference operator) can be accommodated within our theory. We also present various properties of the Laplace transform and offer some examples. Keywords Alpha derivative, Generalized time scale, Exponential function, Laplace transform AMS Subject Classification 39A12, 39A13 1 Introduction We consider generalized time scales (T, α) as introduced in [1], i.e., T R is a nonempty set such that every Cauchy sequence in T converges to a point in T (with the possible exception of Cauchy sequences that converge to a finite infimum or supremum of T), and α is a function that maps T into T. A function f : T R is called alpha differentiable at a point t T if there exists a number f α (t), the so-called alpha derivative of f at t, with the property that for every ε > there exists a neighborhood U of t such that f(α(t)) f(s) f α (t)(α(t) s) ε α(t) s is true for all s U. If T is closed and α σ, the Hilger forward jump operator, then f α f is the usual delta derivative (see [4, 6, 7]), which contains as special cases derivatives f (if T R) and differences f (if

2 232 E. Akin-Bohner and M. Bohner T Z). If T is closed and α ρ, the Hilger backward jump operator, then f α f is the nabla derivative (see [3] and [4, Section 8.4]). In this paper we consider linear alpha dynamic equations of the form y α p(t)y with 1 + p(t)µ α (t), where µ α (t) α(t) t is the generalized graininess. If the initial value problem y α p(t)y, y(t ) 1 has a unique solution, we denote it by e p (t, t ) and call it the generalized exponential function. Note that e p also depends on α, but we choose not to indicate this dependence as it should be clear from the context. The exponential function satisfies some properties, which are presented in the next section of this paper. Similarly as in [5], the exponential function may be used to define a generalized Laplace transform, which is helpful when solving higher order linear alpha dynamic equations with constant coefficients. We illustrate this technique with an example in the last section. This example features an α which neither satisfies α(t) t for all t T nor α(t) t for all t T, and hence this example can not be accommodated in the existing literature on delta and nabla dynamic equations. 2 Alpha Derivatives, Exponentials, and Laplace Transforms For a function f : T R we denote by f α the alpha derivative as defined in the introductory section, and we also put f α f α. Then the following rules (see [4, Section 8.3]) are valid: f α f + µ α f α ; (fg) α fg α + f α g α ( Product Rule ); ( ) f f αg fg α g gg α ( Quotient Rule ). α We may use these rules to find i.e., e p (α(t), t ) e α p (t, t ) e p (t, t ) + µ α (t)p(t)e p (t, t ), e p (α(t), t ) [1 + p(t)µ α (t)] e p (t, t ), by putting y(t) e p (t, t )e q (t, t ), i.e., y α (t) e p (t, t )q(t)e q (t, t ) + p(t)e p (t, t )e q (α(t), t ) [p(t) + q(t) + µ α (t)p(t)q(t)] y(t),

3 Exponential Functions and Laplace Transforms for Alpha Derivatives 233 e p e q e p q, where p q : p + q + µ α pq, and by putting y e p (t, t )/e q (t, t ), i.e., y α (t) p(t)e p(t, t )e q (t, t ) e p (t, t )q(t)e q (t, t ) e q (t, t )e q (α(t), t ) p(t) q(t) 1 + µ α (t)q(t) y(t), e p e q e p q, where p q : p q 1 + µ α q. Note also that q : q q/(1 + µ α q) satisfies q ( q) and that p q p ( q). Again, and depend on α, but in order to avoid many subscripts we choose not to indicate this dependence as it should be clear from the context. We also remark that the set of alpha regressive functions R α {p : T R 1 + p(t)µ α (t) for all t T} is an Abelian group under the addition, and p is the additive inverse of p R α. Now, similarly as in [5], the Laplace transform for functions x : T R (from now on we assume that T is unbounded above and contains ) may be introduced as L{x}(z) x(t)e α z(t, )d α t with z R α R, whenever this Cauchy alpha integral is well defined. As an example, we calculate L{e c (, )}, where c R α is a constant such that lim t e c z (t, ). Then L{e c (, )}(z) e c (t, )e α z(t, )d α t [1 + µ α (t)( z)(t)] e c (t, )e z (t, )d α t [ 1 µ ] α(t)z e c z (t, )d α t 1 + µ α (t)z µ α (t)z e c z(t, )d α t 1 (c z)(t)e c z (t, )d α t c z 1 (e c z (, )) α d α t c z 1 z c. Under appropriate assumptions we can also show

4 234 E. Akin-Bohner and M. Bohner L{x α }(z) zl{x}(z) x(); L{x αα }(z) z 2 L{x}(z) zx() x α (); L{X}(z) 1 t z L{x}(z), where X(t) x(τ)d α τ. Further results can be derived as in [4, Section 3.1]. 3 An Example To illustrate the use of our Laplace transform, we consider the initial value problem y αα 5y α + 6y, y() 1, y α () 5. By formally taking Laplace transforms, we find so that z 2 L{y}(z) zy() y α () 5 [zl{y}(z) y()] + 6L{y}(z) L{y}(z) (z 2 5z + 6)L{y}(z) z (z 2)(z 3)L{y}(z) z z (z 2)(z 3) 3 z 3 2 z 2 L{3e 3(, ) 2e 2 (, )}(z). Hence, if e 2 (, ) and e 3 (, ) exist, we let and then y 3e 3 (, ) 2e 2 (, ), y α 9e 3 (, ) 4e 2 (, ) and y αα 27e 3 (, ) 8e 2 (, ) so that indeed y() 3 2 1, y α () 9 4 5, and y αα 5y α + 6y. Let us now consider several special cases of this example. (a) T R and α(t) t for all t T. Then e c (t, ) e ct for any constant c R, and the solution is given by y(t) 3e 3t 2e 2t. (b) T N and α(t) 2t + 1 for all t T. Note that e c (, ) is only defined on {t m 2 m 1 m N } T. Since µ α (t) t + 1, we find that e c satisfies e c (t k+1, ) (1 + cµ α (t k ))e c (t k, ) (1 + c2 k )e c (t k, ),

5 Exponential Functions and Laplace Transforms for Alpha Derivatives 235 Table 1: y 3e 3 (, ) 2e 2 (, ) for (b) t e 2 (t, ) e 3 (t, ) y(t) y α (t) y αα (t) Table 2: y 3e 3 (, ) 2e 2 (, ) for (c) t e 2 (t, ) e 3 (t, ) y(t) y α (t) y αα (t) and hence we obtain for constant c R α m 1 e c (t m, ) (1 + c2 k ). k See Table 1 for some numeric values. Note that y αα 5y α + 6y in each row. (c) T Z and α(t) t 2 for all t T. Note that e c (t, ) is only defined for all even integers. Since µ α (t) 2, we find that e c satisfies e c (α(t), ) (1 + cµ α (t))e c (t, ) (1 2c)e c (t, ), and hence we obtain for constant c 1/2 e c (t, ) (1 2c) t/2. See Table 2 for some numeric values. (d) T Z and α(t) t ( 1) t for all t T. Note that while in the previous two examples α(t) t for all t T and α(t) t for all t T, respectively, none of these properties hold in the current example. This time α : T T is additionally a bijection and hence e c (t, ) is defined on the entire set T when c { 1/3, 1}. We have { µ α (t) 1 + 2( 1) t 3 if t is even 1 if t is odd.

6 236 E. Akin-Bohner and M. Bohner Table 3: y 3e 3 (, ) 2e 2 (, ) for (d) t e 2 (t, ) e 3 (t, ) y(t) y α (t) y αα (t) As an example we calculate e 2 (t, ) for some values of t. Since e 2 (, ) 1 and α() 3, we find e 2 (3, ) e 2 (α(), ) (1 + 2µ α ())e 2 (, ) 7. Next, e 2 (2, ) e 2 (α(3), ) (1 + 2µ α (3))e 2 (3, ) 7, and similarly, e 2 (5, ) 7 2, e 2 (4, ) 7 2, e 2 (7, ) 7 3, e 2 (6, ) 7 3 and so on. In general, we find e c (t, ) { {(1 c)(1 + 3c)} t/2 if t is even (1 c) (t 3)/2 (1 + 3c) (t 1)/2 if t is odd, which can be written in closed formula as e c (t, ) {(1 c)(1 + 3c)} t/2 {(1 c)(1 + 3c)} t/2, (1 c) χ(t) (1 c) t/2 t/2 where χ χ 2Z+1 is the characteristic function for the odd integers. Again we refer to Table 3 for some numeric values. References [1] C. D. Ahlbrandt, M. Bohner, and J. Ridenhour. Hamiltonian systems on time scales. J. Math. Anal. Appl., 25: , 2.

7 Exponential Functions and Laplace Transforms for Alpha Derivatives 237 [2] E. Akın, L. Erbe, B. Kaymakçalan, and A. Peterson. Oscillation results for a dynamic equation on a time scale. J. Differ. Equations Appl., 7:793 81, 21. [3] F. M. Atıcı and G. Sh. Guseinov. On Green s functions and positive solutions for boundary value problems on time scales. J. Comput. Appl. Math., 22. Special Issue on Dynamic Equations on Time Scales, edited by R. P. Agarwal, M. Bohner, and D. O Regan. To appear. [4] M. Bohner and A. Peterson. Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston, 21. [5] M. Bohner and A. Peterson. Laplace transform and Z-transform: Unification and extension. Methods Appl. Anal., 22. To appear. [6] S. Hilger. Analysis on measure chains a unified approach to continuous and discrete calculus. Results Math., 18:18 56, 199. [7] B. Kaymakçalan, V. Lakshmikantham, and S. Sivasundaram. Dynamic Systems on Measure Chains, volume 37 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, [8] W. G. Kelley and A. C. Peterson. Difference Equations: An Introduction with Applications. Academic Press, San Diego, second edition, 21.

Multiplier-accelerator Models on Time Scales

Multiplier-accelerator Models on Time Scales International Journal of Statistics and Economics; [Formerly known as the Bulletin of Statistics & Economics ISSN 0973-7022)]; ISSN 0975-556X,; Spring 2010, Volume 4, Number S10; Copyright 2010 by CESER

More information

Fuzzy Differential Systems and the New Concept of Stability

Fuzzy Differential Systems and the New Concept of Stability Nonlinear Dynamics and Systems Theory, 1(2) (2001) 111 119 Fuzzy Differential Systems and the New Concept of Stability V. Lakshmikantham 1 and S. Leela 2 1 Department of Mathematical Sciences, Florida

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

Differentiation of vectors

Differentiation of vectors Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES. 1. Introduction

Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES. 1. Introduction F A S C I C U L I M A T H E M A T I C I Nr 51 2013 Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES Abstract. In this article the notion of acceleration convergence of double sequences

More information

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

More information

ON A DIFFERENTIAL EQUATION WITH LEFT AND RIGHT FRACTIONAL DERIVATIVES. Abstract

ON A DIFFERENTIAL EQUATION WITH LEFT AND RIGHT FRACTIONAL DERIVATIVES. Abstract ON A DIFFERENTIAL EQUATION WITH LEFT AND RIGHT FRACTIONAL DERIVATIVES Teodor M. Atanackovic and Bogoljub Stankovic 2 Abstract We treat the fractional order differential equation that contains the left

More information

European Call Option Pricing using the Adomian Decomposition Method

European Call Option Pricing using the Adomian Decomposition Method Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 9, Number 1, pp. 75 85 (2014) http://campus.mst.edu/adsa European Call Option Pricing using the Adomian Decomposition Method Martin

More information

On the Oscillation of Nonlinear Fractional Difference Equations

On the Oscillation of Nonlinear Fractional Difference Equations Mathematica Aeterna, Vol. 4, 2014, no. 1, 91-99 On the Oscillation of Nonlinear Fractional Difference Equations M. Reni Sagayaraj, A.George Maria Selvam Sacred Heart College, Tirupattur - 635 601, S.India

More information

Recursive Algorithms. Recursion. Motivating Example Factorial Recall the factorial function. { 1 if n = 1 n! = n (n 1)! if n > 1

Recursive Algorithms. Recursion. Motivating Example Factorial Recall the factorial function. { 1 if n = 1 n! = n (n 1)! if n > 1 Recursion Slides by Christopher M Bourke Instructor: Berthe Y Choueiry Fall 007 Computer Science & Engineering 35 Introduction to Discrete Mathematics Sections 71-7 of Rosen cse35@cseunledu Recursive Algorithms

More information

On a class of Hill s equations having explicit solutions. E-mail: m.bartuccelli@surrey.ac.uk, j.wright@surrey.ac.uk, gentile@mat.uniroma3.

On a class of Hill s equations having explicit solutions. E-mail: m.bartuccelli@surrey.ac.uk, j.wright@surrey.ac.uk, gentile@mat.uniroma3. On a class of Hill s equations having explicit solutions Michele Bartuccelli 1 Guido Gentile 2 James A. Wright 1 1 Department of Mathematics, University of Surrey, Guildford, GU2 7XH, UK. 2 Dipartimento

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

More information

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +... 6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

More information

Lecture 7: Finding Lyapunov Functions 1

Lecture 7: Finding Lyapunov Functions 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1

More information

15 Kuhn -Tucker conditions

15 Kuhn -Tucker conditions 5 Kuhn -Tucker conditions Consider a version of the consumer problem in which quasilinear utility x 2 + 4 x 2 is maximised subject to x +x 2 =. Mechanically applying the Lagrange multiplier/common slopes

More information

1.5 / 1 -- Communication Networks II (Görg) -- www.comnets.uni-bremen.de. 1.5 Transforms

1.5 / 1 -- Communication Networks II (Görg) -- www.comnets.uni-bremen.de. 1.5 Transforms .5 / -- Communication Networks II (Görg) -- www.comnets.uni-bremen.de.5 Transforms Using different summation and integral transformations pmf, pdf and cdf/ccdf can be transformed in such a way, that even

More information

Introduction to Topology

Introduction to Topology Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................

More information

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0. Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard

More information

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

More information

Inverse Functions and Logarithms

Inverse Functions and Logarithms Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a one-to-one function if it never takes on the same value twice; that

More information

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails 12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint

More information

The Method of Least Squares. Lectures INF2320 p. 1/80

The Method of Least Squares. Lectures INF2320 p. 1/80 The Method of Least Squares Lectures INF2320 p. 1/80 Lectures INF2320 p. 2/80 The method of least squares We study the following problem: Given n points (t i,y i ) for i = 1,...,n in the (t,y)-plane. How

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

Notes on metric spaces

Notes on metric spaces Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

Asian Option Pricing Formula for Uncertain Financial Market

Asian Option Pricing Formula for Uncertain Financial Market Sun and Chen Journal of Uncertainty Analysis and Applications (215) 3:11 DOI 1.1186/s4467-15-35-7 RESEARCH Open Access Asian Option Pricing Formula for Uncertain Financial Market Jiajun Sun 1 and Xiaowei

More information

1 Error in Euler s Method

1 Error in Euler s Method 1 Error in Euler s Method Experience with Euler s 1 method raises some interesting questions about numerical approximations for the solutions of differential equations. 1. What determines the amount of

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

Quasi Contraction and Fixed Points

Quasi Contraction and Fixed Points Available online at www.ispacs.com/jnaa Volume 2012, Year 2012 Article ID jnaa-00168, 6 Pages doi:10.5899/2012/jnaa-00168 Research Article Quasi Contraction and Fixed Points Mehdi Roohi 1, Mohsen Alimohammady

More information

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a 88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

More information

10.2 Series and Convergence

10.2 Series and Convergence 10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and

More information

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

More information

Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation

Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation 7 5.1 Definitions Properties Chapter 5 Parabolic Equations Note that we require the solution u(, t bounded in R n for all t. In particular we assume that the boundedness of the smooth function u at infinity

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

1. Let P be the space of all polynomials (of one real variable and with real coefficients) with the norm

1. Let P be the space of all polynomials (of one real variable and with real coefficients) with the norm Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 005-06-15 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

More information

Econometrics Simple Linear Regression

Econometrics Simple Linear Regression Econometrics Simple Linear Regression Burcu Eke UC3M Linear equations with one variable Recall what a linear equation is: y = b 0 + b 1 x is a linear equation with one variable, or equivalently, a straight

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Spring 2012 Homework # 9, due Wednesday, April 11 8.1.5 How many ways are there to pay a bill of 17 pesos using a currency with coins of values of 1 peso, 2 pesos,

More information

Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy

Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy Kim S. Larsen Odense University Abstract For many years, regular expressions with back referencing have been used in a variety

More information

Survey and remarks on Viro s definition of Khovanov homology

Survey and remarks on Viro s definition of Khovanov homology RIMS Kôkyûroku Bessatsu B39 (203), 009 09 Survey and remarks on Viro s definition of Khovanov homology By Noboru Ito Abstract This paper reviews and offers remarks upon Viro s definition of the Khovanov

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

4 Lyapunov Stability Theory

4 Lyapunov Stability Theory 4 Lyapunov Stability Theory In this section we review the tools of Lyapunov stability theory. These tools will be used in the next section to analyze the stability properties of a robot controller. We

More information

Metric Spaces Joseph Muscat 2003 (Last revised May 2009)

Metric Spaces Joseph Muscat 2003 (Last revised May 2009) 1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of

More information

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions

More information

6.2 Permutations continued

6.2 Permutations continued 6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

More information

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

More information

Fundamentele Informatica II

Fundamentele Informatica II Fundamentele Informatica II Answer to selected exercises 1 John C Martin: Introduction to Languages and the Theory of Computation M.M. Bonsangue (and J. Kleijn) Fall 2011 Let L be a language. It is clear

More information

JANUARY 2016 EXAMINATIONS. Life Insurance I

JANUARY 2016 EXAMINATIONS. Life Insurance I PAPER CODE NO. MATH 273 EXAMINER: Dr. C. Boado-Penas TEL.NO. 44026 DEPARTMENT: Mathematical Sciences JANUARY 2016 EXAMINATIONS Life Insurance I Time allowed: Two and a half hours INSTRUCTIONS TO CANDIDATES:

More information

MATH ADVISEMENT GUIDE

MATH ADVISEMENT GUIDE MATH ADVISEMENT GUIDE Recommendations for math courses are based on your placement results, degree program and career interests. Placement score: MAT 001 or MAT 00 You must complete required mathematics

More information

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

More information

ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS

ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS I. KIGURADZE AND N. PARTSVANIA A. Razmadze Mathematical Institute

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver. Finite Difference Methods for Partial Differential Equations As you are well aware, most differential equations are much too complicated to be solved by

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Some Problems of Second-Order Rational Difference Equations with Quadratic Terms

Some Problems of Second-Order Rational Difference Equations with Quadratic Terms International Journal of Difference Equations ISSN 0973-6069, Volume 9, Number 1, pp. 11 21 (2014) http://campus.mst.edu/ijde Some Problems of Second-Order Rational Difference Equations with Quadratic

More information

Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I. Ronald van Luijk, 2012 Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

More information

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents DIFFERENTIABILITY OF COMPLEX FUNCTIONS Contents 1. Limit definition of a derivative 1 2. Holomorphic functions, the Cauchy-Riemann equations 3 3. Differentiability of real functions 5 4. A sufficient condition

More information

SOLUTIONS TO PROBLEM SET 3

SOLUTIONS TO PROBLEM SET 3 SOLUTIONS TO PROBLEM SET 3 MATTI ÅSTRAND The General Cubic Extension Denote L = k(α 1, α 2, α 3 ), F = k(a 1, a 2, a 3 ) and K = F (α 1 ). The polynomial f(x) = x 3 a 1 x 2 + a 2 x a 3 = (x α 1 )(x α 2

More information

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 6 Permutation Groups Let S be a nonempty set and M(S be the collection of all mappings from S into S. In this section,

More information

OPTIMAL TIMING OF THE ANNUITY PURCHASES: A

OPTIMAL TIMING OF THE ANNUITY PURCHASES: A OPTIMAL TIMING OF THE ANNUITY PURCHASES: A COMBINED STOCHASTIC CONTROL AND OPTIMAL STOPPING PROBLEM Gabriele Stabile 1 1 Dipartimento di Matematica per le Dec. Econ. Finanz. e Assic., Facoltà di Economia

More information

Math 115 Spring 2011 Written Homework 5 Solutions

Math 115 Spring 2011 Written Homework 5 Solutions . Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence

More information

Private Equity Fund Valuation and Systematic Risk

Private Equity Fund Valuation and Systematic Risk An Equilibrium Approach and Empirical Evidence Axel Buchner 1, Christoph Kaserer 2, Niklas Wagner 3 Santa Clara University, March 3th 29 1 Munich University of Technology 2 Munich University of Technology

More information

Journal of Engineering Science and Technology Review 2 (1) (2009) 76-81. Lecture Note

Journal of Engineering Science and Technology Review 2 (1) (2009) 76-81. Lecture Note Journal of Engineering Science and Technology Review 2 (1) (2009) 76-81 Lecture Note JOURNAL OF Engineering Science and Technology Review www.jestr.org Time of flight and range of the motion of a projectile

More information

MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.

MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers. MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P

More information

Mathematical Methods of Engineering Analysis

Mathematical Methods of Engineering Analysis Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................

More information

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method 578 CHAPTER 1 NUMERICAL METHODS 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after

More information

Trend and Seasonal Components

Trend and Seasonal Components Chapter 2 Trend and Seasonal Components If the plot of a TS reveals an increase of the seasonal and noise fluctuations with the level of the process then some transformation may be necessary before doing

More information

CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí

CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí Opuscula Math. 34 no. 4 2014 683 690 http://dx.doi.org/10.7494/opmath.2014.34.4.683 Opuscula Mathematica CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian Pasquale

More information

ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING. 0. Introduction

ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING. 0. Introduction ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING Abstract. In [1] there was proved a theorem concerning the continuity of the composition mapping, and there was announced a theorem on sequential continuity

More information

Real Roots of Univariate Polynomials with Real Coefficients

Real Roots of Univariate Polynomials with Real Coefficients Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials

More information

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9 Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned

More information

Second Order Linear Partial Differential Equations. Part I

Second Order Linear Partial Differential Equations. Part I Second Order Linear Partial Differential Equations Part I Second linear partial differential equations; Separation of Variables; - point boundary value problems; Eigenvalues and Eigenfunctions Introduction

More information

x a x 2 (1 + x 2 ) n.

x a x 2 (1 + x 2 ) n. Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

More information

MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich

MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich MEASURE AND INTEGRATION Dietmar A. Salamon ETH Zürich 12 May 2016 ii Preface This book is based on notes for the lecture course Measure and Integration held at ETH Zürich in the spring semester 2014. Prerequisites

More information

Designing Efficient Software for Solving Delay Differential Equations. C.A.H. Paul. Numerical Analysis Report No. 368. Oct 2000

Designing Efficient Software for Solving Delay Differential Equations. C.A.H. Paul. Numerical Analysis Report No. 368. Oct 2000 ISSN 1360-1725 UMIST Designing Efficient Software for Solving Delay Differential Equations C.A.H. Paul Numerical Analysis Report No. 368 Oct 2000 Manchester Centre for Computational Mathematics Numerical

More information

Sales forecasting # 2

Sales forecasting # 2 Sales forecasting # 2 Arthur Charpentier arthur.charpentier@univ-rennes1.fr 1 Agenda Qualitative and quantitative methods, a very general introduction Series decomposition Short versus long term forecasting

More information

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s

More information

Numerical methods for American options

Numerical methods for American options Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

3 Contour integrals and Cauchy s Theorem

3 Contour integrals and Cauchy s Theorem 3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of

More information

Black-Scholes Option Pricing Model

Black-Scholes Option Pricing Model Black-Scholes Option Pricing Model Nathan Coelen June 6, 22 1 Introduction Finance is one of the most rapidly changing and fastest growing areas in the corporate business world. Because of this rapid change,

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Cyclotomic Extensions

Cyclotomic Extensions Chapter 7 Cyclotomic Extensions A cyclotomic extension Q(ζ n ) of the rationals is formed by adjoining a primitive n th root of unity ζ n. In this chapter, we will find an integral basis and calculate

More information

ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION. E. I. Pancheva, A. Gacovska-Barandovska

ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION. E. I. Pancheva, A. Gacovska-Barandovska Pliska Stud. Math. Bulgar. 22 (2015), STUDIA MATHEMATICA BULGARICA ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION E. I. Pancheva, A. Gacovska-Barandovska Smirnov (1949) derived four

More information

Sales and operations planning (SOP) Demand forecasting

Sales and operations planning (SOP) Demand forecasting ing, introduction Sales and operations planning (SOP) forecasting To balance supply with demand and synchronize all operational plans Capture demand data forecasting Balancing of supply, demand, and budgets.

More information

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic

More information

LUC: A New Public Key System

LUC: A New Public Key System LUC: A New Public Key System Peter J. Smith a and Michael J. J. Lennon b a LUC Partners, Auckland UniServices Ltd, The University of Auckland, Private Bag 92019, Auckland, New Zealand. b Department of

More information

Metric Spaces. Chapter 1

Metric Spaces. Chapter 1 Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

More information

Volterra integral equations and fractional calculus: Do neighbouring solutions intersect?

Volterra integral equations and fractional calculus: Do neighbouring solutions intersect? CHESTER RESEARCH ONLINE Research in Mathematics and its Applications ISSN 25-661 Series Editors: CTH Baker, NJ Ford Volterra integral equations and fractional calculus: Do neighbouring solutions intersect?

More information

Christfried Webers. Canberra February June 2015

Christfried Webers. Canberra February June 2015 c Statistical Group and College of Engineering and Computer Science Canberra February June (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 829 c Part VIII Linear Classification 2 Logistic

More information

0 <β 1 let u(x) u(y) kuk u := sup u(x) and [u] β := sup

0 <β 1 let u(x) u(y) kuk u := sup u(x) and [u] β := sup 456 BRUCE K. DRIVER 24. Hölder Spaces Notation 24.1. Let Ω be an open subset of R d,bc(ω) and BC( Ω) be the bounded continuous functions on Ω and Ω respectively. By identifying f BC( Ω) with f Ω BC(Ω),

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

Math 181 Handout 16. Rich Schwartz. March 9, 2010

Math 181 Handout 16. Rich Schwartz. March 9, 2010 Math 8 Handout 6 Rich Schwartz March 9, 200 The purpose of this handout is to describe continued fractions and their connection to hyperbolic geometry. The Gauss Map Given any x (0, ) we define γ(x) =

More information

ON THE EXPONENTIAL FUNCTION

ON THE EXPONENTIAL FUNCTION ON THE EXPONENTIAL FUNCTION ROBERT GOVE AND JAN RYCHTÁŘ Abstract. The natural exponential function is one of the most important functions students should learn in calculus classes. The applications range

More information

Verification of hybrid dynamical systems

Verification of hybrid dynamical systems Verification of hybrid dynamical systems Jüri Vain Tallinn Technical University/Institute of Cybernetics vain@ioc.ee Outline What are Hybrid Systems? Hybrid automata Verification of hybrid systems Verification

More information