Phonon Engineering: an introduction

Size: px
Start display at page:

Download "Phonon Engineering: an introduction"

Transcription

1 Phonon Engineering: an introduction II. Phonon engineering and heat conduction Dr P.-Olivier Chapuis Institut Catala de Nanotecnolgia (ICN-CIN2) Barcelona, Spain NiPS Summer School on Energy Harvesting at the micro- and nano-scale Avigliano Umbro TR, Italy, 1 st -8 th August 2010

2 The Phononic heat conduction Phononic thermal conductivity Phonon scattering mechanisms Phonons at nanoscale Phonon transmission at interfaces Phonons in novel materials Heat transfer phonons and measurements spectrum! intrinisc solve BTE diffuse? better transport? techniques

3 Phononic thermal conductivity Contributions to the heat conduction Thermal conductivity k has different contributions: k = k phonon + k electron Wiedemann-Franz law for an approximation of electronic contribution in the thermal conductivity 2 kel kb L T 3 e 2 8 W K 2 Silicon (undoped) k Si = 149 Wm -1 K -1 Si= m -1 k Si, e k Si L 0 T e Si Si 1 Graphite k C_graphite = 140 Wm -1 K -1 C_graphite= m -1 k C _ graphite, e k C _ graphite L T 0 e k C _ graphite C _ graphite 0.3%

4 Phononic thermal conductivity The model of the thermal conductivity Solution of a Boltzmann transport equation (Peierls) i f f E i f f v i 1 (, T) / k e B 0 T f t 1 v r f F m coll ).( v r ) ( d 0 ( f0 i, x g, p) E( ) f ( ) vi, x(, p) pol 0 v f f t Bose-Einstein statistics f ( f 0 ) k (Relaxation time approximation) pola. 0 df0 dt k. r T 1 3 ( v ) g( ) vd NB: Isotropic approx. for v,,

5 Phononic thermal conductivity The model of the thermal conductivity Solution of a Boltzmann transport equation (Peierls) f t v r f F m v f f t coll f ( f 0 ) k (Relaxation time approximation) pola df0 dt ( v ) g( ) vd x e 1 f0(, T) / k B T Bose-Einstein statistics e 1 Planck s law for phonons x Wien s law for phonons D=hv s /2.8k B T v s, Si ~ ms -1 x hv s / 1 10 k B T Debye wavelength

6 Phononic thermal conductivity Phonon spectrum MD calculations with bulk Si Calculated phonon density of states (D) in a e=37 nm Si nanowire Balandin Debye k Real dispersion relation peak=2 nm DOS =1 nm Henry and Chen, J. Comp. Theo. Nanosci 5, 1 (2008) Lü, JAP 104, (2008) (Balandin & Wang PRB NIPS (1998)) Summer school, August 2010

7 Phononic thermal conductivity Which phonons? The acoustic phonons are carrying the heat. k 0 pola c 1 3 v( v ) d df0 dt ( v ) k g( 1 3 ) vd c p v s Si (Y. Garcia) Chen, JHT (1998) v g ( opt) k 0 X k NB: Different from the specific heat!

8 Phonon scattering mechnisms Finiteness of the thermal conductivity..? Critical parameter: The phonon relaxation time as without it the propagation would be infinite! In this absence of defects, it is due to the nonlinearity of the force field between atoms NB: k has a 3D meaning FPI (Fermi Pasta Ulam) paradox of the atomic chain k does not always exist when nonlinearity! k~l not always see Lepri etc.

9 Phonon scattering mechnisms Scattering mechanisms that do not conserve the momentum Origin of the different terms in the mean free path Umklapp (Klemens model) U ~ A 1 e - D/bT T n m Origin: Nonlinearity=Anharmonicity!! ħ 1 + ħ 2 = ħ 3 k 1 + k 2 = k 3 but k 3 in the end k 1 k 3 k 3 k 2 G k 2 2 /a k 1 k 3 G k k 2 3 k 1 2 /a (Very schematic!!) k

10 Phonon scattering mechnisms Scattering mechanisms Origin of the different terms in the mean free path Umklapp (Klemens model) U ~ A 1 e - D/bT T 3 2 Origin: Nonlinearity=Anharmonicity!! Boundary scattering of the particle B ~ A 2 v( )/D D k To be taken into account only in crude model if dispersion relation have not been calculated!

11 Phonon scattering mechnisms Scattering mechanisms Origin of the different terms in the mean free path Umklapp (Klemens model) U ~ A 1 e - D/bT T 3 2 Origin: Nonlinearity=Anharmonicity!! Boundary scattering of the particle B ~ A 2 v( )/D Rayleigh scattering due to impurities Similar to electromagnetics Mie theory ~ A 3 4 (dpart << ) Majumdar, JAP (2005)

12 Phonon scattering mechnisms Scattering mechanisms Origin of the different terms in the mean free path Umklapp (Klemens model) U ~ A 1 e - D/bT T 3 2 Origin: Nonlinearity=Anharmonicity!! Boundary scattering of the particle B ~ A 2 v( )/D Rayleigh scattering due to impurities Similar to electromagnetics Mie theory ~ A 3 4 (dpart << ) Electron-phonon interaction e-ph ~ T

13 Phonon scattering mechnisms Scattering mechanisms Origin of the different terms in the mean free path Umklapp (Klemens model) U ~ A 1 e - D/bT T 3 2 Origin: Nonlinearity=Anharmonicity!! Boundary scattering of the particle B ~ A 2 v( )/D Rayleigh scattering due to impurities Similar to electromagnetics Mie theory ~ A 3 4 (dpart << ) Electron-phonon interaction e-ph ~ T Usually: Mathiessen rule of the relaxation time i NB: Curious: Same treatment of elastic, inelastic etc. liftetime

14 Phonon scattering mechnisms Scattering mechanisms (2) Leading mean free paths =v g Boundaries Wave! J.Y. Duquesne, INSP, Paris 10nm Si particles in a matrix of Ge

15 Phonon scattering mechnisms Mean free path distribution = v g MD calculations with bulk Si Henry and Chen, J. Comp. Theo. Nanosci 5, 1 (2008)

16 Phonons at nanoscale How to deal with BTE at low D? At small scale (space/time), the Fourier approach breaks down! One needs then or to solve the BTE (long!) Phonon density of states Limitation of the approach: L~ v L~ nm? - Probabilistic: Monte-Carlo method - Approx: Discrete ordinate (Radiation) - Approx.: Ballistic-diffusive equation Dispersion relation wave effect Phonon mean free path Particle transport effect to use a simulation method at the atomic scale - Molecular dynamics - Lattice dynamics - Atomistic Green s function method Grey approximation

17 Phonons at nanoscale NB: Cattaneo-Vernotte 2 1 T T c k 2 t t T Propagation of heat Fourier vs BTE at nanoscale Examples taken from Lacroix, Joulain, PRB (2005) also incomplete Stationary temperature profile between two parallel thermalized media Transverse Longitudinal Temperature jump

18 Phonons at nanoscale Reducing the thermal conductivity Impurities or nanoparticles Useful for the generation of thermoelectricity! Efficiency depends on figure-of-merit ZT Z= S / ( k el + k ph ) Majumdar, PRL (2007) Strategies to decrease k ph (without impact on and S ) Adding impurities or nanoparticles! impacts the high-frequency acoustic phonons ErAs in InGaAs

19 Phonons at nanoscale Reducing the thermal conductivity Boundaries Useful for the generation of thermoelectricity! Efficiency depends on figure-of-merit ZT Z= S / ( k el + k ph ) Strategies to decrease k ph (without impact on and S ) Adding boundaries impacts all phonons Ball-milling Chen and Ren, Science (2008)

20 Phonons at nanoscale Reducing the thermal conductivity Boundaries Useful for the generation of thermoelectricity! Efficiency depends on figure-of-merit ZT Z= S / ( k el + k ph ) Strategies to decrease k ph (without impact on and S ) Adding boundaries impacts all phonons Here in nanowires Majumdar, APL (2003)

21 Phonons at nanoscale Reducing the thermal conductivity Roughness Useful for the generation of thermoelectricity! Efficiency depends on figure-of-merit ZT Z= S / ( k el + k ph ) TEM Strategies to decrease k ph (without impact on and S ) Adding amorphous layers at the boundaries further reduces the thermal conductivity! Majumdar, Nature (2009) See also Heat, same issue

22 Phonon transmission at interfaces Phonon transmission at interfaces? Wave model for the low-frequency phonons Acoustic wave! 1 2 T=4Z 1 Z 2 /(Z 1 +Z 2 ) 2 Z 1 = c 1 Z 2 NB: Terminology issue: Kapitza resistance (fluid-solid) Thermal interface resistance (thick interface) Thermal boundary resistance surface Transistor level Polymer-based layer Heat spreader

23 Phonon transmission at interfaces Phonon transmission at interfaces? (2) More difficulty for the high frequency acoustic phonons 1 2 Diffuse mismatch model = limit of strong diffuse scattering

24 Phonon transmission at interfaces Acoustic mismatch and diffuse mismatch models DMM: All correlations between ingoing and outgoing phonons are ignored t ( )= r ( )= 1-t ( ) t c2 c 1 c (With asssumption on the DOS) Swartz and Pohl, RMP (1987) In bulk systems, the resistances with DMM and AMM are similar (30%)

25 Phonon transmission at interfaces Metal dielectric interface Measured values higher than prediction 1 ph1-ph2 2 ph2 - e - 2 R 2 R Thermal surface resistance = 3 2 /R 1 ph1-ph2 2 ph2 - e - 2 Chapuis Maxwell-Garnett approximation (Phonon particule)

26 Phonons in novel materials Thermal conductivity of new materials Bera, PRL (2010) Porous materials to harvest energy Other types of low-thermal conductivity materials (beating the Einstein limit of amorphous materials) Chiritescu, Science (2007) Goodson, Science (2007) Disordered layered crystal k air (300 K)=0.025 Wm -1 K -1

27 Phonons in novel materials Thermal conductivity of novel materials Carbon nanotubes k=3000 Wm -1 K -1 MWCNT: Kim et al, PRL(2001) Li Shi, Science (2010) Balandin, Nano Letters (2008) Graphene

28 Phonons in novel materials Other types of engineering Rectification? Carbon nanotubes loaded with gradient of molecule density Chang,..,Majumdar, Zettl, Science 2006 Phonon-based motor? For the moment only due to the thermal gradient Bachtold, Science (2008)

29 Heat transfer phonons and measurements Usual methods for heat transport characterisation 3 method (Cahill, RSI, 1989) Based on R=R 0 (1+ T) and T P=R [ I 0 cos t ] 2 ICN and VTT U 3 = /2 R 0 I 0 T 2 Suspended microresistors (Shi and Majumdar) Shi and Majumdar Ultrafast pump-probe spectroscopy S. Dilhaire (Bordeaux)

30 Heat transfer phonons and measurements THE 3 METHOD R(T) = R 0 (1 + T) Resistance depends on temperature I = I 0 cos( t) P(t) = R I(t) 2 = ½ R (1 + cos(2 t)) Joule heating of an electric T(t) = T 0 + T DC + T 2 cos(2 t+ 2 ) wire U = RI = R 0 I 0 [1 + T DC + T 2 cos(2 t+ 2 ) ] cos( t) = R 0 I 0 [(1+ T DC ) cos( t) + ½ T 2 cos( t- 2 ) + ½ T 2 cos(3 t 2 ) ] = U + ½ R 0 I 0 T 2 cos(3 t+ 2 ) Temperature of the wire = f(heat flux to the sample)

31 Conclusions Wave behaviour superimposed to the quasiparticle behaviour Research driven bythermoeletric community and the quest for better insulator [lower k] or by microelectronics for better conductors [higher k] Still plenty of room - Demonstration of the Boltzmann transport equation for phonons? - Phonon relaxation time/mean free path - Degree of diffusivity at the interface - Filters and interference effects - Localization etc. - Amorphous materials [not tackled here!]

32 Useful references - Books - G. Chen, Nanoscale energy transport and conversion - S. Volz (ed), Microscale and Nanoscale Heat Transfer - S. Volz (ed), Thermal Nanosystems and Nanomaterials - Z.M. Zhang, Nano/Microscale heat transfer - Reviews or interesting articles - A. Balandin, Phonon Engineering, J. Nanosc. & Nanotech 5, 1015 (2005) - D. Cahill et al., Nanoscale thermal transport, J. Appl. Phys. 93, 793 (2003) - A. Henry and G. Chen, J. Comp. Theo. Nanosci. 5, 1 (2008) -

33 P2N group (June 2010) Prof Clivia Sotomayor Dr Francesc Alsina Dr Vincent Reboud Dr Nikolaos Kehagias Dr Timothy Kehoe Dr Damian Dudek Dr Olivier Chapuis Dr Yamila Garcia Dr Lars Schneider Ms Noemi Baruch Mr John Cuffe Mr Emigdio Chavez

Thermal unobtainiums? The perfect thermal conductor and the perfect thermal insulator

Thermal unobtainiums? The perfect thermal conductor and the perfect thermal insulator Thermal unobtainiums? The perfect thermal conductor and the perfect thermal insulator David G. Cahill Materials Research Lab and Department of Materials Science and Engineering, U. of Illinois Gratefully

More information

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact

More information

Interfacial thermal resistance of Au/SiO 2 produced by sputtering method

Interfacial thermal resistance of Au/SiO 2 produced by sputtering method High Temperatures-High Pressures, Vol. 37, pp. 31 39 Reprints available directly from the publisher Photocopying permitted by license only 2008 Old City Publishing, Inc. Published by license under the

More information

Phonon Scattering and Thermal Conduction in Nanostructured Semiconductors

Phonon Scattering and Thermal Conduction in Nanostructured Semiconductors Phonon Scattering and Thermal Conduction in Nanostructured Semiconductors David G. Cahill, Joe Feser, Yee Kan Koh Department of Materials Science and Engineering And Materials Research Laboratory University

More information

Carbon Cable. Sergio Rubio Carles Paul Albert Monte

Carbon Cable. Sergio Rubio Carles Paul Albert Monte Carbon Cable Sergio Rubio Carles Paul Albert Monte Carbon, Copper and Manganine PhYsical PropERTieS CARBON PROPERTIES Carbon physical Properties Temperature Coefficient α -0,0005 ºC-1 Density D 2260 kg/m3

More information

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

More information

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1 SUPERCONDUCTIVITY property of complete disappearance of electrical resistance in solids when they are cooled below a characteristic temperature. This temperature is called transition temperature or critical

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

More information

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS BOARD OF INTERMEDIATE EDUCATION, A.P., HYDERABAD REVISION OF SYLLABUS Subject PHYSICS-II (w.e.f 2013-14) Chapter ONE: WAVES CHAPTER - 1 1.1 INTRODUCTION 1.2 Transverse and longitudinal waves 1.3 Displacement

More information

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

Chapter 5: Diffusion. 5.1 Steady-State Diffusion : Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process

More information

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing Lecture 2 How does Light Interact with the Environment? Treasure Hunt Find and scan all 11 QR codes Choose one to watch / read in detail Post the key points as a reaction to http://www.scoop.it/t/env202-502-w2

More information

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

More information

Plate waves in phononic crystals slabs

Plate waves in phononic crystals slabs Acoustics 8 Paris Plate waves in phononic crystals slabs J.-J. Chen and B. Bonello CNRS and Paris VI University, INSP - 14 rue de Lourmel, 7515 Paris, France chen99nju@gmail.com 41 Acoustics 8 Paris We

More information

Physical Properties and Functionalization of Low-Dimensional Materials

Physical Properties and Functionalization of Low-Dimensional Materials Physical Properties and Functionalization of Low-Dimensional Materials Physics Department, University of Trieste Graduate School of Physics, XXVI cycle Supervisor: Co-supervisor: Prof. Alessandro BARALDI

More information

Electromagnetic Radiation (EMR) and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through

More information

The Application of Density Functional Theory in Materials Science

The Application of Density Functional Theory in Materials Science The Application of Density Functional Theory in Materials Science Slide 1 Outline Atomistic Modelling Group at MUL Density Functional Theory Numerical Details HPC Cluster at the MU Leoben Applications

More information

The plasmoelectric effect: optically induced electrochemical potentials in resonant metallic structures

The plasmoelectric effect: optically induced electrochemical potentials in resonant metallic structures The plasmoelectric effect: optically induced electrochemical potentials in resonant metallic structures Matthew T. Sheldon and Harry A. Atwater Thomas J. Watson Laboratories of Applied Physics, California

More information

Size effects. Lecture 6 OUTLINE

Size effects. Lecture 6 OUTLINE Size effects 1 MTX9100 Nanomaterials Lecture 6 OUTLINE -Why does size influence the material s properties? -How does size influence the material s performance? -Why are properties of nanoscale objects

More information

Corso di Fisica Te T cnica Ambientale Solar Radiation

Corso di Fisica Te T cnica Ambientale Solar Radiation Solar Radiation Solar radiation i The Sun The Sun is the primary natural energy source for our planet. It has a diameter D = 1.39x10 6 km and a mass M = 1.989x10 30 kg and it is constituted by 1/3 of He

More information

Take away concepts. What is Energy? Solar Energy. EM Radiation. Properties of waves. Solar Radiation Emission and Absorption

Take away concepts. What is Energy? Solar Energy. EM Radiation. Properties of waves. Solar Radiation Emission and Absorption Take away concepts Solar Radiation Emission and Absorption 1. 2. 3. 4. 5. 6. Conservation of energy. Black body radiation principle Emission wavelength and temperature (Wein s Law). Radiation vs. distance

More information

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html Pensum: Solid State Physics by Philip Hofmann (Chapters 1-7 and 11) Andrej Kuznetsov delivery

More information

GRAPHENE: A NEW STAR IN MATERIAL SCIENCE

GRAPHENE: A NEW STAR IN MATERIAL SCIENCE GRAPHENE: A NEW STAR IN MATERIAL SCIENCE S. Sahoo 1 & A. K. Dutta 2 Department of Physics, National Institute of Technology Durgapur-713209, West Bengal, India. 1 E-mail: sukadevsahoo@yahoo.com 2 E-mail:

More information

HEAT AND MASS TRANSFER

HEAT AND MASS TRANSFER MEL242 HEAT AND MASS TRANSFER Prabal Talukdar Associate Professor Department of Mechanical Engineering g IIT Delhi prabal@mech.iitd.ac.in MECH/IITD Course Coordinator: Dr. Prabal Talukdar Room No: III,

More information

TRANSPORT PROPERTIES OF GRAPHENE IN AND OUT OF THE BULK

TRANSPORT PROPERTIES OF GRAPHENE IN AND OUT OF THE BULK TRANSPORT PROPERTIES OF GRAPHENE IN AND OUT OF THE BULK Jean-Paul Issi Université de Louvain Louvain-la-Neuve Graphene International School, Cargese, October, 2010 PART I ELECTRICAL CONDUCTIVITY PART II

More information

Radiation Transfer in Environmental Science

Radiation Transfer in Environmental Science Radiation Transfer in Environmental Science with emphasis on aquatic and vegetation canopy media Autumn 2008 Prof. Emmanuel Boss, Dr. Eyal Rotenberg Introduction Radiation in Environmental sciences Most

More information

The Raman Fingerprint of Graphene

The Raman Fingerprint of Graphene The Raman Fingerprint of Graphene A. C. Ferrari 1, J. C. Meyer 2, V. Scardaci 1, C. Casiraghi 1, M. Lazzeri 3, F. Mauri 3, S. Piscanec 1, D. Jiang 4, K. S. Novoselov 4, S. Roth 2, A. K. Geim 4 1 Department

More information

Conductive and Radiative Heat Transfer in Insulators

Conductive and Radiative Heat Transfer in Insulators Conductive and Radiative Heat Transfer in Insulators Akhan Tleoubaev, Ph.D. LaserComp, Inc., December 1998 Heat transfer for most thermal insulation materials occurs via both conduction and radiation.

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

www.keithley.com 1 st Edition Nanotechnology Measurement Handbook A Guide to Electrical Measurements for Nanoscience Applications

www.keithley.com 1 st Edition Nanotechnology Measurement Handbook A Guide to Electrical Measurements for Nanoscience Applications www.keithley.com 1 st Edition Nanotechnology Measurement Handbook A Guide to Electrical Measurements for Nanoscience Applications To get a free electronic version of this book, visit Keithley s Knowledge

More information

Thermal diffusivity and conductivity - an introduction to theory and practice

Thermal diffusivity and conductivity - an introduction to theory and practice Thermal diffusivity and conductivity - an introduction to theory and practice Utrecht, 02 October 2014 Dr. Hans-W. Marx Linseis Messgeräte GmbH Vielitzer Str. 43 D-95100 Selb / GERMANY www.linseis.com

More information

NANO TECHNOLOGY BASED SELF-RECHARGABLE MOBILE PHONES

NANO TECHNOLOGY BASED SELF-RECHARGABLE MOBILE PHONES 2012 International Conference on Environment Science and Engieering IPCBEE vol.3 2(2012) (2012)IACSIT Press, Singapoore NANO TECHNOLOGY BASED SELF-RECHARGABLE MOBILE PHONES Sree Krishna 1,+ and Vivek Mark.A

More information

Chapter Outline. Diffusion - how do atoms move through solids?

Chapter Outline. Diffusion - how do atoms move through solids? Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm First H/W#1 is due Sept. 10 Course Info The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model)

More information

Blackbody radiation derivation of Planck s radiation low

Blackbody radiation derivation of Planck s radiation low Blackbody radiation derivation of Planck s radiation low 1 Classical theories of Lorentz and Debye: Lorentz (oscillator model): Electrons and ions of matter were treated as a simple harmonic oscillators

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html FYS410 - Vår 014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys410/v14/index.html Pensum: Solid State Physics by Philip Hofmann (Chapters 1-7 and 11) Andrej Kuznetsov delivery

More information

Heat Transfer and Energy

Heat Transfer and Energy What is Heat? Heat Transfer and Energy Heat is Energy in Transit. Recall the First law from Thermodynamics. U = Q - W What did we mean by all the terms? What is U? What is Q? What is W? What is Heat Transfer?

More information

Structure Factors 59-553 78

Structure Factors 59-553 78 78 Structure Factors Until now, we have only typically considered reflections arising from planes in a hypothetical lattice containing one atom in the asymmetric unit. In practice we will generally deal

More information

Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

More information

Tobias Märkl. November 16, 2009

Tobias Märkl. November 16, 2009 ,, Tobias Märkl to 1/f November 16, 2009 1 / 33 Content 1 duction to of Statistical Comparison to Other Types of Noise of of 2 Random duction to Random General of, to 1/f 3 4 2 / 33 , to 1/f 3 / 33 What

More information

Thermal conductivity decomposition and analysis using molecular dynamics simulations Part II. Complex silica structures

Thermal conductivity decomposition and analysis using molecular dynamics simulations Part II. Complex silica structures International Journal of Heat and Mass Transfer 47 (24) 1799 1816 www.elsevier.com/locate/ijhmt Thermal conductivity decomposition and analysis using molecular dynamics simulations Part II. Complex silica

More information

Graphene a material for the future

Graphene a material for the future Graphene a material for the future by Olav Thorsen What is graphene? What is graphene? Simply put, it is a thin layer of pure carbon What is graphene? Simply put, it is a thin layer of pure carbon It has

More information

Optics and Spectroscopy at Surfaces and Interfaces

Optics and Spectroscopy at Surfaces and Interfaces Vladimir G. Bordo and Horst-Gunter Rubahn Optics and Spectroscopy at Surfaces and Interfaces WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface IX 1 Introduction 1 2 Surfaces and Interfaces 5

More information

Summary of Accomplishments. Kyeongjae Cho

Summary of Accomplishments. Kyeongjae Cho Summary of Accomplishments Kyeongjae Cho In this summary, I will discuss the main accomplishments and plans for my research, teaching and service. Before I discuss the details of the accomplishments and

More information

Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds.

Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds. Problem 1 Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds. Ionic Bonds Two neutral atoms close to each can undergo an ionization process in order

More information

Applied Physics of solar energy conversion

Applied Physics of solar energy conversion Applied Physics of solar energy conversion Conventional solar cells, and how lazy thinking can slow you down Some new ideas *************************************************************** Our work on semiconductor

More information

Section 6 Raman Scattering (lecture 10)

Section 6 Raman Scattering (lecture 10) Section 6 Scattering (lecture 10) Previously: Quantum theory of atoms / molecules Quantum Mechanics Valence Atomic and Molecular Spectroscopy Scattering The scattering process Elastic (Rayleigh) and inelastic

More information

Calculating particle properties of a wave

Calculating particle properties of a wave Calculating particle properties of a wave A light wave consists of particles (photons): The energy E of the particle is calculated from the frequency f of the wave via Planck: E = h f (1) A particle can

More information

Acousto-optic modulator

Acousto-optic modulator 1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).

More information

Modification of Graphene Films by Laser-Generated High Energy Particles

Modification of Graphene Films by Laser-Generated High Energy Particles Modification of Graphene Films by Laser-Generated High Energy Particles Elena Stolyarova (Polyakova), Ph.D. ATF Program Advisory and ATF Users Meeting April 2-3, 2009, Berkner Hall, Room B, BNL Department

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

for Low power Energy Harvesting Sun to fiber' Solar Devices

for Low power Energy Harvesting Sun to fiber' Solar Devices Nanostructured Energy Conversion for Low power Energy Harvesting Devices and Beyond for High power Sun to fiber' Solar Devices Michael Oye and Nobuhiko Nobby Kobayashi Advanced Studies Laboratories and

More information

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment DIFFUSION IN SOLIDS WHY STUDY DIFFUSION? Materials often heat treated to improve properties Atomic diffusion occurs during heat treatment Depending on situation higher or lower diffusion rates desired

More information

- thus, the total number of atoms per second that absorb a photon is

- thus, the total number of atoms per second that absorb a photon is Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

More information

Energy comes in many flavors!

Energy comes in many flavors! Forms of Energy Energy is Fun! Energy comes in many flavors! Kinetic Energy Potential Energy Thermal/heat Energy Chemical Energy Electrical Energy Electrochemical Energy Electromagnetic Radiation Energy

More information

Raman Spectroscopy Basics

Raman Spectroscopy Basics Raman Spectroscopy Basics Introduction Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light, usually from a laser source. Inelastic scattering means that

More information

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts Electron Microscopy 3. SEM Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts 3-1 SEM is easy! Just focus and shoot "Photo"!!! Please comment this picture... Any

More information

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION) MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced

More information

Overview. also give you an idea of ANSYS capabilities. In this chapter, we will define Finite Element Analysis and. Topics covered: B.

Overview. also give you an idea of ANSYS capabilities. In this chapter, we will define Finite Element Analysis and. Topics covered: B. 2. FEA and ANSYS FEA and ANSYS Overview In this chapter, we will define Finite Element Analysis and also give you an idea of ANSYS capabilities. Topics covered: A. What is FEA? B. About ANSYS FEA and ANSYS

More information

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution Chapter 5 5.6 Doped GaAs Consider the GaAs crystal at 300 K. a. Calculate the intrinsic conductivity and resistivity. Second Edition ( 2001 McGraw-Hill) b. In a sample containing only 10 15 cm -3 ionized

More information

Limiting factors in fiber optic transmissions

Limiting factors in fiber optic transmissions Limiting factors in fiber optic transmissions Sergiusz Patela, Dr Sc Room I/48, Th. 13:00-16:20, Fri. 9:20-10:50 sergiusz.patela@pwr.wroc.pl eportal.pwr.wroc.pl Copying and processing permitted for noncommercial

More information

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu)

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) Introduction Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) The scattering of light may be thought of as the redirection

More information

Energy and Energy Transformations Test Review

Energy and Energy Transformations Test Review Energy and Energy Transformations Test Review Completion: 1. Mass 13. Kinetic 2. Four 14. thermal 3. Kinetic 15. Thermal energy (heat) 4. Electromagnetic/Radiant 16. Thermal energy (heat) 5. Thermal 17.

More information

The Phenomenon of Photoelectric Emission:

The Phenomenon of Photoelectric Emission: The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of

More information

Waves Sound and Light

Waves Sound and Light Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are

More information

where h = 6.62 10-34 J s

where h = 6.62 10-34 J s Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena

More information

Hard Condensed Matter WZI

Hard Condensed Matter WZI Hard Condensed Matter WZI Tom Gregorkiewicz University of Amsterdam VU-LaserLab Dec 10, 2015 Hard Condensed Matter Cluster Quantum Matter Optoelectronic Materials Quantum Matter Amsterdam Mark Golden Anne

More information

Electronic transport properties of nano-scale Si films: an ab initio study

Electronic transport properties of nano-scale Si films: an ab initio study Electronic transport properties of nano-scale Si films: an ab initio study Jesse Maassen, Youqi Ke, Ferdows Zahid and Hong Guo Department of Physics, McGill University, Montreal, Canada Motivation (of

More information

Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe. Keywords: Carbon Nanotube, Scanning Probe Microscope

Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe. Keywords: Carbon Nanotube, Scanning Probe Microscope International Journal of Arts and Sciences 3(1): 18-26 (2009) CD-ROM. ISSN: 1944-6934 InternationalJournal.org Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe Bedri Onur Kucukyildirim,

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Novel inkjettable copper ink utilizing processing temperatures under 100 degrees C without the need of inert atmosphere

Novel inkjettable copper ink utilizing processing temperatures under 100 degrees C without the need of inert atmosphere Novel inkjettable copper ink utilizing processing temperatures under 100 degrees C without the need of inert atmosphere Printed Electronics Europe April 7-8, 2009 Dresden, Germany Dr. Zvi Yaniv Applied

More information

GREEN NANOTECHNOLOGY. Geoffrey. Energy in the Built Environment. Solutions for Sustainability and. B. Smith Claes G. Granqvist.

GREEN NANOTECHNOLOGY. Geoffrey. Energy in the Built Environment. Solutions for Sustainability and. B. Smith Claes G. Granqvist. GREEN NANOTECHNOLOGY Solutions for Sustainability and Energy in the Built Environment Geoffrey B. Smith Claes G. Granqvist CRC Press Taylor & Francis Group Boca Raton London NewYork CRC Press is an imprint

More information

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard Matter, Materials, Crystal Structure and Bonding Chris J. Pickard Why should a theorist care? Where the atoms are determines what they do Where the atoms can be determines what we can do Overview of Structure

More information

FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html

FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17, 18,

More information

Composite Electromagnetic Wave Absorber Made of Permalloy or Sendust and Effect of Sendust Particle Size on Absorption Characteristics

Composite Electromagnetic Wave Absorber Made of Permalloy or Sendust and Effect of Sendust Particle Size on Absorption Characteristics PIERS ONLINE, VOL. 4, NO. 8, 2008 846 Composite Electromagnetic Wave Absorber Made of Permalloy or Sendust and Effect of Sendust Particle Size on Absorption Characteristics K. Sakai, Y. Wada, and S. Yoshikado

More information

Basic Properties and Application Examples of PGS Graphite Sheet

Basic Properties and Application Examples of PGS Graphite Sheet Basic Properties and Application Examples of 1. Basic properties of Graphite sheet 2. Functions of Graphite sheet 3. Application Examples Presentation [Sales Liaison] Panasonic Electronic Devices Co.,

More information

Magnetic dynamics driven by spin current

Magnetic dynamics driven by spin current Magnetic dynamics driven by spin current Sergej O. Demokritov University of Muenster, Germany Giant magnetoresistance Spin current Group of NonLinear Magnetic Dynamics Charge current vs spin current Electron:

More information

UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES

UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES SEPTEMBER 2012, V 1.1 4878 RONSON CT STE K SAN DIEGO, CA 92111 858-565 - 4227 NANOCOMPOSIX.COM Note to the Reader: We at nanocomposix have published this

More information

THE INFLUENCE OF SHAPE AND SPATIAL DISTRIBUTION OF METAL PARTICLES ON THE THERMAL CONDUCTIVITY OF METAL-POLYMER COMPOSITES

THE INFLUENCE OF SHAPE AND SPATIAL DISTRIBUTION OF METAL PARTICLES ON THE THERMAL CONDUCTIVITY OF METAL-POLYMER COMPOSITES International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 12, Dec 2015, pp. 30-35, Article ID: IJMET_06_12_004 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=12

More information

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction. Bonding + Structure + Defects. Properties Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

More information

Lecture 14. Introduction to the Sun

Lecture 14. Introduction to the Sun Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum

More information

Exciton dissociation in solar cells:

Exciton dissociation in solar cells: Exciton dissociation in solar cells: Xiaoyang Zhu Department of Chemistry University of Minnesota, Minneapolis t (fs) 3h! E, k h! Pc Bi e - 1 Acknowledgement Organic semiconductors: Mutthias Muntwiler,

More information

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function. 7. DYNAMIC LIGHT SCATTERING 7. First order temporal autocorrelation function. Dynamic light scattering (DLS) studies the properties of inhomogeneous and dynamic media. A generic situation is illustrated

More information

Heat Transfer From A Heated Vertical Plate

Heat Transfer From A Heated Vertical Plate Heat Transfer From A Heated Vertical Plate Mechanical and Environmental Engineering Laboratory Department of Mechanical and Aerospace Engineering University of California at San Diego La Jolla, California

More information

FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html

FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html FYS3410 - Vår 015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17, 18, 0,

More information

Comprehensive Investigation of Sequential Plasma Activated Si/Si Bonded Interface for Nano-integration

Comprehensive Investigation of Sequential Plasma Activated Si/Si Bonded Interface for Nano-integration Comprehensive Investigation of Sequential Plasma Activated Si/Si Bonded Interface for Nano-integration M G Kibria, F Zhang, T H Lee, M J Kim and M M R Howlader Dept. Electrical and Computer Engineering,

More information

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5 Diffusion MSE 21 Callister Chapter 5 1 Goals: Diffusion - how do atoms move through solids? Fundamental concepts and language Diffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities Diffusion

More information

Raman spectroscopy Lecture

Raman spectroscopy Lecture Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy

More information

Developments in Photoluminescence Characterisation for Silicon PV

Developments in Photoluminescence Characterisation for Silicon PV Developments in Photoluminescence Characterisation for Silicon PV School of Photovoltaic and Solar Energy Engineering Bernhard Mitchell 1, Thorsten Trupke 1,2, Jürgen W. Weber 2, Johannes Greulich 3, Matthias

More information

A Guide to Acousto-Optic Modulators

A Guide to Acousto-Optic Modulators A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

Copyright 2000 IEEE. Reprinted from IEEE MTT-S International Microwave Symposium 2000

Copyright 2000 IEEE. Reprinted from IEEE MTT-S International Microwave Symposium 2000 Copyright 2000 IEEE Reprinted from IEEE MTT-S International Microwave Symposium 2000 This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE

More information

Kresimir Bakic, CIGRE & ELES, Slovenia

Kresimir Bakic, CIGRE & ELES, Slovenia "Maintenance SLOVENIJA and recovery 2014 of HV electricity transport systems and aerospace assistance" STATE-OF-THE-ART FOR DYNAMIC LINE RATING TECHNOLOGY Future Vision Kresimir Bakic, CIGRE & ELES, Slovenia

More information

Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman

Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

UNIT I: INTRFERENCE & DIFFRACTION Div. B Div. D Div. F INTRFERENCE

UNIT I: INTRFERENCE & DIFFRACTION Div. B Div. D Div. F INTRFERENCE 107002: EngineeringPhysics Teaching Scheme: Lectures: 4 Hrs/week Practicals-2 Hrs./week T.W.-25 marks Examination Scheme: Paper-50 marks (2 hrs) Online -50marks Prerequisite: Basics till 12 th Standard

More information

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

More information

Material Requirements For 3D IC and Packaging Presented by: W. R. Bottoms

Material Requirements For 3D IC and Packaging Presented by: W. R. Bottoms Material Requirements For 3D IC and Packaging Presented by: W. R. Bottoms Frontiers of Characterization and Metrology for Nanoelectronics Hilton Dresden April 14-16, 2015 Industry Needs Are Changing Moore

More information

Lecture 9, Thermal Notes, 3.054

Lecture 9, Thermal Notes, 3.054 Lecture 9, Thermal Notes, 3.054 Thermal Properties of Foams Closed cell foams widely used for thermal insulation Only materials with lower conductivity are aerogels (tend to be brittle and weak) and vacuum

More information