Cells, cytoplasm, and organelles: (Zellen, Zytoplasma und Organellen)

Size: px
Start display at page:

Download "Cells, cytoplasm, and organelles: (Zellen, Zytoplasma und Organellen)"

Transcription

1 Cells, cytoplasm, and organelles: (Zellen, Zytoplasma und Organellen) Cytoplasm consists of a gelatinous solution and contains microtubules (which serve as a cell's cytoskeleton) and organelles (literally 'little organs') 1

2 Cells, cytoplasm, and organelles Microfilaments are fine, thread-like protein fibers, 3-6 nm in diameter. They are composed predominantly of a contractile protein called actin, which is the most abundant cellular protein. Microfilaments' association with the protein myosin is responsible for muscle contraction. Microfilaments can also carry out cellular movements including gliding, contraction, and cytokinesis. Microtubules are cylindrical tubes, nm in diameter. They are composed of subunits of the protein tubulin. These subunits are termed alpha and beta. Microtubules act as a scaffold to determine cell shape, and provide a set of "tracks" for cell organelles and vesicles to move on. Microtubules also form the spindle fibers for separating chromosomes during mitosis. When arranged in geometric patterns inside flagella and cilia, they are used for locomotion. 2

3 Filaments Intermediate filaments are about 10 nm diameter and provide tensile strength for the cell. Examples of the cytoskeleton (in epithelial cells) In the epithelial (skin) cells of the intestine, all three types of fibers are present. Microfilaments project into the villi, giving shape to the cell surface. Microtubules grow out of the centrosome to the cell periphery. Intermediate filaments connect adjacent cells through desmosomes. 3

4 Cytoskeleton The cytoskeleton acts as a "track" on which cells can move organelles, chromosomes and other things. Some examples are: Vesicle movement between organelles and the cell surface, frequently studied in the squid axon. Cytoplasmic streaming Movement of pigment vesicles for protective coloration Discharge of vesicle content for water regulation in protozoa Cell division cytokinesis Movement of chromosomes during mitosis and meiosis Broken motors. In healthy individuals, the protein dystrophin is part of the linkage between the cellular cytoskeleton and the adhesive proteins on the outside of the cell. In Duchenne Muscular Dystrophy, however, the gene that codes for dystrophin is defective, resulting in muscle degeneration and finally death. This disease is X-linked recessive and occurs in 1 out of every 3,500 males. 4

5 Cytoskeleton Cellular motors Cells have protein motors that bind two molecules, and using ATP as energy, cause one molecule to shift in relationship to the other. Two types of these protein motors are myosin and actin, and dynein or kinesin and microtubules. These families of proteins all have a motor end, but may have several kinds of different molecular structures on the binding end. When these proteins bind, they can cause many different molecules, organelles, etc. to move. To the right is an example of the different binding ends found in the kinesin family of motors. When linked to other microtubules, protein motors can cause motion if the ends are fixed or extend the lengths of the fiber bundles if the ends are free. 5

6 External cell movement (Cellular movement) Cellular movement is accomplished by cilia and flagella. Cilia are hair-like structures that can beat in synchrony causing the movement of unicellular paramaecium. Cilia are also found in specialize linings in eukaryotes. For example, cilia sweep fluids past stationary cells in the lining of trachea and tubes of female oviduct. Flagella are whip-like appendages that undulate to move cells. They are longer than cilia, but have similar internal structures made of microtubules. Prokaryotic and eukaryotic flagella differ greatly. Both flagella and cilia have a arrangement of microtubules. This arrangement refers to the 9 fused pairs of microtubules on the outside of a cylinder, and the 2 unfused microtubules in the center. Dynein "arms" attached to the microtubules serve as the molecular motors. Defective dynein arms cause male infertility and also lead to respiratory tract and sinus problems. 6

7 Cells also contain a nucleus within which is found DNA (deoxyribonucleic acid) in the form of chromosomes plus nucleoli (within which ribosomes are formed) 7

8 The nucleus Within the nucleus is the DNA responsible for providing the cell with its unique characteristics. The DNA is similar in every cell of the body, but depending on the specific cell type, some genes may be turned on or off - that's why a liver cell is different from a muscle cell, and a muscle cell is different from a fat cell. When a cell is dividing, the DNA and surrounding protein condense into chromosomes (see photo) that are visible by microscopy. The prominent structure in the nucleus is the nucleolus. The nucleolus produces ribosomes, which move out of the nucleus to positions on the rough endoplasmic reticulum where they are critical in protein synthesis. The nucleus is the most obvious organelle in any eukaryotic cell. It is a membrane-bound organelle and is surrounded by a double membrane. It communicates with the surrounding cytosol via numerous nuclear pores. 8

9 DNA Composition In eukaryotes, chromosomes consist of a single molecule of DNA associated with: many copies of 5 kinds of histones. Histones are proteins rich in lysine and arginine residues and thus positively-charged. For this reason they bind tightly to the negativelycharged phosphates in DNA. a small number of copies of many different kinds of non-histone proteins. Most of these are transcription factors that regulate which parts of the DNA will be transcribed into RNA. 9

10 Structure For most of the life of the cell, chromosomes are too elongated and tenuous to be seen under a microscope. Before a cell gets ready to divide by mitosis, each chromosome is duplicated (during S phase of the cell cycle). As mitosis begins, the duplicated chromosomes condense into short (~ 5 µm) structures which can be stained and easily observed under the light microscope. These duplicated chromosomes are called dyads. 10

11 DNA When first seen, the duplicates are held together at their centromeres. In humans, the centromere contains ~1 million base pairs of DNA. Most of this is repetitive DNA: short sequences (e.g., 171 bp) repeated over and over in tandem arrays. While they are still attached, it is common to call the duplicated chromosomes sister chromatids, but this should not obscure the fact that each is a bona fide chromosome with a full complement of genes. The kinetochore is a complex of proteins that forms at each centromere and serves as the attachment point for the spindle fibers that will separate the sister chromatids as mitosis proceeds into anaphase. The shorter of the two arms extending from the centromere is called the p arm; the longer is the q arm. Staining with the trypsin-giemsa method reveals a series of alternating light and dark bands called G bands. G bands are numbered and provide "addresses" for the assignment of gene loci. 11

12 Chromosome Chromosome Numbers All animals have a characteristic number of chromosomes in their body cells called the diploid (or 2n) number. These occur as homologous pairs, one member of each pair having been acquired from the gamete of one of the two parents of the individual whose cells are being examined. The gametes contain the haploid number (n) of chromosomes. (In plants, the haploid stage takes up a larger part of its life cycle) 12

13 Diploid numbers of some commonly studied organisms Homo sapiens (human)46 Mus musculus (house mouse)40 Drosophila melanogaster (fruit fly)8 Caenorhabditis elegans (microscopic roundworm)12 Saccharomyces cerevisiae (budding yeast)32 Arabidopsis thaliana (plant in the mustard family)10 Xenopus laevis (South African clawed frog)36 Zea mays (corn or maize)20 Muntiacus reevesi (the Chinese muntjac, a deer)23 Muntiacus muntjac (its Indian cousin)6 Myrmecia pilosula (an ant)2 Parascaris equorum var. univalens (parasitic roundworm)2 13

14 Karyotypes The complete set of chromosomes in the cells of an organism is its karyotype. It is most often studied when the cell is at metaphase of mitosis and all the chromosomes are present as dyads. The karyotype of the human female contains 23 pairs of homologous chromosomes: 22 pairs of autosomes 1 pair of X chromosomes The karyotype of the human male contains: the same 22 pairs of autosomes one X chromosome one Y chromosome (A gene on the Y chromosome designated SRY is the master switch for making a male.) Link to a karyotype of a normal human male stained by the trypsingiemsa method. The X and Y chromosomes are called the sex chromosomes.) 14

15 Below is a human karyotype (of which sex?). It differs from a normal human karyotype in having an extra #21 dyad. As a result, this individual suffered from a developmental disorder called Down Syndrome. The inheritance of an extra chromosome, is called trisomy, in this case trisomy

16 Translocations Karyotype analysis can also reveal translocations between chromosomes. A number of these cause cancer, for example the Philadelphia chromosome (Ph1) formed by a translocation between chromosomes 9 and 22 and a cause of Chronic Myelogenous Leukemia (CML) a translocation between chromosomes 8 and 14 that causes Burkitt's lymphoma a translocation between chromosomes 18 and 14 that causes B-cell leukemia 16

17 DNA Content The molecule of DNA in a single human chromosome ranges in size from 50 x 10 6 nucleotide pairs in the smallest chromosome (stretched full-length this molecule would extend 1.7 cm) up to 250 x 10 6 nucleotide pairs in the largest (which would extend 8.5 cm). Stretched end-to-end, the DNA in a single human diploid cell would extend over 2 meters. See some of the DNA molecule released from a single human chromosome. In the intact chromosome, however, this molecule is packed into a much more compact structure. The packing reaches its extreme during mitosis when a typical chromosome is condensed into a structure about 5 µm long (a 10,000-fold reduction in length). 17

18 Burkitt's Lymphoma Burkitt's lymphoma is a solid tumor of B lymphocytes, the lymphocytes that the immune system uses to make antibodies. The genes for making antibodies are located on chromosomes 14 (the heavy [H] chains), 2 (kappa light chains), and 22 (lambda light chains). These genes are expressed only in B lymphocytes because only B cells have the necessary transcription factors for the promoters and enhancers needed to turn these antibody genes "on". In most (approximately 90%) of the cases of Burkitt's lymphoma, a reciprocal translocation has moved the proto-oncogene c-myc from its normal position on chromosome 8 to a location close to the enhancers of the antibody heavy chain genes on chromosome 14. In all the other cases, c-myc has been translocated close to the antibody genes on chromosome 2 or 22. In every case, c-myc now finds itself in a region of vigorous gene transcription, and it may simply be the overproduction of the c-myc product (a transcription factor essential for mitosis of mammalian cells) that turns the lymphocyte cancerous. Uncontrolled mitosis of this cell results in a clone of cancer cells, Burkitt's lymphoma. Many other human cancers involve chromosome aberrations, such as translocations, at the loci of known proto-oncogenes. 18

19 Endoplasmic Reticulum Throughout the eukaryotic cell, especially those responsible for the production of hormones and other secretory products, is a vast amount of membrane called the endoplasmic reticulum, or ER for short. The ER membrane is a continuation of the outer nuclear membrane and its function suggests just how complex and organized the eukaryotic cell really is. When viewed by electron microscopy, some areas of the endoplasmic reticulum look "smooth" (smooth ER) and some appear "rough" (rough ER). The rough ER appears rough due to the presence of ribosomes on the membrane surface. Smooth and Rough ER also have different functions. Smooth ER is important in the synthesis of lipids and membrane proteins. Rough ER is important in the synthesis of other proteins. Information coded in DNA sequences in the nucleus is transcribed as messenger RNA. Messenger RNA exits the nucleus through small pores to enter the cytoplasm. At the ribosomes on the rough ER, the messenger RNA is translated into proteins. These proteins are then transferred to the Golgi in "transport vesicles" where they are further processed and packaged into lysosomes, peroxisomes, or secretory vesicles. 19

20 Golgi Apparatus The Golgi apparatus is a membrane-bound structure with a double membrane. It is actually a stack of membrane-bound vesicles that are important in packaging macromolecules for transport elsewhere in the cell. The stack of larger vesicles is surrounded by numerous smaller vesicles containing those packaged macromolecules. The enzymatic or hormonal contents of lysosomes, peroxisomes and secretory vesicles are packaged in membrane-bound vesicles at the periphery of the Golgi apparatus. 20

21 Lysosomes, Peroxisomes, Secretory Vesicles Lysosomes: (common in animal cells but rare in plant cells) contain hydrolytic enzymes necessary for intracellular digestion. In white blood cells that eat bacteria, lysosome contents are carefully released into the vacuole around the bacteria and serve to kill and digest those bacteria. Uncontrolled release of lysosome contents into the cytoplasm can also cause cell death (necrosis). Peroxisomes: This organelle is responsible for protecting the cell from its own production of toxic hydrogen peroxide. As an example, white blood cells produce hydrogen peroxide to kill bacteria. The oxidative enzymes in peroxisomes break down the hydrogen peroxide into water and oxygen. Secretory Vesicles: Cell secretions - e.g. hormones, neurotransmitters - are packaged in secretory vesicles at the Golgi apparatus. The secretory vesicles are then transported to the cell surface for release. 21

22 Phagocytosis Phagocytosis is a process describing the engulfment and destruction of extracellularly-derived materials by phagocytic cells, such as macrophages and neutrophils. Five steps of phago-cytosis are illustrated in the image below. Phagocytosis of bacteria Schematic diagram of the steps in phagocytosis: 1. Attachment of the bacterium to the long membrane evaginations, called pseudopodia. 2. Ingestion of the bacterium forming a "phagosome," which moves toward the lysosome. 3. Fusion of the lysosome and phagosome, releasing lysosomal enzymes into the phagosome. 4. Digestion of the ingested material. 5. Release of digestion 22

23 Mitochondria Mitochondria provide the energy a cell needs to move, divide, produce secretory products, contract - in short, they are the power centers of the cell. They are about the size of bacteria but may have different shapes depending on the cell type. Mitochondria are membrane-bound organelles, and like the nucleus have a double membrane. The outer membrane is fairly smooth. But the inner membrane is highly convoluted, forming folds called cristae. The cristae greatly increase the inner membrane's surface area. It is on these cristae that food (sugar) is combined with oxygen to produce ATP -the primary energy source for the cell. 23

24 Mitochondria have a double-membrane: outer membrane & highly convoluted inner membrane inner membrane has folds or shelf-like structures called cristae that contain elementary particles; these particles contain enzymes important in ATP production primary function is production of adenosine triphosphate (ATP) 24

25 Ribosomes composed of rrna (ribosomal RNA) & protein may be dispersed randomly throughout the cytoplasm or attached to surface of rough endoplasmic reticulum often linked together in chains called polyribosomes or polysomes primary function is to produce proteins Ribosome Structure - non-membraneous, spherical bodies composed of RNA (ribonucleic acid) and protein enzymes Function - site of protein synthesis 25

26 The Centrosome and the Centrioles ANIMAL CELL CENTROSOME: The centrosome, also called the "microtubule organizing center", is an area in the cell where microtubles are produced. Within an animal cell centrosome there is a pair of small organelles, the centrioles, each made up of a ring of nine groups of microtubules. There are three fused in each group. The two centrioles are arranged such that one is perpendicular to the other. During animal cell division, the centrosome divides and the centrioles replicate (make new copies). The result is two centrosomes, each with its own pair of centrioles. The two centrosomes move to opposite ends of the nucleus, and from each centrosome, microtubules grow into a "spindle" which is responsible for separating replicated chromosomes into the two daughter cells. PLANT CELL CENTROSOME: Plant cells have centrosomes that function much like animal cell centrosomes. However, unlike centrosomes in animal cells, they do not have centrioles. 26

27 Flagella & cilia Smoking? We know that smoking damages the cilia lining the lungs. As a result, a smoker s lungs are not as effective at sweeping dust and bacteria out of the lungs. This animation demostrates how the cilia in the lungs of a non-smoker protect the lung. These tiny hair-like structures lining the inside of the bronchial tubes are constantly engaged in this sweeping motion, moving dust, bacteria, and viruses up and out of the lungs. Compare this to the cilia action inside the lungs of a smoker. Since the smoker s lungs are not as effective at sweeping dust, viruses, and bacteria up and out of the lungs, the smoker is more susceptible to frequent lung infections. 27

28 Villi Projections of cell membrane that serve to increase surface area of a cell (which is important, for example, for cells that line the intestine) 28

Lecture 4 Cell Membranes & Organelles

Lecture 4 Cell Membranes & Organelles Lecture 4 Cell Membranes & Organelles Structure of Animal Cells The Phospholipid Structure Phospholipid structure Encases all living cells Its basic structure is represented by the fluidmosaic model Phospholipid

More information

Cell Structure & Function!

Cell Structure & Function! Cell Structure & Function! Chapter 3! The most exciting phrase to hear in science, the one that heralds new discoveries, is not 'Eureka!' but 'That's funny.! -- Isaac Asimov Animal Cell Plant Cell Cell

More information

The Cell Interior and Function

The Cell Interior and Function The Cell Interior and Function 5 5.0 CHAPTER PREVIEW Investigate and understand the organization and function of the cell interior. Define the differences between eukaryotic and prokaryotic cell structure.

More information

Cytology. Living organisms are made up of cells. Either PROKARYOTIC or EUKARYOTIC cells.

Cytology. Living organisms are made up of cells. Either PROKARYOTIC or EUKARYOTIC cells. CYTOLOGY Cytology Living organisms are made up of cells. Either PROKARYOTIC or EUKARYOTIC cells. A. two major cell types B. distinguished by structural organization See table on handout for differences.

More information

Bacterial (Prokaryotic) Cell. Common features of all cells. Tour of the Cell. Eukaryotic Cell. Plasma Membrane defines inside from outside

Bacterial (Prokaryotic) Cell. Common features of all cells. Tour of the Cell. Eukaryotic Cell. Plasma Membrane defines inside from outside www.denniskunkel.com Tour of the Cell www.denniskunkel.com Today s Topics Properties of all cells Prokaryotes and Eukaryotes Functions of Major Cellular Organelles Information, Synthesis&Transport,, Vesicles

More information

Chapter 4: A Tour of the Cell. 1. Cell Basics. Limits to Cell Size. 1. Cell Basics. 2. Prokaryotic Cells. 3. Eukaryotic Cells

Chapter 4: A Tour of the Cell. 1. Cell Basics. Limits to Cell Size. 1. Cell Basics. 2. Prokaryotic Cells. 3. Eukaryotic Cells Chapter 4: A Tour of the Cell 1. Cell Basics 2. Prokaryotic Cells 3. Eukaryotic Cells 1. Cell Basics Limits to Cell Size There are 2 main reasons why cells are so small: If cells get too large: 1) there

More information

Review of the Cell and Its Organelles

Review of the Cell and Its Organelles Biology Learning Centre Review of the Cell and Its Organelles Tips for most effective learning of this material: Memorize the names and structures over several days. This will help you retain what you

More information

Compartmentalization of the Cell. Objectives. Recommended Reading. Professor Alfred Cuschieri. Department of Anatomy University of Malta

Compartmentalization of the Cell. Objectives. Recommended Reading. Professor Alfred Cuschieri. Department of Anatomy University of Malta Compartmentalization of the Cell Professor Alfred Cuschieri Department of Anatomy University of Malta Objectives By the end of this session the student should be able to: 1. Identify the different organelles

More information

Plasma Membrane hydrophilic polar heads

Plasma Membrane hydrophilic polar heads The Parts of the Cell 3 main parts in ALL cells: plasma membrane, cytoplasm, genetic material this is about the parts of a generic eukaryotic cell Plasma Membrane -is a fluid mosaic model membrane is fluid

More information

cells - relatively simple cells - lack nuclear membrane and many organelles - bacteria and their relatives are all prokaryotic

cells - relatively simple cells - lack nuclear membrane and many organelles - bacteria and their relatives are all prokaryotic Cell Biology A cell is chemical system that is able to maintain its structure and reproduce. Cells are the fundamental unit of life. All living things are cells or composed of cells. 1 The interior contents

More information

Cells & Cell Organelles

Cells & Cell Organelles Cells & Cell Organelles The Building Blocks of Life H Biology Types of cells bacteria cells Prokaryote - no organelles Eukaryotes - organelles animal cells plant cells Cell size comparison Animal cell

More information

Microscopes. Eukaryotes Eukaryotic cells are characterized by having: DNA in a nucleus that is bounded by a membranous nuclear envelope

Microscopes. Eukaryotes Eukaryotic cells are characterized by having: DNA in a nucleus that is bounded by a membranous nuclear envelope CH 6 The Cell Microscopy Scientists use microscopes to visualize cells too small to see with the naked eye. In a light microscope (LM), visible light is passed through a specimen and then through glass

More information

The Cell: Organelle Diagrams

The Cell: Organelle Diagrams The Cell: Organelle Diagrams Fig 7-4. A prokaryotic cell. Lacking a true nucleus and the other membrane-enclosed organelles of the eukaryotic cell, the prokaryotic cell is much simpler in structure. Only

More information

Biology 101 Chapter 4 Cells as the Basic Unit of Life. The Cell Theory Major Contributors: Galileo = first observations made with a microscope

Biology 101 Chapter 4 Cells as the Basic Unit of Life. The Cell Theory Major Contributors: Galileo = first observations made with a microscope Biology 101 Chapter 4 Cells as the Basic Unit of Life The Cell Theory Major Contributors: Galileo = first observations made with a microscope Robert Hooke = first to observe small compartments in dead

More information

Comparing Plant And Animal Cells

Comparing Plant And Animal Cells Comparing Plant And Animal Cells http://khanacademy.org/video?v=hmwvj9x4gny Plant Cells shape - most plant cells are squarish or rectangular in shape. amyloplast (starch storage organelle)- an organelle

More information

Chapter 2: Cell Structure and Function pg. 70-107

Chapter 2: Cell Structure and Function pg. 70-107 UNIT 1: Biochemistry Chapter 2: Cell Structure and Function pg. 70-107 Organelles are internal structures that carry out specialized functions, interacting and complementing each other. Animal and plant

More information

7.2 Cell Structure. Lesson Objectives. Lesson Summary. Cell Organization Eukaryotic cells contain a nucleus and many specialized structures.

7.2 Cell Structure. Lesson Objectives. Lesson Summary. Cell Organization Eukaryotic cells contain a nucleus and many specialized structures. 7.2 Cell Structure Lesson Objectives Describe the structure and function of the cell nucleus. Describe the role of vacuoles, lysosomes, and the cytoskeleton. Identify the role of ribosomes, endoplasmic

More information

Organelles and Their Functions

Organelles and Their Functions Organelles and Their Functions The study of cell organelles and their functions is a fascinating part of biology. The current article provides a brief description of the structure of organelles and their

More information

RAD 223. Radiography physiology. Lecture Notes. First lecture: Cell and Tissue

RAD 223. Radiography physiology. Lecture Notes. First lecture: Cell and Tissue RAD 223 Radiography physiology Lecture Notes First lecture: Cell and Tissue Physiology: the word physiology derived from a Greek word for study of nature. It is the study of how the body and its part work

More information

BME 42-620 Engineering Molecular Cell Biology. Lecture 02: Structural and Functional Organization of

BME 42-620 Engineering Molecular Cell Biology. Lecture 02: Structural and Functional Organization of BME 42-620 Engineering Molecular Cell Biology Lecture 02: Structural and Functional Organization of Eukaryotic Cells BME42-620 Lecture 02, September 01, 2011 1 Outline A brief review of the previous lecture

More information

An Overview of Cells and Cell Research

An Overview of Cells and Cell Research An Overview of Cells and Cell Research 1 An Overview of Cells and Cell Research Chapter Outline Model Species and Cell types Cell components Tools of Cell Biology Model Species E. Coli: simplest organism

More information

Cell Structure and Function. Eukaryotic Cell: Neuron

Cell Structure and Function. Eukaryotic Cell: Neuron Cell Structure and Function Eukaryotic Cell: Neuron Cell Structure and Function Eukaryotic Cells: Blood Cells Cell Structure and Function Prokaryotic Cells: Bacteria Cell Structure and Function All living

More information

3.1 AS Unit: Cells, Exchange and Transport

3.1 AS Unit: Cells, Exchange and Transport 3.1 AS Unit: Cells, Exchange and Transport Module 1: Cells 1.1.1 Cell Structure Candidates should be able to: (a) state the resolution and magnification that can be achieved by a light microscope, a transmission

More information

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z.

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z. Cell Structure and Organization 1. All living things must possess certain characteristics. They are all composed of one or more cells. They can grow, reproduce, and pass their genes on to their offspring.

More information

Lesson Aim To explain the human body at a microscopic level, including the structure and function of cells, tissues and membranes.

Lesson Aim To explain the human body at a microscopic level, including the structure and function of cells, tissues and membranes. LESSON 1. CELLS & TISSUES Lesson Aim To explain the human body at a microscopic level, including the structure and function of cells, tissues and membranes. THE CELL All living matter is composed of functional

More information

Plant and Animal Cells

Plant and Animal Cells Plant and Animal Cells a. Explain that cells take in nutrients in order to grow, divide and to make needed materials. S7L2a b. Relate cell structures (cell membrane, nucleus, cytoplasm, chloroplasts, and

More information

Eukaryotes. www.njctl.org PSI Biology Eukaryotes & Gene Expression

Eukaryotes. www.njctl.org PSI Biology Eukaryotes & Gene Expression Eukaryotes The Eukaryotic Cell Classwork 1. Identify two characteristics that are shared by all cells. 2. Suppose you are investigating a cell that contains a nucleus. Would you categorize this cell as

More information

Use of the Microscope and Cytology

Use of the Microscope and Cytology Use of the Microscope and Cytology Introduction: A true study of anatomy not only considers the large, visible structures of an organism, but also the small structures that provide the organism its form

More information

Cell and its organelles -1-

Cell and its organelles -1- http://www.bristol.ac.uk/phys-pharm/media/teaching/ pharm/media/teaching/ Cell and its organelles -1- The main text for this lecture is: Vander s Human Physiology + some additions from Germann & Stanfield

More information

* The cell is the basic structural and functional unit of life. * Organismal activity depends on individual and collective activity of cells.

* The cell is the basic structural and functional unit of life. * Organismal activity depends on individual and collective activity of cells. Define Cell * The cell is the basic structural and functional unit of life. * Organismal activity depends on individual and collective activity of cells. * Biochemical activities of cells are dictated

More information

Cell Division Mitosis and the Cell Cycle

Cell Division Mitosis and the Cell Cycle Cell Division Mitosis and the Cell Cycle A Chromosome and Sister Chromatids Key Points About Chromosome Structure A chromosome consists of DNA that is wrapped around proteins (histones) and condensed Each

More information

INTRODUCTION TO THE CELL

INTRODUCTION TO THE CELL CHAPTER 1: STRUCTURE AND FUNCTION OF THE CELL INTRODUCTION TO THE CELL Both living and non-living things are composed of molecules made from chemical elements such as Carbon, Hydrogen, Oxygen, and Nitrogen.

More information

Lecture 7 Mitosis & Meiosis

Lecture 7 Mitosis & Meiosis Lecture 7 Mitosis & Meiosis Cell Division Essential for body growth and tissue repair Interphase G 1 phase Primary cell growth phase S phase DNA replication G 2 phase Microtubule synthesis Mitosis Nuclear

More information

From DNA to Protein

From DNA to Protein Nucleus Control center of the cell contains the genetic library encoded in the sequences of nucleotides in molecules of DNA code for the amino acid sequences of all proteins determines which specific proteins

More information

Cells. Structure, Function and Homeostasis

Cells. Structure, Function and Homeostasis Cells Structure, Function and Homeostasis Characteristics of Cells Basic unit of life anything alive is made of cells Plasma membrane (skin) that separates them from the environment. Skeletonsfor protection

More information

Chapter 3. Cellular Structure and Function Worksheets. 39 www.ck12.org

Chapter 3. Cellular Structure and Function Worksheets. 39 www.ck12.org Chapter 3 Cellular Structure and Function Worksheets (Opening image copyright by Sebastian Kaulitzki, 2010. Used under license from Shutterstock.com.) Lesson 3.1: Introduction to Cells Lesson 3.2: Cell

More information

Cell Growth and Reproduction Module B, Anchor 1

Cell Growth and Reproduction Module B, Anchor 1 Cell Growth and Reproduction Module B, Anchor 1 Key Concepts: - The larger a cell becomes, the more demands the cell places on its DNA. In addition, a larger cell is less efficient in moving nutrients

More information

CHROMOSOME STRUCTURE CHROMOSOME NUMBERS

CHROMOSOME STRUCTURE CHROMOSOME NUMBERS CHROMOSOME STRUCTURE 1. During nuclear division, the DNA (as chromatin) in a Eukaryotic cell's nucleus is coiled into very tight compact structures called chromosomes. These are rod-shaped structures made

More information

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in DNA, RNA, Protein Synthesis Keystone 1. During the process shown above, the two strands of one DNA molecule are unwound. Then, DNA polymerases add complementary nucleotides to each strand which results

More information

Cell Structure and Function

Cell Structure and Function Bio 100 - Cells 1 Cell Structure and Function Tenets of Cell Theory 1. All living things are made up of one or more cells 2. Cells are the basic living units within organisms, and the chemical reactions

More information

Cell Division CELL DIVISION. Mitosis. Designation of Number of Chromosomes. Homologous Chromosomes. Meiosis

Cell Division CELL DIVISION. Mitosis. Designation of Number of Chromosomes. Homologous Chromosomes. Meiosis Cell Division CELL DIVISION Anatomy and Physiology Text and Laboratory Workbook, Stephen G. Davenport, Copyright 2006, All Rights Reserved, no part of this publication can be used for any commercial purpose.

More information

THE HISTORY OF CELL BIOLOGY

THE HISTORY OF CELL BIOLOGY SECTION 4-1 REVIEW THE HISTORY OF CELL BIOLOGY Define the following terms. 1. cell 2. cell theory Write the correct letter in the blank. 1. One early piece of evidence supporting the cell theory was the

More information

CELLS: PLANT CELLS 20 FEBRUARY 2013

CELLS: PLANT CELLS 20 FEBRUARY 2013 CELLS: PLANT CELLS 20 FEBRUARY 2013 Lesson Description In this lesson we will discuss the following: The Cell Theory Terminology Parts of Plant Cells: Organelles Difference between plant and animal cells

More information

Objective: On a team of no more than (2). Build to illustrate a 3D model of a PLANT or ANIMAL cell. 10 pts.

Objective: On a team of no more than (2). Build to illustrate a 3D model of a PLANT or ANIMAL cell. 10 pts. THE CELL model: Activity 4.1 Science / Biology Objective: On a team of no more than (2). Build to illustrate a 3D model of a PLANT or ANIMAL cell. - Your models should clearly demonstrate the following

More information

Chapter 3. Cell Division. Laboratory Activities Activity 3.1: Mock Mitosis Activity 3.2: Mitosis in Onion Cells Activity 3.

Chapter 3. Cell Division. Laboratory Activities Activity 3.1: Mock Mitosis Activity 3.2: Mitosis in Onion Cells Activity 3. Chapter 3 Cell Division Laboratory Activities Activity 3.1: Mock Mitosis Activity 3.2: Mitosis in Onion Cells Activity 3.3: Mock Meiosis Goals Following this exercise students should be able to Recognize

More information

CELL ANALOGY: AIRPORT. By: Joe Behrmann and Isaac Thompson

CELL ANALOGY: AIRPORT. By: Joe Behrmann and Isaac Thompson CELL ANALOGY: AIRPORT By: Joe Behrmann and Isaac Thompson MITOCHONDRIA Location: The Mitochondria of a cell is located in both plant and animal cells. They are found floating throughout the cell. Function:

More information

List, describe, diagram, and identify the stages of meiosis.

List, describe, diagram, and identify the stages of meiosis. Meiosis and Sexual Life Cycles In this topic we will examine a second type of cell division used by eukaryotic cells: meiosis. In addition, we will see how the 2 types of eukaryotic cell division, mitosis

More information

MCAS Biology. Review Packet

MCAS Biology. Review Packet MCAS Biology Review Packet 1 Name Class Date 1. Define organic. THE CHEMISTRY OF LIFE 2. All living things are made up of 6 essential elements: SPONCH. Name the six elements of life. S N P C O H 3. Elements

More information

Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students

Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students Activity Title: Quick Hit Goal of Activity: To perform formative and summative assessments

More information

Biology I. Chapter 7

Biology I. Chapter 7 Biology I Chapter 7 Interest Grabber NOTEBOOK #1 Are All Cells Alike? All living things are made up of cells. Some organisms are composed of only one cell. Other organisms are made up of many cells. 1.

More information

Chapter 12: The Cell Cycle

Chapter 12: The Cell Cycle Name Period Chapter 12: The Cell Cycle Overview: 1. What are the three key roles of cell division? State each role, and give an example. Key Role Reproduction Growth and development Tissue removal Example

More information

www.njctl.org PSI Biology Mitosis & Meiosis

www.njctl.org PSI Biology Mitosis & Meiosis Mitosis and Meiosis Mitosis Classwork 1. Identify two differences between meiosis and mitosis. 2. Provide an example of a type of cell in the human body that would undergo mitosis. 3. Does cell division

More information

AP BIOLOGY 2006 SCORING GUIDELINES. Question 1

AP BIOLOGY 2006 SCORING GUIDELINES. Question 1 AP BIOLOGY 2006 SCORING GUIDELINES Question 1 A major distinction between prokaryotes and eukaryotes is the presence of membrane-bound organelles in eukaryotes. (a) Describe the structure and function

More information

The Nucleus: DNA, Chromatin And Chromosomes

The Nucleus: DNA, Chromatin And Chromosomes The Nucleus: DNA, Chromatin And Chromosomes Professor Alfred Cuschieri Department of Anatomy, University of Malta. Objectives By the end of this unit the student should be able to: 1. List the major structural

More information

Control of Gene Expression

Control of Gene Expression Home Gene Regulation Is Necessary? Control of Gene Expression By switching genes off when they are not needed, cells can prevent resources from being wasted. There should be natural selection favoring

More information

If and when cancer cells stop dividing, they do so at random points, not at the normal checkpoints in the cell cycle.

If and when cancer cells stop dividing, they do so at random points, not at the normal checkpoints in the cell cycle. Cancer cells have escaped from cell cycle controls Cancer cells divide excessively and invade other tissues because they are free of the body s control mechanisms. Cancer cells do not stop dividing when

More information

Cell Unit Practice Test #1

Cell Unit Practice Test #1 ell Unit Practice Test #1 Name: ate: 1. Which organelle is primarily concerned with the conversion of potential energy of organic compounds into suitable form for immediate use by the cell?. mitochondria.

More information

The Cell Grade Ten. Estimated Duration: Three hours

The Cell Grade Ten. Estimated Duration: Three hours Ohio Standards Connection: Life Sciences Benchmark A Explain that cells are the basic unit of structure and function of living organisms, that once life originated all cells come from pre-existing cells,

More information

Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm.

Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm. Protein Trafficking/Targeting (8.1) Lecture 8 Protein Trafficking/Targeting Protein targeting is necessary for proteins that are destined to work outside the cytoplasm. Protein targeting is more complex

More information

The Living Cell from the Biology: The Science of Life Series. Pre-Test

The Living Cell from the Biology: The Science of Life Series. Pre-Test 1 Pre-Test Directions: Answer each question TRUE OR FALSE. 1. The instructions for making proteins are stored in molecules of DNA. 2. Proteins are made in the nucleus. 3. All cells are surrounded by a

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

the plant & animal cell

the plant & animal cell 6.1 Basic unit of life Biology Biology Structure & functions of 06 the plant & animal cell In 1665, Robert Hooke observed a section of a cork using a microscope prepared by him. He discovered a structure

More information

The cell cycle, mitosis and meiosis

The cell cycle, mitosis and meiosis The cell cycle, mitosis and meiosis Learning objective This learning material is about the life cycle of a cell and the series of stages by which genetic materials are duplicated and partitioned to produce

More information

Introduction to the Cell: Plant and Animal Cells

Introduction to the Cell: Plant and Animal Cells Introduction to the Cell: Plant and Animal Cells Tissues, Organs, and Systems of Living Things Cells, Cell Division, and Animal Systems and Plant Systems Cell Specialization Human Systems All organisms

More information

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

Anatomy and Physiology Placement Exam 2 Practice with Answers at End! Anatomy and Physiology Placement Exam 2 Practice with Answers at End! General Chemical Principles 1. bonds are characterized by the sharing of electrons between the participating atoms. a. hydrogen b.

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Chapter 13: Meiosis and Sexual Life Cycles Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know.

More information

Chapter 5 Organelles. Lesson Objectives List the organelles of the cell and their functions. Distinguish between plant and animal cells.

Chapter 5 Organelles. Lesson Objectives List the organelles of the cell and their functions. Distinguish between plant and animal cells. Chapter 5 Organelles Lesson Objectives List the organelles of the cell and their functions. Distinguish between plant and animal cells. Check Your Understanding What is a cell? How do we visualize cells?

More information

Biology Chapter 7 Practice Test

Biology Chapter 7 Practice Test Biology Chapter 7 Practice Test Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. The work of Schleiden and Schwann can be summarized by

More information

7.2 Cells: A Look Inside

7.2 Cells: A Look Inside CHAPTER 7 CELL STRUCTURE AND FUNCTION 7.2 Cells: A Look Inside Imagine a factory that makes thousands of cookies a day. Ingredients come into the factory, get mixed and baked, then the cookies are packaged.

More information

Sample Questions for Exam 3

Sample Questions for Exam 3 Sample Questions for Exam 3 1. All of the following occur during prometaphase of mitosis in animal cells except a. the centrioles move toward opposite poles. b. the nucleolus can no longer be seen. c.

More information

Biology 13A Lab #3: Cells and Tissues

Biology 13A Lab #3: Cells and Tissues Biology 13A Lab #3: Cells and Tissues Lab #3 Table of Contents: Expected Learning Outcomes.... 28 Introduction...... 28 Activity 1: Eukaryotic Cell Structure... 29 Activity 2: Perspectives on Tissue Preparations.

More information

Biological cell membranes

Biological cell membranes Unit 14: Cell biology. 14 2 Biological cell membranes The cell surface membrane surrounds the cell and acts as a barrier between the cell s contents and the environment. The cell membrane has multiple

More information

called a cell wall. The cell wall protects against mechanical stress and keeps the cell from becoming over-filled with water.

called a cell wall. The cell wall protects against mechanical stress and keeps the cell from becoming over-filled with water. What are Cells? By: Byron Norelius About Cells A cell is the basic unit of life. All living organisms are composed of one (unicellular) or more (multicellular) cells. In unicellular organisms, like many

More information

CELLS IN THE NERVOUS SYSTEM

CELLS IN THE NERVOUS SYSTEM NEURONS AND GLIA CELLS IN THE NERVOUS SYSTEM Glia Insulates, supports, and nourishes neurons Neurons Process information Sense environmental changes Communicate changes to other neurons Command body response

More information

THE LIVING CELL. Cells also have variety of shapes. Plant cells are often rectangular or polygonal, while egg cells are usually spherical.

THE LIVING CELL. Cells also have variety of shapes. Plant cells are often rectangular or polygonal, while egg cells are usually spherical. THE LIVING CELL A Tour of the cell The cell is the smallest and the basic unit of structure of all organisms. There are two main types or categories of cells: prokaryotic cells and eukaryotic cells. Prokaryotic

More information

THE CELL. A Molecular Approach. Sixth Edition. Boston University

THE CELL. A Molecular Approach. Sixth Edition. Boston University THE CELL A Molecular Approach Sixth Edition Geoffrey M. Cooper Robert E. Hausman Boston University Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A. Brief Contents PART I Introduction

More information

12.1 The Role of DNA in Heredity

12.1 The Role of DNA in Heredity 12.1 The Role of DNA in Heredity Only in the last 50 years have scientists understood the role of DNA in heredity. That understanding began with the discovery of DNA s structure. In 1952, Rosalind Franklin

More information

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS Los Angeles Mission College Biology 3 Name: Date: INTRODUCTION BINARY FISSION: Prokaryotic cells (bacteria) reproduce asexually by binary fission. Bacterial

More information

Appendix C DNA Replication & Mitosis

Appendix C DNA Replication & Mitosis K.Muma Bio 6 Appendix C DNA Replication & Mitosis Study Objectives: Appendix C: DNA replication and Mitosis 1. Describe the structure of DNA and where it is found. 2. Explain complimentary base pairing:

More information

5. The cells of a multicellular organism, other than gametes and the germ cells from which it develops, are known as

5. The cells of a multicellular organism, other than gametes and the germ cells from which it develops, are known as 1. True or false? The chi square statistical test is used to determine how well the observed genetic data agree with the expectations derived from a hypothesis. True 2. True or false? Chromosomes in prokaryotic

More information

4.2 Meiosis. Meiosis is a reduction division. Assessment statements. The process of meiosis

4.2 Meiosis. Meiosis is a reduction division. Assessment statements. The process of meiosis 4.2 Meiosis Assessment statements State that meiosis is a reduction division of a diploid nucleus to form haploid nuclei. Define homologous chromosomes. Outline the process of meiosis, including pairing

More information

chapter3 Cell Structure and Function

chapter3 Cell Structure and Function chapter3 Cell Structure and Function Chapter Concepts 3.1 the cellular level of Organization What does the cell theory state? 46 What instruments would a scientist use to study and view small cells? 46

More information

Complex multicellular organisms are produced by cells that switch genes on and off during development.

Complex multicellular organisms are produced by cells that switch genes on and off during development. Home Control of Gene Expression Gene Regulation Is Necessary? By switching genes off when they are not needed, cells can prevent resources from being wasted. There should be natural selection favoring

More information

3120-1 - Page 1. Name:

3120-1 - Page 1. Name: Name: 1) Which series is arranged in correct order according to decreasing size of structures? A) DNA, nucleus, chromosome, nucleotide, nitrogenous base B) chromosome, nucleus, nitrogenous base, nucleotide,

More information

Multiple Choice Questions

Multiple Choice Questions Chapter 5 THE FUNDAMENTAL UNIT OF LIFE Multiple Choice Questions 1. Which of the following can be made into crystal? (a) A Bacterium (b) An Amoeba (c) A Virus (d) A Sperm 2. A cell will swell up if (a)

More information

How Well Do You Know Your Cells?

How Well Do You Know Your Cells? How Well Do You Know Your Cells? Complete each sentence below with words from the box. One word will not be used. cells cell membrane cell walls chloroplasts cytoplasm Hooke Leeuwenhoek mitochondria nucleus

More information

Lecture 11 The Cell Cycle and Mitosis

Lecture 11 The Cell Cycle and Mitosis Lecture 11 The Cell Cycle and Mitosis In this lecture Cell division Chromosomes The cell cycle Mitosis PPMAT Apoptosis What is cell division? Cells divide in order to reproduce themselves The cell cycle

More information

1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells

1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells Cell Growth and Reproduction 1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells A. is half of that of the parent cell. B. remains the same as in the

More information

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes?

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes? Chapter 13: Meiosis and Sexual Life Cycles 1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes? 2. Define: gamete zygote meiosis homologous chromosomes diploid haploid

More information

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions.

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions. thebiotutor AS Biology OCR Unit F211: Cells, Exchange & Transport Module 1.2 Cell Membranes Notes & Questions Andy Todd 1 Outline the roles of membranes within cells and at the surface of cells. The main

More information

The Somatic Cell Cycle

The Somatic Cell Cycle The Somatic Cell Cycle Maternal chromosome Diploid Zygote Diploid Zygote Paternal chromosome MITOSIS MITOSIS Maternal chromosome Diploid organism Diploid organism Paternal chromosome Int terpha ase The

More information

1.1 Introduction. 1.2 Cells CHAPTER. 1.2.1 Prokaryotic Cells. 1.2.2 Eukaryotic Cells

1.1 Introduction. 1.2 Cells CHAPTER. 1.2.1 Prokaryotic Cells. 1.2.2 Eukaryotic Cells C HAPTER 1CELLS AND CELL DIVISION CHAPTER 1.1 Introduction In genetics, we view cells as vessels for the genetic material. Our main interest is in the chromosomes and their environment. This being said,

More information

Cellular Reproduction

Cellular Reproduction 9 Cellular Reproduction section 1 Cellular Growth Before You Read Think about the life cycle of a human. On the lines below, write some of the stages that occur in the life cycle of a human. In this section,

More information

UNIT 1 - CHAPTER 3: CELLS. 2. Describe the general characteristics of a composite cell.

UNIT 1 - CHAPTER 3: CELLS. 2. Describe the general characteristics of a composite cell. LEARNING OUTCOMES: UNIT 1 - CHAPTER 3: CELLS 3.1 Introduction 1. Explain how cells differ from one another. 3.2 A Composite Cell 2. Describe the general characteristics of a composite cell. 3. Explain

More information

Cell Structure and Function

Cell Structure and Function CHAPTER 3 CELL STRUCTURE AND FUNCTION Vocabulary Practice cell theory vacuole concentration gradient cytoplasm lysosome osmosis organelle centriole isotonic prokaryotic cell cell wall hypertonic eukaryotic

More information

RNA & Protein Synthesis

RNA & Protein Synthesis RNA & Protein Synthesis Genes send messages to cellular machinery RNA Plays a major role in process Process has three phases (Genetic) Transcription (Genetic) Translation Protein Synthesis RNA Synthesis

More information

Parts of the Nerve Cell and Their Functions

Parts of the Nerve Cell and Their Functions Parts of the Nerve Cell and Their Functions Silvia Helena Cardoso, PhD [ 1. Cell body] [2. Neuronal membrane] [3. Dendrites] [4. Axon] [5. Nerve ending] 1. Cell body The cell body (soma) is the factory

More information

Look for these related items from Learning Resources :

Look for these related items from Learning Resources : Look for these related items from Learning Resources : LER 1901 Cross Section Plant Cell LER 1902 Cross Section Heart Model LER 1903 Cross Section Brain Model LER 2437 Cross Section Earth Model For a dealer

More information

Organization and Structure of Cells

Organization and Structure of Cells Organization and Structure of Cells All living things fall into one of the two categories: prokaryotes eukaryotes The distinction is based on whether or not a cell has a nucleus. Prokaryotic cells do not

More information

Chapter 18 Regulation of Gene Expression

Chapter 18 Regulation of Gene Expression Chapter 18 Regulation of Gene Expression 18.1. Gene Regulation Is Necessary By switching genes off when they are not needed, cells can prevent resources from being wasted. There should be natural selection

More information