Lab #6: Neurophysiology Simulation

Size: px
Start display at page:

Download "Lab #6: Neurophysiology Simulation"

Transcription

1 Lab #6: Neurophysiology Simulation Background Neurons (Fig 6.1) are cells in the nervous system that are used conduct signals at high speed from one part of the body to another. This enables rapid, precise responses to occur in order to compensate for changes in the environment. Neurons are able to send signals at high speed due to their ability to generate and conduct an electrical signal called an action potential down the length of their axons. An action potential is a brief reversal of the membrane potential, so that for a brief interval at a segment of the axon the intracellular fluid just inside of the plasma membrane is more positive than is the extracellular fluid just outside the plasma membrane. This signal is typically generated at the axon hillock of the neuron, and requires the opening of voltage-gated ion channels specialized pore-like transmembrane proteins that open to allow ion passage in response to changes in the relative charge difference across the plasma membrane. There are two different types of voltage-gated ion channels important for the generation action potentials: those specific for sodium ion ( ), and those specific for potassium ion (K + ). In the intervals between action potentials (i.e., when the neuron is resting ) the two types of ions are kept at different concentrations across the plasma membrane (Fig 6.2). is maintained at higher concentrations outside the cell than inside the cell. Conversely, K + tends to be accumulated at higher concentrations inside the cell than outside the cell. The potential for movement of these ions across the cell membrane is thus influenced by the Nucleus Dendrites Cell Body Schwann Cells Axon Hillock Axon Axon Terminals Fig 6.1. Illustration of a neuron and its major associated structures Figure 6.2. Distribution of ions across the plasma membrane during resting potential. Different font sizes for and K + indicate differences in relative concentration. concentration gradients for each ion. Moreover, charge differences across the cell membrane affect the potential for diffusion of these ions. The interior of cells is typically more negatively charged than is the outside of the cell, due to negative charges on certain side-chains of the amino acids of proteins inside the cell, phosphorylated compounds (e.g., ATP), etc. As a result, under resting conditions, there is a strong electrochemical gradient favoring the flow of into the cell, and a weak electrochemical gradient favoring the flow of K + out of the cell. Ion concentrations are maintained at relatively constant levels, however, due to the normally low permeability of the plasma membrane to and low-level activity of the /K + pump, which pumps back out into the extracellular fluid and K + back into the intracellular fluid. The distribution of charged particles across the cell membrane at rest generates the resting potential of the cell membrane, which is variable among different neurons, but typically around -70 mv. The membrane potential (the difference in overall charge across the plasma membrane) of the neuron can change if the relative difference in charges across the membrane is changed. The action potential is generated by just such a redistribution of charged particles across the membrane. By opening large numbers of voltage-gated channels, the permeability of the membrane to and K + is increased markedly, allowing the ions to flow along their respective electrochemical gradients from one side of the membrane to the other.

2 Figure 6.3. Change in voltage-gated ion channels and redistribution of ions during the depolarization phase of the action potential However, in order for voltage-gated ion channels to open and allow this redistribution of ions across the plasma membrane, the membrane potential itself needs to be changed from resting level by a minimum amount (threshold). Changing the membrane potential to the threshold level causes a redistribution of charged areas within the protein itself, causing a shape change in the channel and opening the passage for the ion. The changes in membrane potential needed to induce the voltage-gated ion channels to open are typically due to the binding of chemical signals (e.g., neurotransmitters) in the extracellular environment to chemically-gated ion channels in the dendrites and cell body of the cell, which increase the permeability of the membrane to certain ions. Physical factors such as mechanical distortion of the plasma membrane or extreme temperature changes, as well as other chemical changes that may affect the shape of proteins in the plasma membrane (e.g. ph), can also alter the permeability of the plasma membrane to certain ions. Moreover, changes in the concentration gradients of the ions themselves across the cell membrane can alter the membrane potential, as the movement of the ion across the membrane through fixed open channels may be changed. In some cases, the resultant change in charge distribution depolarizes the membrane (moves the membrane potential closer to 0 mv), and thus moves the membrane potential towards the threshold value. In other cases, the membrane may become hyperpolarized (more negative, further away from 0 mv), which typically moves the membrane potential away from the threshold value needed to open the voltage-gated ion channels. Figure 6.4. Changes in membrane potential during an action potential. An action potential begins when the plasma membrane at the axon hillock is depolarized to threshold. This induces the opening of the voltage-gated ion channels (Figs 6.3 and 6.4). The channels specific for open very quickly, thus there is a rapid increase in the permeability of the plasma membrane to. rapidly flows into the interior of the cell along its electrochemical gradient, and drives the depolarization phase of the action potential. The membrane is fully depolarized to 0 mv, but even then continues to flow into the interior of the cell, so the fluid inside the cell becomes more positive than the adjacent extracellular fluid, and the membrane polarity is reversed from normal resting levels. The membrane potential rises to ~ +30 mv, but then the flow of into the cell effectively stops not because has reached equilibrium, but because the voltage-gated channels close at that potential, cutting off the flow of. At approximately the same time the flow of stops, the voltage-gated K + channels, which began opening at threshold but require more time to open than do the voltage-gated channels, begin to open in earnest (Figs. 6.4 and 6.5). Since it is now more positive inside the cell than outside the cell, there is a strong gradient favoring the flow of K + out of the cell. Thus K + flows out of the cell, driving the repolarization phase of the action potential. As the positively charged K + leaves the cell, the interior of the cell becomes progressively more

3 Figure 6.5. Change in voltage-gated ion channels and redistribution of ions during the repolarization phase of the action potential. negative, and the membrane potential moves back towards the resting potential. Once the membrane potential is repolarized below threshold, the voltage-gated K + channels close. Although the resting potential has been restored, the concentration gradients for and K + are now different from resting levels, with large amounts of inside the cell and high amounts of K + outside the cell. The /K + pump restores the local concentration gradients back to resting levels by pumping out of the cell and K + back into the cell. Note that the action potential is an all-ornone response (Fig 6.6). The action potential can occur only if the membrane is depolarized enough to reach threshold and induce the opening of voltage-gated ion channels. Therefore, if the stimulus is not strong enough to reach threshold, no action potential will occur. If threshold is reached, however, a positive feedback loop ensues that quickly leads to the opening of all of the voltage-gated ion channels. Thus, regardless of whether the membrane is depolarized just to threshold or above threshold, maximum permeability of the membrane to and K + will be achieved. Moreover, since the voltage-gated close at a specific potential as well, the amplitude of the action potential is always going to be the same the difference in voltage between the threshold and the potential at which the channels close. Once an action potential has started at the axon hillock it quickly travels down the length of the axon. Remarkably, the strength of the action potential is maintained along the entire length of the axon. This is because once sodium enters the cell during the depolarization stage of the action potential it quickly diffuses though the intracellular fluid along its electrochemical Figure 6.6. The all or none action potential of a neuron. The plot at the top illustrates a series of stimuli of progressively increasing intensity applied to the neuron, whereas the plot at the top illustrates corresponding electrical responses (action potentials) from the neuron. Notice that the neuron only undergoes an action potential when stimulus intensity is high enough to reach the threshold membrane potential for the neuron, and that the amplitude of the action potential (i.e., how much it depolarizes) does not differ with stimulus intensity as long as the stimulus is intense enough to reach threshold. gradient. Lateral flow of inside the cell down the length of the axon triggers the next segment of the axon to be depolarized to threshold, causing it to undergo an action potential. This effect is repeated down the length of the axon, with one segment of the axon undergoing an action potential stimulating the next to depolarize to threshold. The speed at which the action potential travels down the length of the axon is referred to as its conduction velocity, and can be calculated by dividing the distance an action potential travels by the time it takes the action potential to travel that distance. Two major factors influence conduction velocity: 1) Myelination neurons with axons surrounded by Schwann cells or oligodendrocytes conduct action potentials in a manner called saltatory conduction (Fig. 6.7). Since myelination prevents ion exchange between the inside and outside of the cell to occur

4 A B C Na+ Figure 6.7. Saltatory conduction in myelinated axons. A) The axon hillock reaches threshold, and flows into the cell through voltage gated ion channels. B)On inside the cell, rapidly diffuses to the next node. Moreover, the flux of from the outside of the cell to the inside of the node creates an electrochemical gradient that draws away from the second node towards the first, which also depolarizes the membrane at the second node. The combined effect of these two actions caused the next node to quickly depolarize to threshold and undergo an action potential. C) Once voltage gated ion channels at the second node open, the process repeats with the third node. over most of the length of the axon, the only places where this ion exchange can occur are in the nodes of Ranvier between myelinated segments, where there are particularly high concentrations of voltagegated ion channels. When the axon segment is depolarized to threshold, rapidly flows into the cell and diffused quickly through the cytoplasm to the next node. Moreover as flows into the cell at one node, it creates a gradient favoring in the extracellular fluid near the next node to flow back to the previous node. This reduces the charge difference between the outside and inside of the cell at the second node depolarizing the cell membrane towards threshold and evoking an action potential at the next node. Therefore, the action potential jumps quickly from one segment to the next, and occurs more quickly than if the entire length of the axon was involved in ion exchange across its membrane. Fig 6.8 Plot of experimentally measured conduction velocity as a function of axon diameter in mammalian neurons. After Ruch TC, Patton HD (eds.) (1982): Physiology and Biophysics, 20th ed., 1242 pp. W. B. Saunders, Philadelphia 2) Axon diameter Action potential propagation requires the ability for, once it enters the cell, to be able to diffuse laterally down the length of the axon. Thus, factors that influence the movement of material within a space with restricted diameter (i.e., current), influence how quickly can move from one axon segment to the next, and thus the conduction velocity. The diameter of the axon, thus, influences the ease by which can move from one axon segment to the next. Small-diameter axons create more resistance to current, as the area over which can flow is restricted. Thus less can move per unit time from one segment to the next, and it takes longer to accumulate enough positive charges at the next segment to reach threshold and evoke the action potential. Conversely, large-diameter axons facilitate the lateral flow of. Conduction velocity of a neuron, therefore, tends to be proportional to the diameter of that axon (Fig 6.8). Effects of Drugs on Neurophysiology. Many chemicals have neurological effects. Although the specific effects of chemicals on neurophysiology can differ considerably, there area two primary ways in which neuron are affected (Fig 6.9):

5 Synaptic communication Chemically-gated channels Action potential propagation Voltage-gated channels Synaptic communication Neurotransmitter Release Fig 6.9. Regions of a neuron where neurotoxins may have an effect. Some neurotoxins affect action potential propagation by influencing the voltage-gated ion channels along the length of the axon (between the dashed lines), whereas other toxins might affect synaptic transmission of signals from one neuron to the next by influencing either neurotransmitter release from the synaptic terminal or by altering the ability of the dendrites and cell body to bind neurotransmitter and transduce it into an electrical signal. 1) Function of voltage-gated ion channels some chemicals influence action potential generation by binding to portions of voltagegated ion channels and preventing their function. For example, tetradotoxin, a poison produced by puffer fish, prevents voltage-gated channels from opening when threshold is reached. Another poison, dendrotoxin (a component in the venom of black mambas) prevents voltage-gated K + channels from opening, preventing repolarization of an axon during an action potential and thus greatly increasing the refractory period for an action potential and slowing conduction velocity. 2) Synaptic transmission of signals the primary means by which most neurons are stimulated to undergo action potentials is through the receipt of chemical signals (neurotransmitters) that activate specific pathways in the cell that lead to a change in membrane potential. Different chemicals can influence the signaling interactions between one cell and another. Some chemicals alter the amount of neurotransmitter released from a presynaptic cell into the synaptic cleft (e.g., amphetamines stimulate dopamine release) or the degradation of the neurotransmitter in the synaptic cleft (e.g., cocaine blocks norepinephrine and serotonin re-uptake by presynaptic cells). Other chemicals bind to the receptor proteins on the postsynaptic cell that are responsible for triggering the graded potentials that would normally determine whether the neuron would undergo an action potential. Some of these act as agonists they bind to a particular receptor protein on the surface of the postsynaptic cell and stimulate the metabolic pathway connected to that receptor. Since they may supplement the normal neurotransmitter that normally activates that pathway, and may not be degraded as easily as the normal neurotransmitter, they amplify the effects of the neurotransmitter (e.g., nicotine mimics the effects of acetylcholine for certain ion channels). Conversely, others act as antagonists they bind to a receptor protein but do not activate the metabolic pathway connected to that receptor and prevent the normal neurotransmitter from binding that receptor, suppressing the normal effects of the neurotransmitter (e.g., cobratoxin, found in cobra venom, prevents acetylcholine from binding to particular receptors). Observing Action Potentials in Whole Nerves The computer simulation we will run in this lab mimics experiments that are conducted on segments of whole nerves, not on individual neurons. Importantly, this means that the action potentials we will record are not action potentials from a single neuron, but a compound action potential, showing the cumulative action potentials of the neurons within the nerve. This is important because although many of the neurons in this nerve have the same threshold, some neurons have thresholds that are slightly higher than others. Also, because of the way we are stimulating the nerve (applying an electrical shock to the outer surface of the nerve), not all of the neurons in the nerve will receive she same amount of stimulus. Thus, it is possible to vary the amplitude of the action potential by varying the strength of the stimulus. This does not violate the all-or-none principle! Each neuron is undergoing an action potential in an all or none fashion. What is changing is the number of neurons undergoing action potentials in response to a stimulus of a particular strength.

6 Let us imagine that we are stimulating a nerve segment with progressively more intensive (i.e., higher voltage) electrical shocks (Fig. 6.10). There are ranges of stimulus intensity that evoke different amounts of depolarization in the compound action potential of a nerve. A subthreshold stimulus is a stimulus with such a low intensity that none of the neurons reach threshold, therefore no compound action potential is recorded. A threshold stimulus is just intense enough to depolarize a few neurons in the nerve to threshold and cause them to undergo an action potential, so a very weak compound action potential is recorded. If stimulus intensity is increased above threshold, the amplitude of the compound action potential increases as more and more neurons undergo action potential. We refer to this range of stimulus intensities in which variable compound action potential amplitudes can be produced as submaximal stimuli. Eventually, we will apply a stimulus intense enough to induce every neuron in the nerve to undergo an action potential. That stimulus intensity is referred to as the maximal stimulus. If the intensity is increased above this maximal stimulus, no further increase in compound action potential amplitude will occur, since all neurons in the nerve are already undergoing action potential. We sometimes refer to stimuli with intensities higher than a maximal stimulus as supramaximal stimuli. Figure Variation in the amplitude of the compound action potential of a whole nerve with varying stimulus intensity. The upper plot depicts the strength of electrical stimuli applied to the nerve, and the lower plot depicts the amplitude of the resultant electrical response by the nerve. Note that a threshold stimulus here is a stimulus with the minimum amount of intensity to generate a detectable compound action potential. Increasing stimulus intensity above this threshold value leads to the generation of bigger compound action potentials until the maximal stimulus is reached, whereupon all neurons in the nerve will be undergoing action potential and the compound action potential will reach its maximum amplitude.

7 Experimental Procedures We will be running a simulation of experiments conducted on whole nerve segments using PhysioEx (Benjamin Cummings). The software should be loaded for you and the screen illustrated in Fig should be displayed. There are three different pieces of equipment displayed on the screen which you should note. First, there is a nerve chamber. A segment of a nerve has been dissected and suspended over a series of metal bars that act as electrodes. The two electrodes at the bottom are stimulating electrodes and are connected to an electrical stimulator. The stimulator can be used to apply electrical current to the nerve at different voltages and frequencies to try to elicit an action potential. The other set of electrodes are called recording electrodes, and they are connected to an oscilloscope. Differences in charge between the two recording electrodes (such as those caused by an action potential passing by) cause the line traced on the oscilloscope screen to deflect. Thus, we can observe any action potentials forming in the nerve Experiment 1. Stimulation of an Action Potential. A. Electrical Stimulation Observation of Threshold Fig View of the PhysioEx screen used for Experiment #1. Initially, the voltage on the electrical stimulator is set to 0.0 V. Increase the voltage to 1.0 V by clicking on the + button next to Voltage. Then click on Single Stimulus. Notice that a flat-line tracing is recorded on the oscilloscope, meaning no action potential was generated. Increase the voltage by 0.3 V using the + button next to Voltage and click on Single Stimulus again. A second tracing should appear in a different color. Repeat this procedure, increasing the voltage by 0.1 to 0.2 V increments until an action potential is recorded. Determine and record the minimum amount of voltage needed to evoke the action potential. This value is the threshold stimulus. Record this voltage on your data sheet. B. Electrical Stimulation Observation of Compound Action Potential and Determination of Maximal Stimulus Continue increasing the voltage above threshold by V increments. Notice that as you increase the stimulus strength, the amplitude of the action potential increases slightly (Fig 6.12). This is because as you increase stimulus strength you are reaching the threshold of more individual neurons in the nerve, more neurons undergo action potentials, and thus the compound action potentials strength increases. Eventually, though, you will reach a point where no further increase in the amplitude of the compound action potential will occur. This is because the stimulus strength is now strong enough for all the neurons in the nerve to undergo action potential. The lowest stimulus strength required to cause all the neurons in the nerve to undergo action potentials is called the maximal stimulus. Determine and record this voltage.

8 Hint: try using the following method to determine the maximal stimulus: Once you reach your threshold stimulus, increase the voltage by V and apply a stimulus. Then click on the Clear button on the lower right corner of the oscilloscope. Apply another stimulus with the same voltage as you had just applied, then increase the voltage by V and stimulate again. You should only have two tracings on your screen one pink and the other green. You should still see two different tracings, meaning that you have not reached your maximum action potential amplitude. Repeat the procedure. Eventually, you should reach a point where one tracing completely overlaps the other. When you see this, then the lower of the two voltages you applied is your maximal stimulus strength. Fig A pair of compound action potentials recorded on the PhysioEx oscilloscope. Notice that the green tracing (produced when the nerve was stimulated at a higher voltage) has a higher amplitude than does the pink tracing. This illustrates that through the submaximal range of stimuli strengths, action potential amplitude will increase with increased stimulus intensity. C. Chemical Stimulation. Click on the Clear button on the oscilloscope to remove previous tracings. Move your pointer over to the dropper bottle on the left labeled Sodium Chloride, left click on the dropper and hold, then drag the dropper over the nerve chamber and release the left mouse button to apply the NaCl solution onto the nerve. Notice what happens on the oscilloscope. If we assume that the NaCl concentration in this solution is greater than that normally found in extracellular fluid, explain why the application of NaCl to the nerve caused this response. Click the Clean button on the nerve chamber to wash the NaCl solution from the nerve. Then apply a dropper from the bottle labeled Hydrochloric Acid to the nerve. Again, note the response of the nerve, and provide an explanation for this response. Click on the Clean button of the nerve chamber when you are finished. D. Heat Stimulation Place your pointer over the glass rod on the lower left portion of the screen, left click, and drag it down to the heater just below it. Click on Heat to make it red hot. Left click on the heated rod, drag it over the nerve chamber, and release the left click to apply the stimulus. Note the response of the nerve on the oscilloscope, and provide an explanation for this response. Hint: For parts C and D, think about how these substances might influence a) the difference in electrical charge, ion gradients, and diffusion rates of ions across the cell membranes and b) the permeability of the cell membrane to different ions, with specific emphasis on the membrane proteins needed to allow ions to move from one side of the membrane to the other.

9 Experiment 2. Inhibitory effects of drugs on action potential generation. Move your mouse over the Experiment menu at the top of the screen. Select Inhibiting a Nerve Impulse by left clicking on that line in the menu. A new screen will pop up, which looks very similar to the screen used in experiment one except that on the left-hand side there are now three bottles of drugs with neurotoxic effects (see Fig. 6.13). Set the voltage on the electrical stimulator to a level that will evoke an action potential (e.g., 5 V). Fig View of the PhysioEx screen used for Experiment #2. A. Effect of Ether (ethyl ether was the first chemical used as a general anesthetic). Click the stimulate button on the stimulator and notice the action potential displayed on the oscilloscope. Transfer a dropperful of fluid from the bottle labeled Ether. Click on the stimulate button again. What is the effect on action potential generation (does an action potential occur in the nerve once treated with ether)? Based on the effect you observe and the fact that you are using electrical stimuli to stimulate a segment of nerve containing only axons, what do you think is the target of action for this chemical (i.e., synapse or voltage-gated channels)? B. Effect of Lidocaine (a substance found in cloves used as a local anesthetic and anti-arrhythmic agent). Stop the tracing. Click on the Clear button on the oscilloscope to remove the previous tracings, and click on the Clean button above the nerve chamber to wash off the ether. Click the stimulate button on the stimulator and notice the action potential displayed on the oscilloscope. This indicates that the ether from the previous exercise has been removed. Transfer a dropperful of fluid from the bottle labeled Lidocaine. Fig A view of compound action potential recordings associated with a nerve stimulated with maximal stimuli before treatment with a neurotoxin (pink) and after treatment with a neurotoxin (green) in Experiment 2.

10 Click on the stimulate button once again to attempt to trigger a second action potential. What is the effect on action potential generation (does an action potential occur in the nerve once treated with lidocaine)? Based on the effect you observe and the fact that you are using electrical stimuli to stimulate a segment of nerve containing only axons, what do you think is the target of action for this chemical (i.e., synapse or voltage-gated channels)? C. Effect of Curare (a potent neurotoxin produced in the skin of poison arrow frogs). Click on the Clear button on the oscilloscope to remove the previous tracings, and click on the Clean button above the nerve chamber to wash off the ether. Click the stimulate button on the stimulator and notice the action potential displayed on the oscilloscope. This indicates that the lidocaine from the previous exercise has been removed, and the nerve is once again functioning properly. Transfer a dropperful of fluid from the bottle labeled Curare. Click on the stimulate button once again to attempt to trigger a second action potential. What is the effect on action potential generation (does an action potential occur in the nerve once treated with curare)? Based on the effect you observe and the fact that you are using electrical stimuli to stimulate a segment of nerve containing only axons, what do you think is the target of action for this chemical (i.e., synapse or voltage-gated channels)? Hint: In this last experiment, what does NOT happen is as important as what does happen. Some neurotoxins may apparently have no effect on the nerve. Keep this in mind, though we are stimulating a segment of a nerve which contains only axon tissue (so no dendrites, cell bodies, or axon terminals). We are also applying an electrical stimulus to the nerve to trigger the opening of the voltage gated ion channels. Experiment 3. Nerve Conduction Velocity. Move your mouse over the Experiment menu at the top of the screen. Select Nerve Conduction Velocity by left clicking on that line in the menu. A new screen will pop up displaying a somewhat different setup than seen in the previous experiments (see Fig. 6.15). The stimulator is now at the top right of the screen, with the oscilloscope below it. In addition to the nerve chamber, there is a bioamplifier that must be switched on. To the left are three nerve segments and an earthworm. You can sedate the earthworm with the ethanol above it if you so desire. The setup on this screen will allow you to measure how long it takes for an action potential to travel a set distance along a nerve, and thus determine that nerve s conduction velocity (velocity = distance/time). The recording electrodes in the nerve chamber are set 43 mm away from the stimulating electrodes. Therefore, conduction velocity can be Fig View of the PhysioEx screen used for Experiment #3. calculated for each nerve by the

11 following equation: Conduction velocity (m/sec) = 43 mm time (msec) Procedure You will be determining the conduction velocity for three different nerves: a frog nerve (thin, myelinated), rat nerve #1 (thin, unmyelinated), and rat nerve #2 (thick, myelinated). Select one of the three nerves and place it in the nerve chamber. Set the voltage on the stimulator to an amount that will give an action potential (e.g., 5 V). Click on the Pulse button to ready the stimulator, then click on the Stimulate button. An action potential will be recorded on the oscilloscope. Click on the Measure button on the stimulator, and then click and hold on the + sign next to Time. Notice that a yellow line will scroll across the oscilloscope. Using the + and buttons, position the line so that it intersects the action potential tracing at the point just when the tracing starts to move above baseline (Fig 6.16). Record the time displayed at the top right of the stimulator. Divide the distance the action potential traveled (43 mm) by this time to calculate the conduction velocity for this neuron, and record this value on your data sheet. Repeat this procedure for the other two nerves. Comparing the conduction velocity of the rat nerve #1 (thin, unmyelinated) with that of the frog nerve (thin, myelinated), what can you conclude about the effect of myelination on conduction velocity? Comparing the conduction velocity of the frog nerve (thin, myelinated) with that of the rat nerve #2 (thick, myelinated), what can you conclude about the effect of axon diameter on conduction velocity? Fig 6.16 Recording of an action potential showing the use of the measurement tool (yellow bar) in order to determine conduction time from the stimulating electrodes to the recording electrodes.

The Action Potential Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl.

The Action Potential Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl. The Action Potential Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl.com/bc) ** If this is not printed in color, it is suggested you

More information

Resting membrane potential ~ -70mV - Membrane is polarized

Resting membrane potential ~ -70mV - Membrane is polarized Resting membrane potential ~ -70mV - Membrane is polarized (ie) Electrical charge on the outside of the membrane is positive while the electrical charge on the inside of the membrane is negative Changes

More information

REVIEW SHEET EXERCISE 3 Neurophysiology of Nerve Impulses Name Lab Time/Date. The Resting Membrane Potential

REVIEW SHEET EXERCISE 3 Neurophysiology of Nerve Impulses Name Lab Time/Date. The Resting Membrane Potential REVIEW SHEET EXERCISE 3 Neurophysiology of Nerve Impulses Name Lab Time/Date ACTIVITY 1 The Resting Membrane Potential 1. Explain why increasing extracellular K + reduces the net diffusion of K + out of

More information

Ion Channels. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com)

Ion Channels. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Ion Channels Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) ** There are a number of ion channels introducted in this topic which you

More information

Activity 5: The Action Potential: Measuring Its Absolute and Relative Refractory Periods. 250 20 Yes. 125 20 Yes. 60 20 No. 60 25 No.

Activity 5: The Action Potential: Measuring Its Absolute and Relative Refractory Periods. 250 20 Yes. 125 20 Yes. 60 20 No. 60 25 No. 3: Neurophysiology of Nerve Impulses (Part 2) Activity 5: The Action Potential: Measuring Its Absolute and Relative Refractory Periods Interval between stimuli Stimulus voltage (mv) Second action potential?

More information

Nerves and Nerve Impulse

Nerves and Nerve Impulse Nerves and Nerve Impulse Terms Absolute refractory period: Period following stimulation during which no additional action potential can be evoked. Acetylcholine: Chemical transmitter substance released

More information

PART I: Neurons and the Nerve Impulse

PART I: Neurons and the Nerve Impulse PART I: Neurons and the Nerve Impulse Identify each of the labeled structures of the neuron below. A. B. C. D. E. F. G. Identify each of the labeled structures of the neuron below. A. dendrites B. nucleus

More information

Neurophysiology. 2.1 Equilibrium Potential

Neurophysiology. 2.1 Equilibrium Potential 2 Neurophysiology 2.1 Equilibrium Potential An understanding of the concepts of electrical and chemical forces that act on ions, electrochemical equilibrium, and equilibrium potential is a powerful tool

More information

EXCITABILITY & ACTION POTENTIALS page 1

EXCITABILITY & ACTION POTENTIALS page 1 page 1 INTRODUCTION A. Excitable Tissue: able to generate Action Potentials (APs) (e.g. neurons, muscle cells) B. Neurons (nerve cells) a. components 1) soma (cell body): metabolic center (vital, always

More information

12. Nervous System: Nervous Tissue

12. Nervous System: Nervous Tissue 12. Nervous System: Nervous Tissue I. Introduction to the Nervous System General functions of the nervous system The nervous system has three basic functions: 1. Gather sensory input from the environment

More information

Biology Slide 1 of 38

Biology Slide 1 of 38 Biology 1 of 38 2 of 38 35-2 The Nervous System What are the functions of the nervous system? 3 of 38 35-2 The Nervous System 1. Nervous system: a. controls and coordinates functions throughout the body

More information

CHAPTER 5 SIGNALLING IN NEURONS

CHAPTER 5 SIGNALLING IN NEURONS 5.1. SYNAPTIC TRANSMISSION CHAPTER 5 SIGNALLING IN NEURONS One of the main functions of neurons is to communicate with other neurons. An individual neuron may receive information from many different sources.

More information

Name: Teacher: Olsen Hour:

Name: Teacher: Olsen Hour: Name: Teacher: Olsen Hour: The Nervous System: Part 1 Textbook p216-225 41 In all exercises, quizzes and tests in this class, always answer in your own words. That is the only way that you can show that

More information

Nerves and Conduction of Nerve Impulses

Nerves and Conduction of Nerve Impulses A. Introduction 1. Innovation in Cnidaria - Nerve net a. We need to talk more about nerves b. Cnidaria have simple nerve net - 2 way conduction c. Basis for more complex system in Vertebrates B. Vertebrate

More information

Bi 360: Midterm Review

Bi 360: Midterm Review Bi 360: Midterm Review Basic Neurobiology 1) Many axons are surrounded by a fatty insulating sheath called myelin, which is interrupted at regular intervals at the Nodes of Ranvier, where the action potential

More information

Lab 1: Simulation of Resting Membrane Potential and Action Potential

Lab 1: Simulation of Resting Membrane Potential and Action Potential Lab 1: Simulation of Resting Membrane Potential and Action Potential Overview The aim of the present laboratory exercise is to simulate how changes in the ion concentration or ionic conductance can change

More information

Nerve Cell Communication

Nerve Cell Communication Nerve Cell Communication Core Concept: Nerve cells communicate using electrical and chemical signals. Class time required: Approximately 2 forty minute class periods Teacher Provides: For each student

More information

FUNCTIONS OF THE NERVOUS SYSTEM 1. Sensory input. Sensory receptors detects external and internal stimuli.

FUNCTIONS OF THE NERVOUS SYSTEM 1. Sensory input. Sensory receptors detects external and internal stimuli. FUNCTIONS OF THE NERVOUS SYSTEM 1. Sensory input. Sensory receptors detects external and internal stimuli. 2. Integration. The brain and spinal cord process sensory input and produce responses. 3. Homeostasis.

More information

The Action Potential

The Action Potential OpenStax-CNX module: m46526 1 The Action Potential OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you

More information

AP Biology I. Nervous System Notes

AP Biology I. Nervous System Notes AP Biology I. Nervous System Notes 1. General information: passage of information occurs in two ways: Nerves - process and send information fast (eg. stepping on a tack) Hormones - process and send information

More information

BIOPHYSICS OF NERVE CELLS & NETWORKS

BIOPHYSICS OF NERVE CELLS & NETWORKS UNIVERSITY OF LONDON MSci EXAMINATION May 2007 for Internal Students of Imperial College of Science, Technology and Medicine This paper is also taken for the relevant Examination for the Associateship

More information

Chapter 7: The Nervous System

Chapter 7: The Nervous System Chapter 7: The Nervous System Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways involved in a withdraw reflex Define

More information

Chapter 11: Functional Organization of Nervous Tissue

Chapter 11: Functional Organization of Nervous Tissue Chapter 11: Functional Organization of Nervous Tissue Multiple Choice 1. The nervous system A) monitors internal and external stimuli. B) transmits information in the form of action potentials. C) interprets

More information

Parts of the Nerve Cell and Their Functions

Parts of the Nerve Cell and Their Functions Parts of the Nerve Cell and Their Functions Silvia Helena Cardoso, PhD [ 1. Cell body] [2. Neuronal membrane] [3. Dendrites] [4. Axon] [5. Nerve ending] 1. Cell body The cell body (soma) is the factory

More information

The Neuron and the Synapse. The Neuron. Parts of the Neuron. Functions of the neuron:

The Neuron and the Synapse. The Neuron. Parts of the Neuron. Functions of the neuron: The Neuron and the Synapse The Neuron Functions of the neuron: Transmit information from one point in the body to another. Process the information in various ways (that is, compute). The neuron has a specialized

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 2 The Neural Impulse Name Period Date MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The cell body is enclosed by the. A) cell membrane

More information

Before continuing try to answer the following questions. The answers can be found at the end of the article.

Before continuing try to answer the following questions. The answers can be found at the end of the article. EXCITABLE TISSUE ELECTROPHYSIOLOGY ANAESTHESIA TUTORIAL OF THE WEEK 173 8 TH MARCH 2010 Dr John Whittle Specialist Registrar Anaesthetics Dr Gareth Ackland Consultant and Clinical Scientist Anaesthetics,

More information

Origin of Electrical Membrane Potential

Origin of Electrical Membrane Potential Origin of Electrical Membrane Potential parti This book is about the physiological characteristics of nerve and muscle cells. As we shall see, the ability of these cells to generate and conduct electricity

More information

2006 7.012 Problem Set 6 KEY

2006 7.012 Problem Set 6 KEY 2006 7.012 Problem Set 6 KEY ** Due before 5 PM on WEDNESDAY, November 22, 2006. ** Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. You create an artificial

More information

Laboratory Guide. Anatomy and Physiology

Laboratory Guide. Anatomy and Physiology Laboratory Guide Anatomy and Physiology TBME04, Fall 2010 Name: Passed: Last updated 2010-08-13 Department of Biomedical Engineering Linköpings Universitet Introduction This laboratory session is intended

More information

The Action Potential, Synaptic Transmission, and Maintenance of Nerve Function

The Action Potential, Synaptic Transmission, and Maintenance of Nerve Function C H A P T E R 3 The Action Potential, Synaptic Transmission, and Maintenance of Nerve Function Cynthia J. Forehand, Ph.D. CHAPTER OUTLINE PASSIVE MEMBRANE PROPERTIES, THE ACTION POTENTIAL, AND ELECTRICAL

More information

Andrew Rosen - Chapter 3: The Brain and Nervous System Intro:

Andrew Rosen - Chapter 3: The Brain and Nervous System Intro: Intro: Brain is made up of numerous, complex parts Frontal lobes by forehead are the brain s executive center Parietal lobes wave sensory information together (maps feeling on body) Temporal lobes interpret

More information

Muscle Tissue. Muscle Physiology. Skeletal Muscle. Types of Muscle. Skeletal Muscle Organization. Myofibril Structure

Muscle Tissue. Muscle Physiology. Skeletal Muscle. Types of Muscle. Skeletal Muscle Organization. Myofibril Structure Muscle Tissue Muscle Physiology Chapter 12 Specially designed to contract Generates mechanical force Functions locomotion and external movements internal movement (circulation, digestion) heat generation

More information

Anatomy Review Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl.com/bc).

Anatomy Review Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl.com/bc). Page 1. Introduction The structure of neurons reflects their function. One part of the cell receives incoming signals. Another part generates outgoing signals. Anatomy Review Graphics are used with permission

More information

Biology/ANNB 261 Exam 1 Spring, 2006

Biology/ANNB 261 Exam 1 Spring, 2006 Biology/ANNB 261 Exam 1 Spring, 2006 Name * = correct answer Multiple Choice: 1. Axons and dendrites are two types of a) Neurites * b) Organelles c) Synapses d) Receptors e) Golgi cell components 2. The

More information

Student Academic Learning Services Page 1 of 8 Nervous System Quiz

Student Academic Learning Services Page 1 of 8 Nervous System Quiz Student Academic Learning Services Page 1 of 8 Nervous System Quiz 1. The term central nervous system refers to the: A) autonomic and peripheral nervous systems B) brain, spinal cord, and cranial nerves

More information

Slide 1. Slide 2. Slide 3. Cable Properties. Passive flow of current. Voltage Decreases With Distance

Slide 1. Slide 2. Slide 3. Cable Properties. Passive flow of current. Voltage Decreases With Distance Slide 1 Properties of the nerve, axon, cell body and dendrite affect the distance and speed of membrane potential Passive conduction properties = cable properties Signal becomes reduced over distance depending

More information

Biology/ANNB 261 Exam 1 Name Fall, 2006

Biology/ANNB 261 Exam 1 Name Fall, 2006 Biology/ANNB 261 Exam 1 Name Fall, 2006 * = correct answer. 1. The Greek philosopher Aristotle hypothesized that the brain was a) A radiator for cooling the blood.* b) The seat of the soul. c) The organ

More information

Standards Alignment Minnesota Science Standards Alignment Matrix www.brainu.org/resources/mnstds

Standards Alignment Minnesota Science Standards Alignment Matrix www.brainu.org/resources/mnstds Lesson Summary: Neurons transfer information by releasing neurotransmitters across the synapse or space between neurons. Students model the chemical communication between pre-synaptic and post-synaptic

More information

Action Potentials I Generation. Reading: BCP Chapter 4

Action Potentials I Generation. Reading: BCP Chapter 4 Action Potentials I Generation Reading: BCP Chapter 4 Action Potentials Action potentials (AP s) aka Spikes (because of how they look in an electrical recording of Vm over time). Discharges (descriptive

More information

The action potential and nervous conduction CH Fry and RI Jabr Postgraduate Medical School, Division of Clinical Medicine, University of Surrey, UK

The action potential and nervous conduction CH Fry and RI Jabr Postgraduate Medical School, Division of Clinical Medicine, University of Surrey, UK The action potential and nervous conduction CH Fry and RI Jabr Postgraduate Medical School, Division of Clinical Medicine, University of Surrey, UK CH Fry, PhD, DSc Professor of Physiology, Division of

More information

Anatomy Review. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.

Anatomy Review. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc. Anatomy Review Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction The structure of neurons reflects their function.

More information

Total body water ~(60% of body mass): Intracellular fluid ~2/3 or ~65% Extracellular fluid ~1/3 or ~35% fluid. Interstitial.

Total body water ~(60% of body mass): Intracellular fluid ~2/3 or ~65% Extracellular fluid ~1/3 or ~35% fluid. Interstitial. http://www.bristol.ac.uk/phys-pharm/teaching/staffteaching/sergeykasparov.htmlpharm/teaching/staffteaching/sergeykasparov.html Physiology of the Cell Membrane Membrane proteins and their roles (channels,

More information

Problem Sets: Questions and Answers

Problem Sets: Questions and Answers BI 360: Neurobiology Fall 2014 Problem Sets: Questions and Answers These problems are provided to aid in your understanding of basic neurobiological concepts and to guide your focus for in-depth study.

More information

Ions cannot cross membranes. Ions move through pores

Ions cannot cross membranes. Ions move through pores Ions cannot cross membranes Membranes are lipid bilayers Nonpolar tails Polar head Fig 3-1 Because of the charged nature of ions, they cannot cross a lipid bilayer. The ion and its cloud of polarized water

More information

Nervous Tissue Chapter 12

Nervous Tissue Chapter 12 Nervous Tissue Chapter 12 Overview of the Nervous System Cells of the Nervous System Electrophysiology of Neurons Synapses Subdivisions of the Nervous System Two major anatomical subdivisions: Central

More information

Chapter 9 Nervous System

Chapter 9 Nervous System Chapter 9 Nervous System Nervous System function: The nervous system is composed of neurons and neuroglia. at the ends of peripheral nerves gather information and convert it into nerve impulses. When sensory

More information

NEURON AND NEURAL TRAMSMISSION: ANATOMY OF A NEURON. created by Dr. Joanne Hsu

NEURON AND NEURAL TRAMSMISSION: ANATOMY OF A NEURON. created by Dr. Joanne Hsu NEURON AND NEURAL TRAMSMISSION: ANATOMY OF A NEURON NEURON AND NEURAL TRAMSMISSION: MICROSCOPIC VIEW OF NEURONS A photograph taken through a light microscope (500x) of neurons in the spinal cord. NEURON

More information

Biological Membranes. Impermeable lipid bilayer membrane. Protein Channels and Pores

Biological Membranes. Impermeable lipid bilayer membrane. Protein Channels and Pores Biological Membranes Impermeable lipid bilayer membrane Protein Channels and Pores 1 Biological Membranes Are Barriers for Ions and Large Polar Molecules The Cell. A Molecular Approach. G.M. Cooper, R.E.

More information

Simulation of an Action Potential using the Hodgkin-Huxley Model in Python. Nathan Law 250560559. Medical Biophysics 3970

Simulation of an Action Potential using the Hodgkin-Huxley Model in Python. Nathan Law 250560559. Medical Biophysics 3970 Simulation of an Action Potential using the Hodgkin-Huxley Model in Python Nathan Law 250560559 Medical Biophysics 3970 Instructor: Dr. Ian MacDonald TA: Nathaniel Hayward Project Supervisor: Dr. Andrea

More information

CELLS IN THE NERVOUS SYSTEM

CELLS IN THE NERVOUS SYSTEM NEURONS AND GLIA CELLS IN THE NERVOUS SYSTEM Glia Insulates, supports, and nourishes neurons Neurons Process information Sense environmental changes Communicate changes to other neurons Command body response

More information

Actions of Hormones on Target Cells Page 1. Actions of Hormones on Target Cells Page 2. Goals/ What You Need to Know Goals What You Need to Know

Actions of Hormones on Target Cells Page 1. Actions of Hormones on Target Cells Page 2. Goals/ What You Need to Know Goals What You Need to Know Actions of Hormones on Target Cells Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Actions of Hormones on Target Cells Hormones

More information

Anatomy & Physiology Bio 2401 Lecture. Instructor: Daryl Beatty Nervous System Introduction Part 1

Anatomy & Physiology Bio 2401 Lecture. Instructor: Daryl Beatty Nervous System Introduction Part 1 Anatomy & Physiology Bio 2401 Lecture Instructor: Daryl Beatty Nervous System Introduction Part 1 Nervous System Introduction Chapter 11 Section A Sequence 4.1 DB Nervous system 1 Intro Presentations 4.2,

More information

Explore the Neuroscience for Kids Web Site (ANSWERS) Start at: http://faculty.washington.edu/chudler/neurok.html

Explore the Neuroscience for Kids Web Site (ANSWERS) Start at: http://faculty.washington.edu/chudler/neurok.html NAME Explore the Neuroscience for Kids Web Site (ANSWERS) Start at: http://faculty.washington.edu/chudler/neurok.html On the left side, click on Explore, then click on The Neuron, then click on Millions

More information

Introduction to Psychology, 7th Edition, Rod Plotnik Module 3: Brain s Building Blocks. Module 3. Brain s Building Blocks

Introduction to Psychology, 7th Edition, Rod Plotnik Module 3: Brain s Building Blocks. Module 3. Brain s Building Blocks Module 3 Brain s Building Blocks Structure of the Brain Genes chains of chemicals that are arranged like rungs on a twisting ladder there are about 100,000 genes that contain chemical instructions that

More information

Laboratory Guide. Anatomy and Physiology

Laboratory Guide. Anatomy and Physiology Laboratory Guide Anatomy and Physiology TBME04 fall 2009 Name: Passed: 2008-08-25 Ingemar Fredriksson Department of Biomedical Engineering Linköpings universitet Introduction This laboratory session is

More information

4. Biology of the Cell

4. Biology of the Cell 4. Biology of the Cell Our primary focus in this chapter will be the plasma membrane and movement of materials across the plasma membrane. You should already be familiar with the basic structures and roles

More information

CHAPTER XV PDL 101 HUMAN ANATOMY & PHYSIOLOGY. Ms. K. GOWRI. M.Pharm., Lecturer.

CHAPTER XV PDL 101 HUMAN ANATOMY & PHYSIOLOGY. Ms. K. GOWRI. M.Pharm., Lecturer. CHAPTER XV PDL 101 HUMAN ANATOMY & PHYSIOLOGY Ms. K. GOWRI. M.Pharm., Lecturer. Types of Muscle Tissue Classified by location, appearance, and by the type of nervous system control or innervation. Skeletal

More information

Questions on The Nervous System and Gas Exchange

Questions on The Nervous System and Gas Exchange Name: Questions on The Nervous System and Gas Exchange Directions: The following questions are taken from previous IB Final Papers on Topics 6.4 (Gas Exchange) and 6.5 (Nerves, hormones and homeostasis).

More information

CHAPTER I From Biological to Artificial Neuron Model

CHAPTER I From Biological to Artificial Neuron Model Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER CHAPTER I From Biological to Artificial Neuron Model Martin Gardner in his book titled 'The Annotated Snark" has the following note for the last illustration

More information

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions.

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions. thebiotutor AS Biology OCR Unit F211: Cells, Exchange & Transport Module 1.2 Cell Membranes Notes & Questions Andy Todd 1 Outline the roles of membranes within cells and at the surface of cells. The main

More information

The Lipid Bilayer Is a Two-Dimensional Fluid

The Lipid Bilayer Is a Two-Dimensional Fluid The Lipid Bilayer Is a Two-Dimensional Fluid The aqueous environment inside and outside a cell prevents membrane lipids from escaping from bilayer, but nothing stops these molecules from moving about and

More information

BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT

BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY BMLS II / B Pharm II / BDS II VJ Temple

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function Part A Multiple Choice 1. The fluid mosaic model describes membranes as having A. a set of protein channels separated by phospholipids. B. a bilayer of phospholipids in

More information

31.1 The Neuron. BUILD Vocabulary. Lesson Objectives

31.1 The Neuron. BUILD Vocabulary. Lesson Objectives Name Class Date 31.1 The Neuron Lesson Objectives Identify the functions of the nervous system. Describe the function of neurons. Describe how a nerve impulse is transmitted. BUILD Vocabulary A. The chart

More information

Drugs, The Brain, and Behavior

Drugs, The Brain, and Behavior Drugs, The Brain, and Behavior John Nyby Department of Biological Sciences Lehigh University What is a drug? Difficult to define Know it when you see it Neuroactive vs Non-Neuroactive drugs Two major categories

More information

Cell Transport and Plasma Membrane Structure

Cell Transport and Plasma Membrane Structure Cell Transport and Plasma Membrane Structure POGIL Guided Inquiry Learning Targets Explain the importance of the plasma membrane. Compare and contrast different types of passive transport. Explain how

More information

Cell Membrane & Tonicity Worksheet

Cell Membrane & Tonicity Worksheet NAME ANSWER KEY DATE PERIOD Cell Membrane & Tonicity Worksheet Composition of the Cell Membrane & Functions The cell membrane is also called the PLASMA membrane and is made of a phospholipid BI-LAYER.

More information

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet AP * BIOLOGY CELL MEMBRANES, TRANSPORT, and COMMUNICATION Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production

More information

Electrophysiological Recording Techniques

Electrophysiological Recording Techniques Electrophysiological Recording Techniques Wen-Jun Gao, PH.D. Drexel University College of Medicine Goal of Physiological Recording To detect the communication signals between neurons in real time (μs to

More information

Cell Biology - Part 2 Membranes

Cell Biology - Part 2 Membranes Cell Biology - Part 2 Membranes The organization of cells is made possible by membranes. Membranes isolate, partition, and compartmentalize cells. 1 Membranes isolate the inside of the cell from the outside

More information

1. Give the name and functions of the structure labeled A on the diagram. 2. Give the name and functions of the structure labeled B on the diagram.

1. Give the name and functions of the structure labeled A on the diagram. 2. Give the name and functions of the structure labeled B on the diagram. 2013 ANATOMY & PHYSIOLOGY Sample Tournament Station A: Use the diagram in answering Questions 1-5. 1. Give the name and functions of the structure labeled A on the diagram. 2. Give the name and functions

More information

Six major functions of membrane proteins: Transport Enzymatic activity

Six major functions of membrane proteins: Transport Enzymatic activity CH 7 Membranes Cellular Membranes Phospholipids are the most abundant lipid in the plasma membrane. Phospholipids are amphipathic molecules, containing hydrophobic and hydrophilic regions. The fluid mosaic

More information

What is the basic component of the brain and spinal cord communication system?

What is the basic component of the brain and spinal cord communication system? EXPLORING PSYCHOLOGY David Myers The Biology of Mind Chapter 2 Neural Communication Neurons How Neurons Communicate How Neurotransmitters Influence Us The Nervous System The Peripheral Nervous System The

More information

April 18, 2008 Dr. Alan H. Stephenson Pharmacological and Physiological Science

April 18, 2008 Dr. Alan H. Stephenson Pharmacological and Physiological Science Renal Mechanisms for Regulating Urine Concentration April 18, 2008 Dr. Alan H. Stephenson Pharmacological and Physiological Science Amount Filtered Reabsorption is selective Examples of substances that

More information

Diffusion, Osmosis, and Membrane Transport

Diffusion, Osmosis, and Membrane Transport Diffusion, Osmosis, and Membrane Transport Introduction... 2 Diffusion and osmosis as related to cellular processes... 2 The hotter the medium, the faster the molecules diffuse... 2 TASK 1: TEMPERATURE

More information

Integration and Coordination of the Human Body. Nervous System

Integration and Coordination of the Human Body. Nervous System I. General Info Integration and Coordination of the Human Body A. Both the and system are responsible for maintaining 1. Homeostasis is the process by which organisms keep internal conditions despite changes

More information

Water Homeostasis. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.

Water Homeostasis. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc. Water Homeostasis Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) 1. Water Homeostasis The body maintains a balance of water intake

More information

PHYSIOLOGY AND MAINTENANCE Vol. V - Neurons, Action Potentials, and Synapses - Simo S. Oja and Pirjo Saransaari

PHYSIOLOGY AND MAINTENANCE Vol. V - Neurons, Action Potentials, and Synapses - Simo S. Oja and Pirjo Saransaari NEURONS, ACTION POTENTIALS, AND SYNAPSES Simo S. Oja and Pirjo Saransaari University of Tampere Medical School, Finland, and Tampere University Hospital, Finland Keywords: neurones, glial cells, membrane

More information

ANIMATED NEUROSCIENCE

ANIMATED NEUROSCIENCE ANIMATED NEUROSCIENCE and the Action of Nicotine, Cocaine, and Marijuana in the Brain Te a c h e r s G u i d e Films for the Humanities & Sciences Background Information This program, made entirely of

More information

How To Understand The Effects Of Drugs On The Brain

How To Understand The Effects Of Drugs On The Brain DRUGS AND THE BRAIN Most of the psychological and behavioural effects of psychoactive drugs is due the interaction they have with the nerve cells in the CNS (which includes the brain and peripheral nervous

More information

Using the frog sciatic nerve

Using the frog sciatic nerve PRO Lesson A03 COMPOUND ACTION POTENTIAL: NERVE CONDUCTION Using the frog sciatic nerve Developed in conjunction with Department of Biology, University of Northern Iowa, Cedar Falls 10.23.2015 This PRO

More information

Modes of Membrane Transport

Modes of Membrane Transport Modes of Membrane Transport Transmembrane Transport movement of small substances through a cellular membrane (plasma, ER, mitochondrial..) ions, fatty acids, H 2 O, monosaccharides, steroids, amino acids

More information

U N IT 10 NE RVOUS SYS TE M REVIEW 1. Which of the following is controlled by the somatic nervous system? A. rate of heartbeat B.

U N IT 10 NE RVOUS SYS TE M REVIEW 1. Which of the following is controlled by the somatic nervous system? A. rate of heartbeat B. U N IT 10 NE RVOUS SYS TE M REVIEW 1. Which of the following is controlled by the somatic nervous system? A. rate of heartbeat B. contraction of skeletal muscles C. increased blood flow to muscle tissue

More information

Muscle Physiology. Lab 5. Human Muscle Physiology

Muscle Physiology. Lab 5. Human Muscle Physiology Lab 5 Human At the beginning of lab you will have the opportunity for 2 bonus points! You must guess which person in the class will have: 1) Maximum Grip Force 2) Longest time to half-max Force (longest

More information

How Brain Cells Work. Part II The Action Potential

How Brain Cells Work. Part II The Action Potential How Brain Cells Work. Part II The Action Potential Silvia Helena Cardoso, PhD, Luciana Christante de Mello, MSc and Renato M.E. Sabbatini,PhD Animation and Art: André Malavazzi Electricity is a natural

More information

Chapter 3. Nerve Conduction in Frogs and Humans. Elizabeth Vizsolyi

Chapter 3. Nerve Conduction in Frogs and Humans. Elizabeth Vizsolyi Chapter 3 Nerve Conduction in Frogs and Humans Elizabeth Vizsolyi Department of Zoology University of British Columbia Vancouver, British Columbia V6T 2A9 Elizabeth Vizsoyi received her BSc degree from

More information

Dash 18X / Dash 18 Data Acquisition Recorder

Dash 18X / Dash 18 Data Acquisition Recorder 75 Dash 18X / Dash 18 Data Acquisition Recorder QUICK START GUIDE Supports Recorder System Software Version 3.1 1. INTRODUCTION 2. GETTING STARTED 3. HARDWARE OVERVIEW 4. MENUS & BUTTONS 5. USING THE DASH

More information

Nervous Tissue Dr. Archana Rani Associate Professor Department of Anatomy KGMU UP, Lucknow

Nervous Tissue Dr. Archana Rani Associate Professor Department of Anatomy KGMU UP, Lucknow 13.01.2015 Nervous Tissue Dr. Archana Rani Associate Professor Department of Anatomy KGMU UP, Lucknow Introduction Property of irritability and conductivity Respond to various types of stimuli Distributed

More information

Absorption of Drugs. Transport of a drug from the GI tract

Absorption of Drugs. Transport of a drug from the GI tract Absorption of Drugs Absorption is the transfer of a drug from its site of administration to the bloodstream. The rate and efficiency of absorption depend on the route of administration. For IV delivery,

More information

SAM Teachers Guide Heat and Temperature

SAM Teachers Guide Heat and Temperature SAM Teachers Guide Heat and Temperature Overview Students learn that temperature measures average kinetic energy, and heat is the transfer of energy from hot systems to cold systems. They consider what

More information

Introduction to Cardiac Electrophysiology, the Electrocardiogram, and Cardiac Arrhythmias INTRODUCTION

Introduction to Cardiac Electrophysiology, the Electrocardiogram, and Cardiac Arrhythmias INTRODUCTION Introduction to Cardiac Electrophysiology, the Electrocardiogram, and Cardiac Arrhythmias Alfred E. Buxton, M.D., Kristin E. Ellison, M.D., Malcolm M. Kirk, M.D., Gregory F. Michaud, M.D. INTRODUCTION

More information

ELECTROCARDIOGRAPHY (I) THE GENESIS OF THE ELECTROCARDIOGRAM

ELECTROCARDIOGRAPHY (I) THE GENESIS OF THE ELECTROCARDIOGRAM ELECTROCARDIOGRAPHY (I) THE GENESIS OF THE ELECTROCARDIOGRAM Scridon Alina, Șerban Răzvan Constantin 1. Definition The electrocardiogram (abbreviated ECG or EKG) represents the graphic recording of electrical

More information

For thousands of years, humans have aspired to create intelligent. The Nervous System CHAPTER. Chapter Concepts

For thousands of years, humans have aspired to create intelligent. The Nervous System CHAPTER. Chapter Concepts CHAPTER 11 The Nervous System Chapter Concepts 11.1 Structures and Processes of the Nervous System Homeostasis is maintained in the human body by the various parts of the nervous system. Neural transmission

More information

What role does the nucleolus have in cell functioning? Glial cells

What role does the nucleolus have in cell functioning? Glial cells Nervous System Lab The nervous system of vertebrates can be divided into the central nervous system, which consists of the brain and spinal cord, and the peripheral nervous system, which contains nerves,

More information

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

Anatomy and Physiology Placement Exam 2 Practice with Answers at End! Anatomy and Physiology Placement Exam 2 Practice with Answers at End! General Chemical Principles 1. bonds are characterized by the sharing of electrons between the participating atoms. a. hydrogen b.

More information

Chapter 15. The Autonomic Nervous. The Autonomic Nervous System. Autonomic Motor Pathways. ANS vs. SNS

Chapter 15. The Autonomic Nervous. The Autonomic Nervous System. Autonomic Motor Pathways. ANS vs. SNS The Autonomic Nervous System Chapter 15 The subconscious involuntary nervous system Regulates activity of smooth muscle, cardiac muscle & certain glands The Autonomic Nervous System 1 2 ANS vs. SNS Somatic

More information

Chapter 8. Movement across the Cell Membrane. AP Biology

Chapter 8. Movement across the Cell Membrane. AP Biology Chapter 8. Movement across the Cell Membrane More than just a barrier Expanding our view of cell membrane beyond just a phospholipid bilayer barrier phospholipids plus Fluid Mosaic Model In 1972, S.J.

More information

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes? Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control

More information

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law. 260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

More information