Chosen problems and their final solutions of Chap. 2 (Waldron) Par 1


 Gervais French
 3 years ago
 Views:
Transcription
1 Chosen problems and their final solutions of Chap. 2 (Waldron) Par 1 1. In the mechanism shown below, link 2 is rotating CCW at the rate of 2 rad/s (constant). In the position shown, link 2 is horizontal and link 4 is vertical. Write the appropriate vector equations, solve them using vector polygons, and b) determine a C4, α 3, and α 4. Link lengths: AB = 75 mm, CD = 100 mm. Sol: (a) v C4 = 43 mm/ s ω 3 = 0.86 rad / s CW, ω 4 = 0.43 rad / s CW. (b) a C4 = 435 mm/ s 2, α 3 = rad/s 2 CCW, α 4 = rad/s 2 CCW. 2. In the mechanism shown below, link 2 is rotating CCW at the rate of 500 rad/s (constant). In the position shown, link 2 is vertical. Write the appropriate vector equations, solve them using vector polygons, and b) determine a C4, α 3, and α 4. Link lengths: AB = 1.2 in, BC = 2.42 in, CD = 2 in Sol: (a) v C4 = 858 in/ s ω 3 = rad / s CCW, ω 4 = 429 rad / s CCW. (b) a C4 = in/ s 2, α 3 = rad/s 2 CW, α 4 = rad/s 2 CW. 3. In the mechanism shown below, link 2 is rotating CW at the rate of 10 rad/s (constant). In the position shown, link 4 is vertical. Write the appropriate vector equations, solve them using vector polygons, and b) determine a C4, α 3, and 4. Link lengths: AB = 100 mm, BC = 260 mm, CD = 180 mm Sol: (a) v C4 = 990 mm/ s ω 3 = 0.12 rad / s CCW, ω 4 = 5.5 rad / s CW. (b) a C4 = 5700 mm/ s 2, α 3 = 18.4 rad/s 2 CCW, α 4 = 9.88 rad/s 2 CW.
2 4. In the mechanism shown below, link 2 is rotating CW at the rate of 4 rad/s (constant). In the position shown, θ is 53. Write the appropriate vector equations, solve them using vector polygons, and link lengths: AB = 100 mm, BC = 160 mm, CD = 200 mm, b) determine a C4, α 3, and α 4. Sol: (a) v C4 = 300 mm/ s ω 3 = rad / s CCW, ω 4 = 1.5 rad / s CW. (b) a C4 = 3250 mm/ s 2, α 3 = 3.87 rad/s 2 CCW, α 4 = 16.1 rad/s 2 CW. 5. In the mechanism shown below, link 2 is rotating CCW at the rate of 4 rad/s (constant). In the position shown, link 2 is horizontal. Write the appropriate vector equations, solve them using vector polygons, and link lengths: AB = 1.25 in, BC = 2.5 in, CD = 2.5 in, a) Determine v C4, ω 3, and ω 4. b) Determine a C4, α 3, and α 4. Sol: (a) v C4 = 3.75 in/ s ω 3 = 2.5 rad / s CCW, ω 4 = 1.5 rad / s CW. (b) a C4 = 7.32 in/ s 2, α 3 = 1.87 rad/s 2 CCW, α 4 = 1.87 rad/s 2 CW. 6. In the mechanism shown below, link 2 is rotating CW at the rate of 100 rad/s (constant). In the position shown, link 2 is horizontal. Write the appropriate vector equations, solve them using vector polygons, and link lengths: AB = 60 mm, BC = 200 mm. a) Determine v C4 and ω 3. b) Determine a C4 and α 3. Sol: (a) v C4 = 4500 mm/ s ω 3 = 0.12 rad / s CW, (b) a C4 = mm/ s 2, α 3 = 1060 rad/s 2 CCW,
3 7. In the mechanism shown below, link 4 is moving to the left at the rate of 4 ft/s (constant). Link lengths: AB = 10 ft, BC = 20 ft. Write the appropriate vector equations, solve them using vector polygons, and a) Determine ω 3 and ω 4. b) Determine α 3 and α 4. Sol: ω 3 =.115 rad / s CW, ω 4 =0 rad / s; α 3 = rad/s 2 CW, α 4.= 0 rad/s In the mechanism shown below, link 4 is moving to the right at the rate of 20 in/s (constant). Link lengths: AB = 5 in, BC = 5 in. Write the appropriate vector equations, solve them using vector polygons, and a) Determine ω 3 and ω 4. b) Determine α 3 and α 4. Sol: ω 3 = 2.82 rad / s CW, ω 4 = 0 rad / s; α 3 = 7.76 rad/s 2 CCW, α 4.= 0 rad/s In the mechanism shown below, link 4 is moving to the left at the rate of 0.6 ft/s (constant). Write the appropriate vector equations, solve them using vector polygons, and determine the velocity and acceleration of point A 3. Link lengths: AB = 5 in, BC = 5 in. Sol: v A3 = 1.34 ft/s, a A3 = 4.93 ft/s 2.
4 10. In the mechanism shown below, link 4 moves to the right with a constant velocity of 75 ft/s. Link lengths: AB = 4.8 in, BC =16.0 in, BG = 6.0 in. Write the appropriate vector equations, solve them using vector polygons, and a) Determine v B2, v G3, ω 2, and ω 3. b) Determine a B2, a G3, α 2, and α 3. Sol: (a) v B2 = 91.2 ft/s, v G3 = 79 ft/s, ω 3 = 52 rad / s CCW, ω 2 = 228 rad / s CW. (b) a B2 = ft/ s 2, a G3 = ft/ s 2, α 3 = rad/s 2 CW, α 2 = rad/s 2 CW 11. For the fourbar linkage, assume that ω 2 = 50 rad/s CW and α 2 = 1600 rad/s 2 CW. Write the appropriate vector equations, solve them using vector polygons, and a) Determine v B2, v E3, ω 3, and ω 4. b) Determine a E3, α 3, and α 4. Sol: (a) v B2 = 87.5 in/s, v E3 = in/s, ω 3 = 12.7 rad / s CW, ω 4 = 33.7 rad / s CW. (b) a E3 = 5958 in/ s 2, α 3 = 303 rad/s 2 CW, α 4 = rad/s 2 CW. 12. In the mechanism shown below, link 2 is rotating CW at the rate of 180 rad/s. Link lengths: AB = 4.6 in, BC = 12.0 in, AD = 15.2 in, CD = 9.2 in, EB = 8.0 in, CE = 5.48 in. Write the appropriate vector equations, solve them using vector polygons, and a) Determine v E3, ω 3, and ω 4. b) Determine a C3, a E3, α 3, and α 4. Sol: (a) v E3 = 695 in/s, ω 3 = 48.6 rad / s CCW, ω 4 = 51.6 rad / s CW. (b) a C3 = in/ s 2, a E3 = in/ s 2, α 3 = 8073 rad/s 2 CW, α 4 = rad/s 2 CW.
5 13. The accelerations of points A and B in the coupler below are as given. Determine the acceleration of the center of mass G and the angular acceleration of the body. Draw the vector representing a G from G. Sol: α = 1122 rad/s 2 CW, a G = 6980 in/s Crank 2 of the pushlink mechanism shown in the figure is driven at a constant angular velocity ω 2 = 60 rad/s (CW). Find the velocity and acceleration of point F and the angular velocity and acceleration of links 3 and 4. Sol: v F3 = 4.94 m/s, ω 3 = rad/s CW, ω 4 = rad/s CW, α 3 = 484 rad/s 2 CW, α 4 = 136 rad/s 2 CCW, a F3 = 256 m/s For the straightline mechanism shown in the figure, ω 2 = 20 rad/s (CW) and α 2 = 140 rad/s 2 (CW). Determine the velocity and acceleration of point B and the angular acceleration of link 3. Sol: v B3 = 77.3 in/s, ω 3 = 20 rad/s CCW, α 3 = 140 rad/s 2 CCW, a B3 = 955 in/s2.
6 16. For the data given in the figure below, find the velocity and acceleration of points B and C. Assume v A = 20 ft/s, a A = 400 ft/s 2, ω 2 = 24 rad/s (CW), and α 2 = 160 rad/s 2 (CCW). Sol: v B = 11.9 ft/s, v C = ft/s, a B = ft/s 2, a C = ft/s In the mechanism shown below, link 2 is turning CCW at the rate of 10 rad/s (constant). Draw the velocity and acceleration polygons for the mechanism, and determine a G3 and α 4. Sol: α 4 = rad/s 2 CW, a G3 = 116 in/s If ω 2 = 100 rad/s CCW (constant) find the velocity and acceleration of point E. Sol: v E =28.4 in/s, a E = 4600 in/s 2.
SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS  VELOCITY AND ACCELERATION DIAGRAMS
SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS  VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering
More informationProblem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s
Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to
More informationSolution: Angular velocity in consistent units (Table 8.1): 753.8. Velocity of a point on the disk: Rate at which bits pass by the read/write head:
Problem P8: The disk in a computer hard drive spins at 7200 rpm At the radius of 0 mm, a stream of data is magnetically written on the disk, and the spacing between data bits is 25 μm Determine the number
More informationSOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES
SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES This work covers elements of the syllabus for the Edexcel module 21722P HNC/D Mechanical Principles OUTCOME 4. On completion of this tutorial
More informationAngular acceleration α
Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 70 Linear and Circular Motion Compared Slide 7 Linear and Circular Kinematics Compared Slide 7
More informationKINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES
KINEMTICS OF PRTICLES RELTIVE MOTION WITH RESPECT TO TRNSLTING XES In the previous articles, we have described particle motion using coordinates with respect to fixed reference axes. The displacements,
More informationwww.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
More informationCentripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.
Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.
More informationCHAPTER 15 FORCE, MASS AND ACCELERATION
CHAPTER 5 FORCE, MASS AND ACCELERATION EXERCISE 83, Page 9. A car initially at rest accelerates uniformly to a speed of 55 km/h in 4 s. Determine the accelerating force required if the mass of the car
More informationRotational Inertia Demonstrator
WWW.ARBORSCI.COM Rotational Inertia Demonstrator P33545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended
More informationENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION
ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION This tutorial covers prerequisite material and should be skipped if you are
More informationChapter 7 Homework solutions
Chapter 7 Homework solutions 8 Strategy Use the component form of the definition of center of mass Solution Find the location of the center of mass Find x and y ma xa + mbxb (50 g)(0) + (10 g)(5 cm) x
More information3600 s 1 h. 24 h 1 day. 1 day
Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationLecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6
Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.
More informationPHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
More informationHW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 1030 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 1033 ). The bullet emerges from the
More informationMechanical Principles
Unit 4: Mechanical Principles Unit code: F/601/1450 QCF level: 5 Credit value: 15 OUTCOME 4 POWER TRANSMISSION TUTORIAL 2 BALANCING 4. Dynamics of rotating systems Single and multilink mechanisms: slider
More informationHand Held Centripetal Force Kit
Hand Held Centripetal Force Kit PH110152 Experiment Guide Hand Held Centripetal Force Kit INTRODUCTION: This elegantly simple kit provides the necessary tools to discover properties of rotational dynamics.
More informationACCELERATION OF HEAVY TRUCKS Woodrow M. Poplin, P.E.
ACCELERATION OF HEAVY TRUCKS Woodrow M. Poplin, P.E. Woodrow M. Poplin, P.E. is a consulting engineer specializing in the evaluation of vehicle and transportation accidents. Over the past 23 years he has
More informationModule 8 Lesson 4: Applications of Vectors
Module 8 Lesson 4: Applications of Vectors So now that you have learned the basic skills necessary to understand and operate with vectors, in this lesson, we will look at how to solve real world problems
More informationChapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.
Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed
More informationPHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013
PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.
More informationANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME  TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
More informationChapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.
Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems
More informationGoals Rotational quantities as vectors. Math: Cross Product. Angular momentum
Physcs 106 Week 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap 11.2 to 3 Rotatonal quanttes as vectors Cross product Torque expressed as a vector Angular momentum defned Angular momentum as a
More informationMechanics lecture 7 Moment of a force, torque, equilibrium of a body
G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and
More informationPhysics 231 Lecture 15
Physics 31 ecture 15 Main points of today s lecture: Simple harmonic motion Mass and Spring Pendulum Circular motion T 1/f; f 1/ T; ω πf for mass and spring ω x Acos( ωt) v ωasin( ωt) x ax ω Acos( ωt)
More informationCenter of Gravity. We touched on this briefly in chapter 7! x 2
Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.
More informationA vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
More informationColumbia University Department of Physics QUALIFYING EXAMINATION
Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of
More informationAP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s
AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital
More informationPhysics 1A Lecture 10C
Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. Oprah Winfrey Static Equilibrium
More informationTorque and Rotary Motion
Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straightforward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,
More informationLecture L5  Other Coordinate Systems
S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5  Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates
More informationLecture Presentation Chapter 7 Rotational Motion
Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class
More informationTorque Analyses of a Sliding Ladder
Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while
More informationMotor Selection and Sizing
Motor Selection and Sizing Motor Selection With each application, the drive system requirements greatly vary. In order to accommodate this variety of needs, Aerotech offers five types of motors. Motors
More informationSpring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations
Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring
More informationVectors VECTOR PRODUCT. Graham S McDonald. A Tutorial Module for learning about the vector product of two vectors. Table of contents Begin Tutorial
Vectors VECTOR PRODUCT Graham S McDonald A Tutorial Module for learning about the vector product of two vectors Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk 1. Theory 2. Exercises
More informationExample SECTION 131. XAXIS  the horizontal number line. YAXIS  the vertical number line ORIGIN  the point where the xaxis and yaxis cross
CHAPTER 13 SECTION 131 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants XAXIS  the horizontal
More informationChapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
More informationPhysics 201 Homework 8
Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 Nm is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kgm 2. What is the
More information11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
More informationPrelab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section
Prelab Quiz/PHYS 224 Magnetic Force and Current Balance Your name Lab section 1. What do you investigate in this lab? 2. Two straight wires are in parallel and carry electric currents in opposite directions
More informationServo Motor Selection Flow Chart
Servo otor Selection Flow Chart START Selection Has the machine Been Selected? YES NO Explanation References etermine the size, mass, coefficient of friction, and external forces of all the moving part
More informationChapter. 4 Mechanism Design and Analysis
Chapter. 4 Mechanism Design and Analysis 1 All mechanical devices containing moving parts are composed of some type of mechanism. A mechanism is a group of links interacting with each other through joints
More informationTOP VIEW. FBD s TOP VIEW. Examination No. 2 PROBLEM NO. 1. Given:
RLEM N. 1 Given: Find: vehicle having a mass of 500 kg is traveling on a banked track on a path with a constant radius of R = 1000 meters. t the instant showing, the vehicle is traveling with a speed of
More informationPhysics 1120: Simple Harmonic Motion Solutions
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured
More information226 Chapter 15: OSCILLATIONS
Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion
More informationSlide 10.1. Basic system Models
Slide 10.1 Basic system Models Objectives: Devise Models from basic building blocks of mechanical, electrical, fluid and thermal systems Recognize analogies between mechanical, electrical, fluid and thermal
More informationPHYS 1014M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
PHYS 1014M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in
More informationUniversal Law of Gravitation
Universal Law of Gravitation Law: Every body exerts a force of attraction on every other body. This force called, gravity, is relatively weak and decreases rapidly with the distance separating the bodies
More informationLong Run Economic Growth Agenda. Longrun Economic Growth. Longrun Growth Model. Longrun Economic Growth. Determinants of Longrun Growth
Long Run Economic Growth Agenda Longrun economic growth. Determinants of longrun growth. Production functions. Longrun Economic Growth Output is measured by real GDP per capita. This measures our (material)
More informationSOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi.
SOLID MECHANICS DYNAMICS TUTOIAL MOMENT OF INETIA This work covers elements of the following syllabi. Parts of the Engineering Council Graduate Diploma Exam D5 Dynamics of Mechanical Systems Parts of the
More informationAcceleration due to Gravity
Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision
More informationVector Algebra and Calculus
Vector Algebra and Calculus 1. Revision of vector algebra, scalar product, vector product 2. Triple products, multiple products, applications to geometry 3. Differentiation of vector functions, applications
More informationUse Of Hoeken s And Pantograph Mechanisms For Carpet Scrapping Operations
Use Of Hoeken s And Pantograph Mechanisms For Carpet Scrapping Operations S.K. Saha, Rajendra Prasad 1 and Ananta K. Mandal 1 Department of Mechanical Engineering IIT Delhi, Hauz Khas, New Delhi 110016
More informationCandidate Number. General Certificate of Education Advanced Level Examination June 2014
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday
More informationv v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationPhysical Quantities, Symbols and Units
Table 1 below indicates the physical quantities required for numerical calculations that are included in the Access 3 Physics units and the Intermediate 1 Physics units and course together with the SI
More informationWhy should we learn this? One realworld connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY
Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the intercept. One realworld connection is to find the rate
More informationWind Turbines. Wind Turbines 2. Wind Turbines 4. Wind Turbines 3. Wind Turbines 5. Wind Turbines 6
Wind Turbines 1 Wind Turbines 2 Introductory Question Wind Turbines You and a child half your height lean out over the edge of a pool at the same angle. If you both let go simultaneously, who will tip
More informationSome Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)
Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving
More informationUnit 4 Practice Test: Rotational Motion
Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle
More informationFigure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
More informationLab 7: Rotational Motion
Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME9472), string with loop at one end and small white bead at the other end (125
More informationEDUH 1017  SPORTS MECHANICS
4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017  SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use
More informationMidterm Exam 1 October 2, 2012
Midterm Exam 1 October 2, 2012 Name: Instructions 1. This examination is closed book and closed notes. All your belongings except a pen or pencil and a calculator should be put away and your bookbag should
More informationManufacturing Equipment Modeling
QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,
More informationLecture L253D Rigid Body Kinematics
J. Peraire, S. Winall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L253D Rigi Boy Kinematics In this lecture, we consier the motion of a 3D rigi boy. We shall see that in the general threeimensional
More information2. To set the number of data points that will be collected, type n.
Force and Motion In this experiment, you will explore the relationship between force and motion. You are given a car with tabs, a string, a pully, a weight hanger, some weights, and the laser gate you
More informationSIX DEGREEOFFREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE. A thesis presented to. the faculty of
SIX DEGREEOFFREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirement
More informationChapter 11 Equilibrium
11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of
More informationObjective: Equilibrium Applications of Newton s Laws of Motion I
Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (111) Read (4.14.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform
More information3 Work, Power and Energy
3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy
More informationDEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTISTAGE RUBBER BEARINGS FOR VIBRATION CONTROL OF STRUCTURES
13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 16, 2004 Paper No. 2243 DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTISTAGE RUBBER BEARINGS FOR
More informationMidterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
More information4.2 Free Body Diagrams
CE297FA09Ch4 Page 1 Friday, September 18, 2009 12:11 AM Chapter 4: Equilibrium of Rigid Bodies A (rigid) body is said to in equilibrium if the vector sum of ALL forces and all their moments taken about
More informationNewton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.
Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:
More informationPhysics 211: Lab Oscillations. Simple Harmonic Motion.
Physics 11: Lab Oscillations. Siple Haronic Motion. Reading Assignent: Chapter 15 Introduction: As we learned in class, physical systes will undergo an oscillatory otion, when displaced fro a stable equilibriu.
More informationLecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is
Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.49.6, 10.110.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of
More informationPhysics 160 Biomechanics. Angular Kinematics
Physics 160 Biomechanics Angular Kinematics Questions to think about Why do batters slide their hands up the handle of the bat to lay down a bunt but not to drive the ball? Why might an athletic trainer
More informationCabri Geometry Application User Guide
Cabri Geometry Application User Guide Preview of Geometry... 2 Learning the Basics... 3 Managing File Operations... 12 Setting Application Preferences... 14 Selecting and Moving Objects... 17 Deleting
More informationP4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures
4 Stress and Strain Dr... Zavatsky MT07 ecture 3 Statically Indeterminate Structures Statically determinate structures. Statically indeterminate structures (equations of equilibrium, compatibility, and
More informationSample Questions for the AP Physics 1 Exam
Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiplechoice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each
More informationLinear Motion vs. Rotational Motion
Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a
More informationChapter 8: Rotational Motion of Solid Objects
Chapter 8: Rotational Motion of Solid Objects 1. An isolated object is initially spinning at a constant speed. Then, although no external forces act upon it, its rotational speed increases. This must be
More informationPhysics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
More informationVector Algebra II: Scalar and Vector Products
Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define
More informationPhysics 111 Homework Solutions Week #9  Tuesday
Physics 111 Homework Solutions Week #9  Tuesday Friday, February 25, 2011 Chapter 22 Questions  None MultipleChoice 223 A 224 C 225 B 226 B 227 B 229 D Problems 227 In this double slit experiment we
More informationUnified Lecture # 4 Vectors
Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,
More informationHalliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 131 Newton's Law
More informationPresentation of problem T1 (9 points): The Maribo Meteorite
Presentation of problem T1 (9 points): The Maribo Meteorite Definitions Meteoroid. A small particle (typically smaller than 1 m) from a comet or an asteroid. Meteorite: A meteoroid that impacts the ground
More informationAngular Velocity vs. Linear Velocity
MATH 7 Angular Velocity vs. Linear Velocity Dr. Neal, WKU Given an object with a fixed speed that is moving in a circle with a fixed ius, we can define the angular velocity of the object. That is, we can
More informationTennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an Fgrade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
More information1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D
Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
More informationMotion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes:
Motion Graphs 1 Name Motion Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes graphs help make motion easier to picture, and therefore understand. Remember: Motion
More information