A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy Scurve Regression


 Richard Black
 2 years ago
 Views:
Transcription
1 Novel Methodology of Workng Captal Management for Large Publc Constructons by Usng Fuzzy Scurve Regresson ChengWu Chen, Morrs H. L. Wang and TngYa Hseh Department of Cvl Engneerng, Natonal Central Unversty, No. 38, Wuchuan L Chungl, Taoyuan, Tawan 320, R.O.C. bstract In the contractng busness, constructon frms are generally more concerned wth shortterm fnancal strateges than the longterm ones. Workng captal management s the central ssue of all shortterm fnancal concerns. More mportantly, cash management s ultmate goal for achevng hgh lqudty and proftablty. Ths study focuses on the cash porton of workng captal management by usng the concept of target cash balance. The am s to develop a practcal model for constructon frms n Tawan for ratonalzng the amount of cash and current assets, whch should be possessed n any pont of tme. The Fuzzy Scurve regresson s ntroduced here for understandng the ssues nvolved. Based on the project cash flow and progress payment records of an example project taken from Housng and Urban Development Bureau, Tawan Provncal Government, ths model s demonstrated and tentatve conclusons concernng the model are gven. Key words: Fuzzy Scurve regresson, workng captal management, cash flow. Introducton In the presentday research of complex systems, such as engneerng technology, envronment and socetal economy, become large n dmenson and complexty so that the exact numercal data can not be obtaned for the nformaton of systems. To solve the problems arsng from complex systems may become very neffcent or even mpossble f usng the tradtonal uthor to whom all correspondence should be addressed
2 mathematcal tools that are not constructed for dealng wth hgh dmensonalty models. Smlarly, the tradtonal least square regresson may not be applcable when dealng wth curve fttng problems. In the past twenty years, some approaches contanng fuzzy nformaton have been attractng ncreasngly attenton, as proposed n the lterature [4]. Tanaka et al. [] develop a fuzzy lnear regresson model by usng lnear programmng technques n 982. In 988, Damond [2] resembled tradtonal least squares regresson to establsh fuzzy lnear least squares models. Ruonng [34] consdered the ratonalty of metrc defnton and dscussed the problem for least squares fttng of fuzzyvalue data, whch are expressed as fuzzy numbers, and to develop an Sshaped curve regresson model for fttng ths type of data. The characterstcs of large publc constructons are largescaled, tmelmted, hgh cost, and complextechncal etc., and there are many uncertan factors n whch. Therefore, to perform ths knda project s dffcult, especally for program and dspatch of workng captal. In order to overcome the problem of controllng projects, the Scurves are wdely used. They are valuable to project management n reportng current status and predcton the future of projects. Therefore, the Stype dstrbuton s very sutable n regresson on constructon management and socal economy etc. However, as far as we know, the workng captal management for large publc constructons by usng fuzzy Scurve regresson remans unresolved yet. Ths study s organzed as follows. Frst, classc Scurve theory s recalled. Then, based on fuzzy set theory and fuzzy nference engne as well as center of gravty defuzzfcaton, a fuzzy Scurve s obtaned for curve fttng problems. Fnally, a numercal example wth smulatons s gven to demonstrate the methodology, and the conclusons are drawn. Classc SCurve Theory In bology and socal economy, an Sshaped cure s often used to reflect the phenomena. It means that the trend of growth gets slow frst and fnally saturaton rapdly. In practcal problem 2
3 of constructons, contractors budgets are often performed on an overall bass. Changes n strateges and mx of contracts are ver dffcult to evaluate on such a bass [5]. Therefore, the prncple of smulaton wth tools of computer was proposed to generate possble scenaros based on the specfed strateges and the expected envronment. The relatonshp between budgets and tme lmt for a project can be represented va Scurve fttng. typcal Scurve fgure s shown n Fg.. The xaxs and yaxs denote project duraton and complete progress, respectvely. Mskaw [6] proposed an Scurve equaton whch can be used n a varety of applcatons related to project control. The Scurve model s of the followng form: T 3 π ( T ) T + (.5 Tp ) 3 2 P = sn sn( T ) log 2T + 3T 2 2 π () Tp T + where P denotes percentage completon of a project or an actvty; T denotes tme at any pont of the duraton of a project or an actvty; T P s shape factor. Fg. 2 s plotted wth varous values of T P between T = 0 and T = 00% duraton and the envelope of curves for T P = 0 and T P = 00% n Eq. (). Here we suppose we can exactly get all observed data takng part n the problems, but, actually, we may not know exact values, rather some approxmaton. For ths reason, the tradtonal fttng method may not be qute sutable. Before ntroducng fuzzy Scurve regresson, we gve some relatve defntons and conclusons n the followng. Fuzzy Set Theory Defnton : Let R s a real number set. fuzzy set ~ on R s sad to be a fuzzy number f the followng condtons are satsfed: () x 0 R, such that µ ~ x ) = ; and membershp functon µ ~ ( x) s pecewse contnuous; and (2) (0,] ( 0, { x µ ~ ( x), x R} s a convex set on R. 3
4 Where x s the mean value of 0 ~ and s a crsp set. The convex set means that x x, x ], f x) mn( f ( x ), f ( )). [ 2 ( x2 Defnton 2: fuzzy number ~ s sad to be bounded f supp( ~ ) { x ~ ( x) > 0} set. Where supp( ~ ) s a crsp set. µ s a bounded Evdently for any ( 0, ] the level set, ~, wll be expressed as a closed nterval [ p, q]. Based on the fuzzy extenson prncple [7], lnear operatons about closed ntervals are obtaned as follows: Lemma : Let [a, b], [d, e] be closed ntervals of real number. Then [a, b] + [d, e] = [ a + d, b + e] ; [a, b] [d, e] = [ a e, b d], (2) [a, b] [d, e] = [mn( ad, ae, b d,be), max( ad, ae, b d,be)] ; (3) [a, b] / [ d, e] = [a, b] [ / e, /d] = [mn( a / d, a / e, b / d,b / e), max( a / d, a / e, b / d,b / e) ]. (4) Remark : Gven any operatons whch have commutatve and assocatve characterstcs, the operatons of extenson stll have these characters. From the theory of level descrbed above and decomposton theorem [8], we have ( B) B (5) U (0,] B ( B) (6) where denotes any arthmetc operaton; and B are fuzzy numbers and B wll be a fuzzy number. Remark 2: Wang et al. [9] proposed that the resultant fuzzy number s the same type as the orgnal fuzzy numbers after the operaton of addton or subtracton. Defnton 3: Extended Operatons for Representaton of Fuzzy Sets fuzzy number ~ s type, f there exsts postve constants β >0, γ >0 and 4
5 m x L for x m β µ ~ ( x) = (7) x m R for x m γ where m, a real number, s mean value of ~ ; β, γ denote left spread and rght spread, respectvely; moreover, ~ could be represented as ( m, β, γ ). Lemma 2: Gven two type fuzzy numbers ~ and B ~, we have ( m, β, γ ) ( m, β, γ ) ( n, δ, η) = ( m n, β δ, γ + η) (8) ( n, δ, η) = ( m n, β + η, γ + δ ) (9) Scurve va Fuzzy Inference Engne fuzzy nference s descrbed by a set of fuzzy IFTHEN rules n the followng form: Rule : IF x ~ ~ s, s and y B L and x ng s ~ ng, y ng s ~ B n g THEN Y = a x + b (0) k k k where n ponts x, y ) ~ ( x n, y ) and k order curve fttng s adopted and r s the number of ( n IFTHEN rules for =,2, L, r ; ~ np and B ~ np ( p =, 2, L, g ) are the type fuzzy sets, and x ~ x ng as well as ng y ~ y are the premse varables. Usng the center of gravty defuzzfcaton, product nference, and sngle fuzzfer, the fnal output s nferred as follows: r k w ( t)[ ak x + bk ] r = k x& ( t) = = r h ( t)( ak x + bk ) = w ( t) = () It s assumed that w ( t) 0, =,2, L, r; w ( t) > 0. Therefore, h ( t) 0 and r = h ( t) = for all t. r = 5
6 Example To llustrate the procedure of ths fuzzy regresson model, consder the followng example project, whch s taken from Housng and Urban Development Bureau, Tawan Provncal Government. The data nclude seven metro bds of valuaton and the mean scale and the mean.of tme lmt for a project are 2.7 bllons and 6 years or so, respectvely. From the data whch are normalzed and represented by percentage frst, t s easly known that the frst tme of evaluaton 4.5% of total work tme. The observed data are gven n table, where the data M = (X, Y, u, v) are all trangular fuzzy numbers, and u =0 %, v = 0 % are the left and rght spreads respectvely. Fg.3 s the valuaton data of seven metro bds and Fg. 4 s plotted by the proposed fuzzy regresson. Moreover, from Fg.4, the smulaton results show that C = T T 49.49T T.98T T by fuzzy regresson approach, where C denotes the percentage of completeness (%), and T s tme (%). Conclusons The leastsquares method can usually be used to the problems of curve fttng, but when the observed data are not obtaned exactly t may not be sutable. Therefore, we propose here a Fuzzy Scurve regresson method here for understandng the ssues nvolved. The am fnally s to develop a practcal model for constructon frms n Tawan for ratonalzng the amount of cash and current assets, whch should be possessed n any pont of tme. Furthermore, from the smulaton results shown s Fgs. 34, there are somehow dscrete and delayed stuaton concernng the data. The progress of the former 30 % of tme lmt for a project s a bt slow. In addton, the frst evaluaton tme of total work s 4.5% when a contractor proposes. It mples that we have to notce the delayed phenomenon of cash flow and mantan the lqudty of cash n some degree n the control and management of cash to verfy the project can be fnshed smoothly and successfully. 6
7 References [] H. Tanaka, S Uejma and K. sa, Lnear regresson analyss wth fuzzy model, IEEE Trans. SMCB. 2 (982) [2] P. Damond, Fuzzy least squares, Inform. Sc. 46 (988) [3] Xu Ruonng, lnear regresson model n fuzzy envronment, dv. Modellng Smulaton 27 (99) [4] Xu Ruonng, S curve regresson model n fuzzy envronment, Fuzzy sets and Syst. 90 (997) [5] Kaka,., P., Contractors fnancal budgetng usng computer smulaton, Constructon Management and Economcs, 2, pp.324, 994. [6] Mskaw, Z., n Scurve equaton for project control, Constructon Management and Economcs, 7, pp.524, 989. [7] L.. Zadeh, Fuzzy sets, Inform. and Control 8 (965) [8] G. J. Klr, B. Yuan, Fuzzy sets and fuzzy logc theory and applcatons, PrentcHall, Englewood Clffs, NJ, 995. [9] WenJune Wang and C.H. Chu, Entropy varaton on the fuzzy numbers wth arthmetc operatons, Fuzzy Sets and Systems, vol.03, no.3, pp , May
8 Fg.. Typcal Scurve fgure Fg.2. Mskaw Scurve model 8
9 Fg.3 The valuaton data of seven metro bds 00% y = x x x x x x R 2 = % 60% 40% 20% 0% 0% 20% 40% 60% 80% 00% Fg.4 n Scurve by fuzzy regresson method. 9
The OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
More informationCommunication Networks II Contents
8 / 1  Communcaton Networs II (Görg)  www.comnets.unbremen.de Communcaton Networs II Contents 1 Fundamentals of probablty theory 2 Traffc n communcaton networs 3 Stochastc & Marovan Processes (SP
More informationRESEARCH ON DUALSHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST) yaoqi.feng@yahoo.
ICSV4 Carns Australa 9 July, 007 RESEARCH ON DUALSHAKER SINE VIBRATION CONTROL Yaoq FENG, Hanpng QIU Dynamc Test Laboratory, BISEE Chna Academy of Space Technology (CAST) yaoq.feng@yahoo.com Abstract
More informationbenefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
More informationBERNSTEIN POLYNOMIALS
OnLne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful
More informationActivity Scheduling for CostTime Investment Optimization in Project Management
PROJECT MANAGEMENT 4 th Internatonal Conference on Industral Engneerng and Industral Management XIV Congreso de Ingenería de Organzacón Donosta San Sebastán, September 8 th 10 th 010 Actvty Schedulng
More informationRecurrence. 1 Definitions and main statements
Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.
More informationOn the Optimal Control of a Cascade of HydroElectric Power Stations
On the Optmal Control of a Cascade of HydroElectrc Power Statons M.C.M. Guedes a, A.F. Rbero a, G.V. Smrnov b and S. Vlela c a Department of Mathematcs, School of Scences, Unversty of Porto, Portugal;
More informationFuzzy TOPSIS Method in the Selection of Investment Boards by Incorporating Operational Risks
, July 68, 2011, London, U.K. Fuzzy TOPSIS Method n the Selecton of Investment Boards by Incorporatng Operatonal Rsks Elssa Nada Mad, and Abu Osman Md Tap Abstract Mult Crtera Decson Makng (MCDM) nvolves
More information8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by
6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng
More informationModule 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
More informationAn Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services
An Evaluaton of the Extended Logstc, Smple Logstc, and Gompertz Models for Forecastng Short Lfecycle Products and Servces Charles V. Trappey a,1, Hsnyng Wu b a Professor (Management Scence), Natonal Chao
More information1 Example 1: Axisaligned rectangles
COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton
More informationStudy on CET4 Marks in China s Graded English Teaching
Study on CET4 Marks n Chna s Graded Englsh Teachng CHE We College of Foregn Studes, Shandong Insttute of Busness and Technology, P.R.Chna, 264005 Abstract: Ths paper deploys Logt model, and decomposes
More informationThe Analysis of Outliers in Statistical Data
THALES Project No. xxxx The Analyss of Outlers n Statstcal Data Research Team Chrysses Caron, Assocate Professor (P.I.) Vaslk Karot, Doctoral canddate Polychrons Economou, Chrstna Perrakou, Postgraduate
More informationANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING
ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING Matthew J. Lberatore, Department of Management and Operatons, Vllanova Unversty, Vllanova, PA 19085, 6105194390,
More informationRing structure of splines on triangulations
www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAMReport 201448 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon
More informationAnswer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy
4.02 Quz Solutons Fall 2004 MultpleChoce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multplechoce questons. For each queston, only one of the answers s correct.
More informationRiskbased Fatigue Estimate of Deep Water Risers  Course Project for EM388F: Fracture Mechanics, Spring 2008
Rskbased Fatgue Estmate of Deep Water Rsers  Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn
More informationA DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATIONBASED OPTIMIZATION. Michael E. Kuhl Radhamés A. TolentinoPeña
Proceedngs of the 2008 Wnter Smulaton Conference S. J. Mason, R. R. Hll, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATIONBASED OPTIMIZATION
More informationDEFINING %COMPLETE IN MICROSOFT PROJECT
CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMISP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,
More informationA Secure PasswordAuthenticated Key Agreement Using Smart Cards
A Secure PasswordAuthentcated Key Agreement Usng Smart Cards Ka Chan 1, WenChung Kuo 2 and JnChou Cheng 3 1 Department of Computer and Informaton Scence, R.O.C. Mltary Academy, Kaohsung 83059, Tawan,
More informationAn Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
More informationForecasting the Direction and Strength of Stock Market Movement
Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye cjngwe@stanford.edu mchen5@stanford.edu nanye@stanford.edu Abstract  Stock market s one of the most complcated systems
More informationInstitute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic
Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange
More informationSupport Vector Machines
Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.
More informationFormula of Total Probability, Bayes Rule, and Applications
1 Formula of Total Probablty, Bayes Rule, and Applcatons Recall that for any event A, the par of events A and A has an ntersecton that s empty, whereas the unon A A represents the total populaton of nterest.
More informationThe Development of Web Log Mining Based on ImproveKMeans Clustering Analysis
The Development of Web Log Mnng Based on ImproveKMeans Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna wangtngzhong2@sna.cn Abstract.
More informationgreatest common divisor
4. GCD 1 The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no
More informationProject Networks With MixedTime Constraints
Project Networs Wth MxedTme Constrants L Caccetta and B Wattananon Western Australan Centre of Excellence n Industral Optmsaton (WACEIO) Curtn Unversty of Technology GPO Box U1987 Perth Western Australa
More informationA DATA MINING APPLICATION IN A STUDENT DATABASE
JOURNAL OF AERONAUTICS AND SPACE TECHNOLOGIES JULY 005 VOLUME NUMBER (5357) A DATA MINING APPLICATION IN A STUDENT DATABASE Şenol Zafer ERDOĞAN Maltepe Ünversty Faculty of Engneerng BüyükbakkalköyIstanbul
More informationPERRON FROBENIUS THEOREM
PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, ()
More informationFuzzy Regression and the Term Structure of Interest Rates Revisited
Fuzzy Regresson and the Term Structure of Interest Rates Revsted Arnold F. Shapro Penn State Unversty Smeal College of Busness, Unversty Park, PA 68, USA Phone: 84865396, Fax: 84865684, Emal: afs@psu.edu
More informationExtending Probabilistic Dynamic Epistemic Logic
Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σalgebra: a set
More informationCalculating the high frequency transmission line parameters of power cables
< ' Calculatng the hgh frequency transmsson lne parameters of power cables Authors: Dr. John Dcknson, Laboratory Servces Manager, N 0 RW E B Communcatons Mr. Peter J. Ncholson, Project Assgnment Manager,
More informationThe Application of Fractional Brownian Motion in Option Pricing
Vol. 0, No. (05), pp. 738 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qngxn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn zhouqngxn98@6.com
More informationv a 1 b 1 i, a 2 b 2 i,..., a n b n i.
SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are
More informationHedging InterestRate Risk with Duration
FIXEDINCOME SECURITIES Chapter 5 Hedgng InterestRate Rsk wth Duraton Outlne Prcng and Hedgng Prcng certan cashflows Interest rate rsk Hedgng prncples DuratonBased Hedgng Technques Defnton of duraton
More informationInequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001.
Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.
More informationPerformance Management and Evaluation Research to University Students
631 A publcaton of CHEMICAL ENGINEERING TRANSACTIONS VOL. 46, 2015 Guest Edtors: Peyu Ren, Yancang L, Hupng Song Copyrght 2015, AIDIC Servz S.r.l., ISBN 9788895608372; ISSN 22839216 The Italan Assocaton
More informationResearch Article Enhanced TwoStep Method via Relaxed Order of αsatisfactory Degrees for Fuzzy Multiobjective Optimization
Hndaw Publshng Corporaton Mathematcal Problems n Engneerng Artcle ID 867836 pages http://dxdoorg/055/204/867836 Research Artcle Enhanced TwoStep Method va Relaxed Order of αsatsfactory Degrees for Fuzzy
More informationResourceconstrained Project Scheduling with Fuzziness
esourceconstraned Project Schedulng wth Fuzzness HONGQI PN, OBET J. WIIS, CHUNGHSING YEH School of Busness Systems Monash Unversty Clayton, Vctora 368 USTI bstract:  esourceconstraned project schedulng
More informationAbstract # 0150399 Working Capital Exposure: A Methodology to Control Economic Performance in Production Environment Projects
Abstract # 0150399 Workng Captal Exposure: A Methodology to Control Economc Performance n Producton Envronment Projects Dego F. Manotas. School of Industral Engneerng and Statstcs, Unversdad del Valle.
More informationAnalysis of Premium Liabilities for Australian Lines of Business
Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton
More informationThe covariance is the two variable analog to the variance. The formula for the covariance between two variables is
Regresson Lectures So far we have talked only about statstcs that descrbe one varable. What we are gong to be dscussng for much of the remander of the course s relatonshps between two or more varables.
More informationSPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:
SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and
More informationRisk Model of LongTerm Production Scheduling in Open Pit Gold Mining
Rsk Model of LongTerm Producton Schedulng n Open Pt Gold Mnng R Halatchev 1 and P Lever 2 ABSTRACT Open pt gold mnng s an mportant sector of the Australan mnng ndustry. It uses large amounts of nvestments,
More informationLuby s Alg. for Maximal Independent Sets using Pairwise Independence
Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent
More informationPerformance Analysis of Energy Consumption of Smartphone Running Mobile Hotspot Application
Internatonal Journal of mart Grd and lean Energy Performance Analyss of Energy onsumpton of martphone Runnng Moble Hotspot Applcaton Yun on hung a chool of Electronc Engneerng, oongsl Unversty, 511 angdodong,
More informationCredit Limit Optimization (CLO) for Credit Cards
Credt Lmt Optmzaton (CLO) for Credt Cards Vay S. Desa CSCC IX, Ednburgh September 8, 2005 Copyrght 2003, SAS Insttute Inc. All rghts reserved. SAS Propretary Agenda Background Tradtonal approaches to credt
More information"Research Note" APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES *
Iranan Journal of Scence & Technology, Transacton B, Engneerng, ol. 30, No. B6, 789794 rnted n The Islamc Republc of Iran, 006 Shraz Unversty "Research Note" ALICATION OF CHARGE SIMULATION METHOD TO ELECTRIC
More informationPolitecnico di Torino. Porto Institutional Repository
Poltecnco d Torno Porto Insttutonal Repostory [Artcle] A costeffectve cloud computng framework for acceleratng multmeda communcaton smulatons Orgnal Ctaton: D. Angel, E. Masala (2012). A costeffectve
More informationCausal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes causeandeffect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
More informationA hybrid global optimization algorithm based on parallel chaos optimization and outlook algorithm
Avalable onlne www.ocpr.com Journal of Chemcal and Pharmaceutcal Research, 2014, 6(7):18841889 Research Artcle ISSN : 09757384 CODEN(USA) : JCPRC5 A hybrd global optmzaton algorthm based on parallel
More informationCHAPTER 14 MORE ABOUT REGRESSION
CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp
More informationCan Auto Liability Insurance Purchases Signal Risk Attitude?
Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? ChuShu L Department of Internatonal Busness, Asa Unversty, Tawan ShengChang
More informationConstruction Rules for Morningstar Canada Target Dividend Index SM
Constructon Rules for Mornngstar Canada Target Dvdend Index SM Mornngstar Methodology Paper October 2014 Verson 1.2 2014 Mornngstar, Inc. All rghts reserved. The nformaton n ths document s the property
More informationFuzzy Set Approach To Asymmetrical Load Balancing In Distribution Networks
Fuzzy Set Approach To Asymmetrcal Load Balancng n Dstrbuton Networks Goran Majstrovc Energy nsttute Hrvoje Por Zagreb, Croata goran.majstrovc@ehp.hr Slavko Krajcar Faculty of electrcal engneerng and computng
More informationThe eigenvalue derivatives of linear damped systems
Control and Cybernetcs vol. 32 (2003) No. 4 The egenvalue dervatves of lnear damped systems by YeongJeu Sun Department of Electrcal Engneerng IShou Unversty Kaohsung, Tawan 840, R.O.C emal: yjsun@su.edu.tw
More informationThe Mathematical Derivation of Least Squares
Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the ageold queston: When the hell
More informationEstimating the Development Effort of Web Projects in Chile
Estmatng the Development Effort of Web Projects n Chle Sergo F. Ochoa Computer Scences Department Unversty of Chle (56 2) 6784364 sochoa@dcc.uchle.cl M. Cecla Bastarrca Computer Scences Department Unversty
More informationBUSINESS PROCESS PERFORMANCE MANAGEMENT USING BAYESIAN BELIEF NETWORK. 0688, dskim@ssu.ac.kr
Proceedngs of the 41st Internatonal Conference on Computers & Industral Engneerng BUSINESS PROCESS PERFORMANCE MANAGEMENT USING BAYESIAN BELIEF NETWORK Yeongbn Mn 1, Yongwoo Shn 2, Km Jeehong 1, Dongsoo
More informationDepreciation of Business R&D Capital
Deprecaton of Busness R&D Captal U.S. Bureau of Economc Analyss Abstract R&D deprecaton rates are crtcal to calculatng the rates of return to R&D nvestments and captal servce costs, whch are mportant for
More informationEmbedding lattices in the Kleene degrees
F U N D A M E N T A MATHEMATICAE 62 (999) Embeddng lattces n the Kleene degrees by Hsato M u r a k (Nagoya) Abstract. Under ZFC+CH, we prove that some lattces whose cardnaltes do not exceed ℵ can be embedded
More informationWhat is Candidate Sampling
What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble
More informationTHE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
More information1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)
6.3 /  Communcaton Networks II (Görg) SS20  www.comnets.unbremen.de Communcaton Networks II Contents. Fundamentals of probablty theory 2. Emergence of communcaton traffc 3. Stochastc & Markovan Processes
More informationStatistical Methods to Develop Rating Models
Statstcal Methods to Develop Ratng Models [Evelyn Hayden and Danel Porath, Österrechsche Natonalbank and Unversty of Appled Scences at Manz] Source: The Basel II Rsk Parameters Estmaton, Valdaton, and
More informationBrigid Mullany, Ph.D University of North Carolina, Charlotte
Evaluaton And Comparson Of The Dfferent Standards Used To Defne The Postonal Accuracy And Repeatablty Of Numercally Controlled Machnng Center Axes Brgd Mullany, Ph.D Unversty of North Carolna, Charlotte
More informationSIMPLE LINEAR CORRELATION
SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.
More informationDiVA Digitala Vetenskapliga Arkivet
DVA Dgtala Vetenskaplga Arkvet http://umudvaportalorg Ths s a book chapter publshed n Hghperformance scentfc computng: algorthms and applcatons (ed Berry, MW; Gallvan, KA; Gallopoulos, E; Grama, A; Phlppe,
More informationTHE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES
The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered
More informationOnLine Fault Detection in Wind Turbine Transmission System using Adaptive Filter and Robust Statistical Features
OnLne Fault Detecton n Wnd Turbne Transmsson System usng Adaptve Flter and Robust Statstcal Features Ruoyu L Remote Dagnostcs Center SKF USA Inc. 3443 N. Sam Houston Pkwy., Houston TX 77086 Emal: ruoyu.l@skf.com
More informationForecasting and Modelling Electricity Demand Using Anfis Predictor
Journal of Mathematcs and Statstcs 7 (4): 758, 0 ISSN 5493644 0 Scence Publcatons Forecastng and Modellng Electrcty Demand Usng Anfs Predctor M. Mordjaou and B. Boudjema Department of Electrcal Engneerng,
More informationGlobal stability of CohenGrossberg neural network with both timevarying and continuous distributed delays
Global stablty of CohenGrossberg neural network wth both tmevaryng and contnuous dstrbuted delays José J. Olvera Departamento de Matemátca e Aplcações and CMAT, Escola de Cêncas, Unversdade do Mnho,
More informationERP Software Selection Using The Rough Set And TPOSIS Methods
ERP Software Selecton Usng The Rough Set And TPOSIS Methods Under Fuzzy Envronment Informaton Management Department, Hunan Unversty of Fnance and Economcs, No. 139, Fengln 2nd Road, Changsha, 410205, Chna
More informationAbstract. 260 Business Intelligence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING
260 Busness Intellgence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING Murphy Choy Mchelle L.F. Cheong School of Informaton Systems, Sngapore
More informationSoftware project management with GAs
Informaton Scences 177 (27) 238 241 www.elsever.com/locate/ns Software project management wth GAs Enrque Alba *, J. Francsco Chcano Unversty of Málaga, Grupo GISUM, Departamento de Lenguajes y Cencas de
More informationDamage detection in composite laminates using cointap method
Damage detecton n composte lamnates usng contap method S.J. Km Korea Aerospace Research Insttute, 45 EoeunDong, YouseongGu, 35333 Daejeon, Republc of Korea yaeln@kar.re.kr 45 The contap test has the
More informationOptimal Bidding Strategies for Generation Companies in a DayAhead Electricity Market with Risk Management Taken into Account
Amercan J. of Engneerng and Appled Scences (): 86, 009 ISSN 94700 009 Scence Publcatons Optmal Bddng Strateges for Generaton Companes n a DayAhead Electrcty Market wth Rsk Management Taken nto Account
More information1. Measuring association using correlation and regression
How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a
More informationChapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT
Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the
More informationForecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network
700 Proceedngs of the 8th Internatonal Conference on Innovaton & Management Forecastng the Demand of Emergency Supples: Based on the CBR Theory and BP Neural Network Fu Deqang, Lu Yun, L Changbng School
More informationThe Analysis of Covariance. ERSH 8310 Keppel and Wickens Chapter 15
The Analyss of Covarance ERSH 830 Keppel and Wckens Chapter 5 Today s Class Intal Consderatons Covarance and Lnear Regresson The Lnear Regresson Equaton TheAnalyss of Covarance Assumptons Underlyng the
More informationWe are now ready to answer the question: What are the possible cardinalities for finite fields?
Chapter 3 Fnte felds We have seen, n the prevous chapters, some examples of fnte felds. For example, the resdue class rng Z/pZ (when p s a prme) forms a feld wth p elements whch may be dentfed wth the
More informationwhere the coordinates are related to those in the old frame as follows.
Chapter 2  Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of noncoplanar vectors Scalar product
More informationCalculation of Sampling Weights
Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a twostage stratfed cluster desgn. 1 The frst stage conssted of a sample
More informationIntrayear Cash Flow Patterns: A Simple Solution for an Unnecessary Appraisal Error
Intrayear Cash Flow Patterns: A Smple Soluton for an Unnecessary Apprasal Error By C. Donald Wggns (Professor of Accountng and Fnance, the Unversty of North Florda), B. Perry Woodsde (Assocate Professor
More informationx f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60
BIVARIATE DISTRIBUTIONS Let be a varable that assumes the values { 1,,..., n }. Then, a functon that epresses the relatve frequenc of these values s called a unvarate frequenc functon. It must be true
More information2.4 Bivariate distributions
page 28 2.4 Bvarate dstrbutons 2.4.1 Defntons Let X and Y be dscrete r.v.s defned on the same probablty space (S, F, P). Instead of treatng them separately, t s often necessary to thnk of them actng together
More informationSCALAR A physical quantity that is completely characterized by a real number (or by its numerical value) is called a scalar. In other words, a scalar
SCALAR A phscal quantt that s completel charactered b a real number (or b ts numercal value) s called a scalar. In other words, a scalar possesses onl a magntude. Mass, denst, volume, temperature, tme,
More informationEfficient Striping Techniques for Variable Bit Rate Continuous Media File Servers æ
Effcent Strpng Technques for Varable Bt Rate Contnuous Meda Fle Servers æ Prashant J. Shenoy Harrck M. Vn Department of Computer Scence, Department of Computer Scences, Unversty of Massachusetts at Amherst
More informationAn Empirical Study of Search Engine Advertising Effectiveness
An Emprcal Study of Search Engne Advertsng Effectveness Sanjog Msra, Smon School of Busness Unversty of Rochester Edeal Pnker, Smon School of Busness Unversty of Rochester Alan RmmKaufman, RmmKaufman
More informationQUANTUM MECHANICS, BRAS AND KETS
PH575 SPRING QUANTUM MECHANICS, BRAS AND KETS The followng summares the man relatons and defntons from quantum mechancs that we wll be usng. State of a phscal sstem: The state of a phscal sstem s represented
More informationFinancial Mathemetics
Fnancal Mathemetcs 15 Mathematcs Grade 12 Teacher Gude Fnancal Maths Seres Overvew In ths seres we am to show how Mathematcs can be used to support personal fnancal decsons. In ths seres we jon Tebogo,
More informationTrust Formation in a C2C Market: Effect of Reputation Management System
Trust Formaton n a C2C Market: Effect of Reputaton Management System Htosh Yamamoto Unversty of ElectroCommuncatons htosh@s.uec.ac.jp Kazunar Ishda Tokyo Unversty of Agrculture kshda@noda.ac.jp Toshzum
More informationLinear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits
Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.
More informationCopulas. Modeling dependencies in Financial Risk Management. BMI Master Thesis
Copulas Modelng dependences n Fnancal Rsk Management BMI Master Thess Modelng dependences n fnancal rsk management Modelng dependences n fnancal rsk management 3 Preface Ths paper has been wrtten as part
More informationWORKING PAPERS. The Impact of Technological Change and Lifestyles on the Energy Demand of Households
ÖSTERREICHISCHES INSTITUT FÜR WIRTSCHAFTSFORSCHUNG WORKING PAPERS The Impact of Technologcal Change and Lfestyles on the Energy Demand of Households A Combnaton of Aggregate and Indvdual Household Analyss
More informationOn Lockett pairs and Lockett conjecture for πsoluble Fitting classes
On Lockett pars and Lockett conjecture for πsoluble Fttng classes Lujn Zhu Department of Mathematcs, Yangzhou Unversty, Yangzhou 225002, P.R. Chna Emal: ljzhu@yzu.edu.cn Nanyng Yang School of Mathematcs
More information