Joe Pimbley, unpublished, Yield Curve Calculations


 Marilynn Adams
 2 years ago
 Views:
Transcription
1 Joe Pmbley, unpublshed, 005. Yeld Curve Calculatons Background: Everythng s dscount factors Yeld curve calculatons nclude valuaton of forward rate agreements (FRAs), swaps, nterest rate optons, and forward rates. The most mportant component of all these calculatons s the determnaton of ero coupon dscount factors (or, ust dscount factors ). Ths note focuses on the problem of computng the forward rate between any two future dates. Ths ordeal effectvely ends when we get the dscount factors for the two dates snce the remanng labor for the forward rate s straghtforward. Dscount factors are synonymous wth present value Each forward date has an assocated dscount factor that represents the value today of a hypothetcal payment that one would receve on the forward date expressed as a fracton of the hypothetcal payment. * For example, f we expect to receve $000 n sx months, then ts present value mght be $989. Thus, the dscount factor for sx months would be The queston then becomes how to derve the $989 of ths example. Before we begn, let s remark that dscount factors are all about nterest rates. Unless stated otherwse (very unlkely n ths artcle!), we deal here wth the LIBOR/swap curve. The meanng of ths term wll emerge n the followng sectons. Begn wth the smplest calculatons for dscount factors The dscount factor for a forward pont n tme s the value today (also known as present value ) of a payment to be receved at the forward tme expressed as a fracton. By defnton, then, the dscount factor for today s.0 snce a payment today has present value of precsely the payment value. In the example of the precedng secton, we made up the number $989 as the present value of a payment of $000 to be receved n sx months. The connecton between these two amounts s nvestment wth nterest. If we have $989 today, we can nvest ths amount for sx months. If n sx months tme our orgnal prncpal and nterest totals $000, then we are ndfferent to havng $989 now or $000 n sx months. Let L be the nterest rate (quoted annually) at whch we can nvest for sx months. Then the nterest earned wll be $ 989* L * where we multply * Please don t take the word today too lterally. Due to market conventon, today n some contexts means two busness days forward from today. Ths s spot settlement and we choose not to elevate the mportance of ths dstncton here.
2 by onehalf to denote sx months (half a year). Addng the prncpal and nterest and settng the sum to the $000 value at sx months shows $989 + $ 989* L * = $000. Rearrangng terms and expressng as a fracton of ultmate payment gves = L The equaton above s somewhat backward snce we have a constant value on the lefthand sde and what appears to be a varable ( L ) on the rghthand sde. In real lfe, though, we wll know L and wll need to determne the dscount factor whch, n ths example, we stpulated to be We ve oversmplfed. We need to take nto account the daycount conventon of the nterest rates we use. The L  whch we wll shortly descrbe as sxmonth LIBOR has the daycount of actual/0 whch means we multply by the number of days n the perod and dvde by 0 (as f each year has 0 days). In a sxmonth tme perod, the actual daycount s more lkely to be 8 than 80. Our conventon wll be to use t  often wth a subscrpt to ndcate the tme perod n years between two dates measured by the governng daycount conventon. To denote both aspects that the dscount factor s the value to be calculated and that that we need to determne the precse t as per the daycount conventon, we rewrte the prevous equaton as Dscount factor =. L t Let s revew the avalable market nformaton To compute dscount factors, we begn wth market nterest rate nformaton. The market rates of nterest to us are LIBOR (the London nterbank offered rate ) for maturtes of twelve months and less and swap rates for maturtes of two years to thrty years. (See Bloomberg USSWAP.) The most promnent LIBOR maturtes are month, months, months, and months, though there are also settngs for every other month, overnght, week and weeks. (See Bloomberg BBAM.) We gnore Eurodollar futures contracts prmarly for convenence. They complcate the analyss sgnfcantly. In prncple, the swap data we use wll gve us almost dentcal results to what we d expect wth futures. * All LIBOR settngs mply smple nterest wth actual/0 daycount. Swaps are not so accommodatng. In a swap, one sde pays a fxed rate wth 0/0 daycount semannually. The other sde pays month LIBOR wth. * The dfference n fnal results s convexty and s mportant to professonal swap dealers.
3 actual/0 daycount quarterly. A quoted swap rate of, say, 4% for a 5year maturty means that a 5year swap n whch the fxedrate payer pays 4% semannually and the floatngrate payer pays month LIBOR quarterly wll have a ero value (.e., the swap s atmarket). Revst the smplest calculatons for dscount factors The earler secton that dscussed smplest calculatons for dscount factors treated only the case wth a month maturty. The calculaton s nearly dentcal for any maturty that matches that of an avalable LIBOR maturty. For example, the dscount factor at months s ust Dscount factor = L t n whch the t s the actual number of days to the forward date (lkely 90, 9, or 9) dvded by 0. Ths method works for any LIBOR maturty. But such maturtes do not extend beyond months and t s ths pont at whch the dscount factor calculaton becomes more challengng. Lnear nterpolaton for yelds Before tacklng the challengng problem of dscount factors for maturtes beyond months, let s magne we want the dscount factor for.5 months. There s no.5month LIBOR, so we apply the expresson Dscount factor = L t Here we desgnate L as the lnear nterpolaton of the month and 7month LIBOR settngs. Generally speakng, lnear nterpolaton works well for yelds but s not approprate for dscount factors. Based on the mathematcal nature of how the dscount factor depends on yeld, lnear nterpolaton of yeld suggests logarthmc nterpolaton for dscount factors. Hence, we vew the latter as the proper choce for dscount factor nterpolaton when necessary. It s not uncommon to hear others promote (cubc or hgher order) splnes for yeld nterpolaton. Our vew s that splnes do not provde greater accuracy and, n fact, ntroduce numercal rsk. Splnes may be more exotc, but that doesn t make them better. Bootstrappng for dscount factors beyond months Beyond months we must rely on swap data. Swaps behave much dfferently than smple borrowng and lendng at LIBOR. As we noted prevously, the fxedrate payer pays the swap (fxed) rate semannually and receves month LIBOR quarterly (from the floatngrate payer). So the swap rate s, roughly speakng, an average of month LIBOR from now untl the swap contract maturty..
4 To compute dscount factors we adopt a recursve procedure known as bootstrappng. Our goal s to compute dscount factors at sxmonth ntervals. We know the dscount factors at sx and twelve months from the smplenterest LIBOR calculatons. For the dscount factor at eghteen months, we use both the (fxed) swap rate R and the two pror dscount factors and to compute the 8month dscount factor. Remember that the dscount factor for today s 0. Let f be the forward LIBOR rate for the nterval t to t. As we ll note later, forward LIBOR s the expected future value of LIBOR gven today s market. Then, we wrte the market value of the swap as the present value of expected future cashflows. Snce a swap atmarket has ero value, we get R tˆ f t 0 (). (To get, the dscount factor at 8 months, we set n ths equaton.) We defne t t t wth the actual/0 daycount conventon and t ˆ t t wth the 0/0 daycount conventon. Before proceedng, we must make a remarkable observaton. The second term n the summaton of equaton () smplfes drastcally to f t 0 (). Let s call ths the algebrac wonder of fnance and t explans why LIBOR floaters reset to par wth each (quarterly) rate settng. Of course, the math doesn t really drve the fnance. Rather, t s the underlyng physcs of LIBOR floaters that manfests tself n the wonder of equaton (). The curous reader may verfy equaton () gven the forward rate f that emerges from an arbtrage argument: f t (). Combnng equatons () and () and realng that 0 and t ˆ, we can solve for as R R (4). Ths s bootstrappng! Equaton (4) gves us, for example, when we know,, and R. Once we do have, we d then compute 4 and so on.
5 There are three loose ends here. Frst, we need to have swap rates R at all month maturty ponts begnnng at 8 months. The market does not quote ths many swap rates. Where necessary, then, we nterpolate lnearly to fll n mssng swap rates. Second, we get dscount factors only at these month maturty ponts. When we need a dscount factor at any other tme pont, we nterpolate logarthmcally as we dscussed earler. Fnally, our equaton () seems to have forgotten that the floatng rate payments n a swap are quarterly. We smplfed the problem by makng the floatng rate payments semannual. When we treat the payment frequency correctly, we do get the same results n the ensung equatons. I removed a layer of complexty by the approxmate method of equaton (). Arbtrage argument for the forward rate Equaton () relates dscount factors to forward rates and s central to the new bond math. * How does one derve equaton ()? Let s thnk of the forward rate f between two future dates as the expected future rate lnkng the dates. For example, f I agree now to lend you $ sx months from today and you agree to repay me $ plus nterest nne months from today, then I am makng a month loan months forward. If you and I knew today what  month LIBOR would be n months, then we would use ths future LIBOR value as the nterest rate for the loan. But we don t know what month LIBOR wll be! Thus, we stpulate the forward rate as the nterest rate for the forward loan. One would thnk that you and I should negotate the forward rate based on what we beleve month LIBOR wll be n months. But that s not rght! Instead, the market tells us forward LIBOR by a clever argument. Instead of makng the forward loan of the pror paragraph to you, I wll go to a bank and lend for 9 months today at 9month LIBOR and borrow for months today at  month LIBOR. Instead of a forward loan, I have two smple, oldfashoned loans (wth one long and one short ). Both loans are n the amount of $ Lt. # Snce the loans are of the same amount, I have no net payment today. My loan cancels my borrowng. But I must repay precsely $ n months. In 9 months I wll receve L9t9 Lt as repayment for the 9 month loan. Wth my two smple loans I have created the (synthetc) forward loan. Now I can compute the effectve nterest rate of ths forward loan wth L t L t f t t (5) * In contrast, the old bond math s comprsed of yeldtomaturty and expressons of the form n y to compute forward values. # I hope the notaton sn t confusng. The subscrpts and 9 refer to sx and nne months, respectvely. The t s, once agan, tme as fracton of a year n the actual/0 daycount conventon.
6 Solvng equaton (5) for f wth t t 9 t and relatng dscount factors to the LIBOR values gves equaton (). Ths argument apples for any two dates rather than ust those less than months for whch we can use LIBOR values as we ve done here. For the dates t and t, we would create the synthetc forward loan by borrowng an amount for tme t and lendng ths same amount for tme t. At tme t we d then pay $ whle at tme t we d receve. Equaton (5) would then become Meanng of the forward rate f t t (). It s not uncommon to hear market players dsparage forward rates wth a comment such as forward rates are not good predctors of future rates. When you hear ths statement, brace yourself! You re about to be assaled wth an heroc market story n whch the speakerprotagonst shrewdly predcted some past market move. If the speaker s your boss, then nod apprecatvely. If not, smrk dersvely. The forward rate s the market s expectaton of the future rate. It s not a predcton n the sense that any of us should beleve that LIBOR wll be ths value. Rather, the forward rate s the consensus average value of potental future outcomes. For llustraton, f the forward rate for a partcular perod s 4% and you beleve rates wll, n realty, be hgher (lower) at ths future tme, you can place a bet (wth a Eurodollar futures contract). If LIBOR n the future s hgher (lower) than 4%, you wn. Conversely, f LIBOR n the future s lower (hgher) than 4%, you lose. If LIBOR actually does come n at 4%, you break even. The forward rate, then, s not ust a calculaton and t s not the output of some econometrc model. It s real! The forward rate for a defned future perod s ust as much a market varable as month LIBOR or the IBM stock prce. The current value of any market varable s the market consensus. It s nether rght nor wrong, t s the market!
Section 5.4 Annuities, Present Value, and Amortization
Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today
More informationSimple Interest Loans (Section 5.1) :
Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part
More informationUsing Series to Analyze Financial Situations: Present Value
2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated
More informationTime Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6  The Time Value of Money. The Time Value of Money
Ch. 6  The Tme Value of Money Tme Value of Money The Interest Rate Smple Interest Compound Interest Amortzng a Loan FIN21 Ahmed Y, Dasht TIME VALUE OF MONEY OR DISCOUNTED CASH FLOW ANALYSIS Very Important
More informationInterest Rate Forwards and Swaps
Interest Rate Forwards and Swaps Forward rate agreement (FRA) mxn FRA = agreement that fxes desgnated nterest rate coverng a perod of (nm) months, startng n m months: Example: Depostor wants to fx rate
More informationMultiple discount and forward curves
Multple dscount and forward curves TopQuants presentaton 21 ovember 2012 Ton Broekhuzen, Head Market Rsk and Basel coordnator, IBC Ths presentaton reflects personal vews and not necessarly the vews of
More informationSolution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.
Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces
More informationLecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.
Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook
More informationAn Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
More informationInterest Rate Futures
Interest Rate Futures Chapter 6 6.1 Day Count Conventons n the U.S. (Page 129) Treasury Bonds: Corporate Bonds: Money Market Instruments: Actual/Actual (n perod) 30/360 Actual/360 The day count conventon
More information7.5. Present Value of an Annuity. Investigate
7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on
More informationLecture 3: Force of Interest, Real Interest Rate, Annuity
Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annutymmedate, and ts present value Study annutydue, and
More informationSection 2.3 Present Value of an Annuity; Amortization
Secton 2.3 Present Value of an Annuty; Amortzaton Prncpal Intal Value PV s the present value or present sum of the payments. PMT s the perodc payments. Gven r = 6% semannually, n order to wthdraw $1,000.00
More informationEXAMPLE PROBLEMS SOLVED USING THE SHARP EL733A CALCULATOR
EXAMPLE PROBLEMS SOLVED USING THE SHARP EL733A CALCULATOR 8S CHAPTER 8 EXAMPLES EXAMPLE 8.4A THE INVESTMENT NEEDED TO REACH A PARTICULAR FUTURE VALUE What amount must you nvest now at 4% compoune monthly
More informationSection 5.3 Annuities, Future Value, and Sinking Funds
Secton 5.3 Annutes, Future Value, and Snkng Funds Ordnary Annutes A sequence of equal payments made at equal perods of tme s called an annuty. The tme between payments s the payment perod, and the tme
More informationMathematics of Finance
5 Mathematcs of Fnance 5.1 Smple and Compound Interest 5.2 Future Value of an Annuty 5.3 Present Value of an Annuty;Amortzaton Chapter 5 Revew Extended Applcaton:Tme, Money, and Polynomals Buyng a car
More informationRecurrence. 1 Definitions and main statements
Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.
More informationTime Value of Money Module
Tme Value of Money Module O BJECTIVES After readng ths Module, you wll be able to: Understand smple nterest and compound nterest. 2 Compute and use the future value of a sngle sum. 3 Compute and use the
More informationIn our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount in the account, the balance, is
Payout annutes: Start wth P dollars, e.g., P = 100, 000. Over a 30 year perod you receve equal payments of A dollars at the end of each month. The amount of money left n the account, the balance, earns
More informationLevel Annuities with Payments Less Frequent than Each Interest Period
Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annutymmedate 2 Annutydue Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annutymmedate 2 Annutydue Symoblc approach
More informationNasdaq Iceland Bond Indices 01 April 2015
Nasdaq Iceland Bond Indces 01 Aprl 2015 Fxed duraton Indces Introducton Nasdaq Iceland (the Exchange) began calculatng ts current bond ndces n the begnnng of 2005. They were a response to recent changes
More information10.2 Future Value and Present Value of an Ordinary Simple Annuity
348 Chapter 10 Annutes 10.2 Future Value and Present Value of an Ordnary Smple Annuty In compound nterest, 'n' s the number of compoundng perods durng the term. In an ordnary smple annuty, payments are
More informationIDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS
IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS Chrs Deeley* Last revsed: September 22, 200 * Chrs Deeley s a Senor Lecturer n the School of Accountng, Charles Sturt Unversty,
More informationYIELD CURVE FITTING 2.0 Constructing Bond and Money Market Yield Curves using Cubic BSpline and Natural Cubic Spline Methodology.
YIELD CURVE FITTING 2.0 Constructng Bond and Money Market Yeld Curves usng Cubc BSplne and Natural Cubc Splne Methodology Users Manual YIELD CURVE FITTING 2.0 Users Manual Authors: Zhuosh Lu, Moorad Choudhry
More informationAnswer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy
4.02 Quz Solutons Fall 2004 MultpleChoce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multplechoce questons. For each queston, only one of the answers s correct.
More informationMathematics of Finance
Mathematcs of Fnance 5 C H A P T E R CHAPTER OUTLINE 5.1 Smple Interest and Dscount 5.2 Compound Interest 5.3 Annutes, Future Value, and Snkng Funds 5.4 Annutes, Present Value, and Amortzaton CASE STUDY
More informationOn some special nonlevel annuities and yield rates for annuities
On some specal nonlevel annutes and yeld rates for annutes 1 Annutes wth payments n geometrc progresson 2 Annutes wth payments n Arthmetc Progresson 1 Annutes wth payments n geometrc progresson 2 Annutes
More informationMathematics of Finance
CHAPTER 5 Mathematcs of Fnance 5.1 Smple and Compound Interest 5.2 Future Value of an Annuty 5.3 Present Value of an Annuty; Amortzaton Revew Exercses Extended Applcaton: Tme, Money, and Polynomals Buyng
More informationBERNSTEIN POLYNOMIALS
OnLne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful
More information1. Math 210 Finite Mathematics
1. ath 210 Fnte athematcs Chapter 5.2 and 5.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210
More information10. (# 45, May 2001). At time t = 0, 1 is deposited into each of Fund X and Fund Y. Fund X accumulates at a force of interest
1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual e ectve
More information0.02t if 0 t 3 δ t = 0.045 if 3 < t
1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual effectve
More informationThursday, December 10, 2009 Noon  1:50 pm Faraday 143
1. ath 210 Fnte athematcs Chapter 5.2 and 4.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210
More informationCausal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes causeandeffect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
More informationInterest Rate Fundamentals
Lecture Part II Interest Rate Fundamentals Topcs n Quanttatve Fnance: Inflaton Dervatves Instructor: Iraj Kan Fundamentals of Interest Rates In part II of ths lecture we wll consder fundamental concepts
More informationDEFINING %COMPLETE IN MICROSOFT PROJECT
CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMISP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,
More informationLuby s Alg. for Maximal Independent Sets using Pairwise Independence
Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent
More informationPSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 12
14 The Chsquared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed
More informationCapital asset pricing model, arbitrage pricing theory and portfolio management
Captal asset prcng model, arbtrage prcng theory and portfolo management Vnod Kothar The captal asset prcng model (CAPM) s great n terms of ts understandng of rsk decomposton of rsk nto securtyspecfc rsk
More informationFINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals
FINANCIAL MATHEMATICS A Practcal Gude for Actuares and other Busness Professonals Second Edton CHRIS RUCKMAN, FSA, MAAA JOE FRANCIS, FSA, MAAA, CFA Study Notes Prepared by Kevn Shand, FSA, FCIA Assstant
More informationIn our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount owed is. P (1 + i) A
Amortzed loans: Suppose you borrow P dollars, e.g., P = 100, 000 for a house wth a 30 year mortgage wth an nterest rate of 8.25% (compounded monthly). In ths type of loan you make equal payments of A dollars
More informationAn Overview of Financial Mathematics
An Overvew of Fnancal Mathematcs Wllam Benedct McCartney July 2012 Abstract Ths document s meant to be a quck ntroducton to nterest theory. It s wrtten specfcally for actuaral students preparng to take
More informationA Master Time Value of Money Formula. Floyd Vest
A Master Tme Value of Money Formula Floyd Vest For Fnancal Functons on a calculator or computer, Master Tme Value of Money (TVM) Formulas are usually used for the Compound Interest Formula and for Annutes.
More informationIntroduction: Analysis of Electronic Circuits
/30/008 ntroducton / ntroducton: Analyss of Electronc Crcuts Readng Assgnment: KVL and KCL text from EECS Just lke EECS, the majorty of problems (hw and exam) n EECS 3 wll be crcut analyss problems. Thus,
More informationGraph Theory and Cayley s Formula
Graph Theory and Cayley s Formula Chad Casarotto August 10, 2006 Contents 1 Introducton 1 2 Bascs and Defntons 1 Cayley s Formula 4 4 Prüfer Encodng A Forest of Trees 7 1 Introducton In ths paper, I wll
More informationModule 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
More informationTexas Instruments 30X IIS Calculator
Texas Instruments 30X IIS Calculator Keystrokes for the TI30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the
More informationBond futures. Bond futures contracts are futures contracts that allow investor to buy in the
Bond futures INRODUCION Bond futures contracts are futures contracts that allow nvestor to buy n the future a theoretcal government notonal bond at a gven prce at a specfc date n a gven quantty. Compared
More informationFinancial Mathemetics
Fnancal Mathemetcs 15 Mathematcs Grade 12 Teacher Gude Fnancal Maths Seres Overvew In ths seres we am to show how Mathematcs can be used to support personal fnancal decsons. In ths seres we jon Tebogo,
More informationChapter 4 Financial Markets
Chapter 4 Fnancal Markets ECON2123 (Sprng 2012) 14 & 15.3.2012 (Tutoral 5) The demand for money Assumptons: There are only two assets n the fnancal market: money and bonds Prce s fxed and s gven, that
More informationIntrayear Cash Flow Patterns: A Simple Solution for an Unnecessary Appraisal Error
Intrayear Cash Flow Patterns: A Smple Soluton for an Unnecessary Apprasal Error By C. Donald Wggns (Professor of Accountng and Fnance, the Unversty of North Florda), B. Perry Woodsde (Assocate Professor
More informationForecasting the Direction and Strength of Stock Market Movement
Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye cjngwe@stanford.edu mchen5@stanford.edu nanye@stanford.edu Abstract  Stock market s one of the most complcated systems
More informationLossless Data Compression
Lossless Data Compresson Lecture : Unquely Decodable and Instantaneous Codes Sam Rowes September 5, 005 Let s focus on the lossless data compresson problem for now, and not worry about nosy channel codng
More informationHedging InterestRate Risk with Duration
FIXEDINCOME SECURITIES Chapter 5 Hedgng InterestRate Rsk wth Duraton Outlne Prcng and Hedgng Prcng certan cashflows Interest rate rsk Hedgng prncples DuratonBased Hedgng Technques Defnton of duraton
More information8.4. Annuities: Future Value. INVESTIGATE the Math. 504 8.4 Annuities: Future Value
8. Annutes: Future Value YOU WILL NEED graphng calculator spreadsheet software GOAL Determne the future value of an annuty earnng compound nterest. INVESTIGATE the Math Chrstne decdes to nvest $000 at
More information8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by
6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng
More informationThe CoxRossRubinstein Option Pricing Model
Fnance 400 A. Penat  G. Pennacc Te CoxRossRubnsten Opton Prcng Model Te prevous notes sowed tat te absence o arbtrage restrcts te prce o an opton n terms o ts underlyng asset. However, te noarbtrage
More informationProblem Set 3. a) We are asked how people will react, if the interest rate i on bonds is negative.
Queston roblem Set 3 a) We are asked how people wll react, f the nterest rate on bonds s negatve. When
More informationSmall pots lump sum payment instruction
For customers Small pots lump sum payment nstructon Please read these notes before completng ths nstructon About ths nstructon Use ths nstructon f you re an ndvdual wth Aegon Retrement Choces Self Invested
More informationInstitute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic
Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange
More information21 Vectors: The Cross Product & Torque
21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rghthand rule for the cross product of two vectors dscussed n ths chapter or the rghthand rule for somethng curl
More informationThe Application of Fractional Brownian Motion in Option Pricing
Vol. 0, No. (05), pp. 738 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qngxn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn zhouqngxn98@6.com
More information1 Approximation Algorithms
CME 305: Dscrete Mathematcs and Algorthms 1 Approxmaton Algorthms In lght of the apparent ntractablty of the problems we beleve not to le n P, t makes sense to pursue deas other than complete solutons
More informationCHAPTER 14 MORE ABOUT REGRESSION
CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp
More informationTexas Instruments 30Xa Calculator
Teas Instruments 30Xa Calculator Keystrokes for the TI30Xa are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the tet, check
More informationThe Magnetic Field. Concepts and Principles. Moving Charges. Permanent Magnets
. The Magnetc Feld Concepts and Prncples Movng Charges All charged partcles create electrc felds, and these felds can be detected by other charged partcles resultng n electrc force. However, a completely
More informationNumber of Levels Cumulative Annual operating Income per year construction costs costs ($) ($) ($) 1 600,000 35,000 100,000 2 2,200,000 60,000 350,000
Problem Set 5 Solutons 1 MIT s consderng buldng a new car park near Kendall Square. o unversty funds are avalable (overhead rates are under pressure and the new faclty would have to pay for tself from
More informationFinite Math Chapter 10: Study Guide and Solution to Problems
Fnte Math Chapter 10: Study Gude and Soluton to Problems Basc Formulas and Concepts 10.1 Interest Basc Concepts Interest A fee a bank pays you for money you depost nto a savngs account. Prncpal P The amount
More informationTHE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
More informationFINANCIAL MATHEMATICS
3 LESSON FINANCIAL MATHEMATICS Annutes What s an annuty? The term annuty s used n fnancal mathematcs to refer to any termnatng sequence of regular fxed payments over a specfed perod of tme. Loans are usually
More informationFixed income risk attribution
5 Fxed ncome rsk attrbuton Chthra Krshnamurth RskMetrcs Group chthra.krshnamurth@rskmetrcs.com We compare the rsk of the actve portfolo wth that of the benchmark and segment the dfference between the two
More informationMAPP. MERIS level 3 cloud and water vapour products. Issue: 1. Revision: 0. Date: 9.12.1998. Function Name Organisation Signature Date
Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPPATBDClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller
More information3. Present value of Annuity Problems
Mathematcs of Fnance The formulae 1. A = P(1 +.n) smple nterest 2. A = P(1 + ) n compound nterest formula 3. A = P(1.n) deprecaton straght lne 4. A = P(1 ) n compound decrease dmshng balance 5. P = 
More informationOn the correct model specification for estimating the structure of a currency basket
On the correct model specfcaton for estmatng the structure of a currency basket JyhDean Hwang Department of Internatonal Busness Natonal Tawan Unversty 85 Roosevelt Road Sect. 4, Tape 106, Tawan jdhwang@ntu.edu.tw
More informationCompound Interest: Further Topics and Applications. Chapter 9
92 Compound Interest: Further Topcs and Applcatons Chapter 9 93 Learnng Objectves After letng ths chapter, you wll be able to:? Calculate the nterest rate and term n ound nterest applcatons? Gven a nomnal
More informationA) 3.1 B) 3.3 C) 3.5 D) 3.7 E) 3.9 Solution.
ACTS 408 Instructor: Natala A. Humphreys SOLUTION TO HOMEWOR 4 Secton 7: Annutes whose payments follow a geometrc progresson. Secton 8: Annutes whose payments follow an arthmetc progresson. Problem Suppose
More informationImplied (risk neutral) probabilities, betting odds and prediction markets
Impled (rsk neutral) probabltes, bettng odds and predcton markets Fabrzo Caccafesta (Unversty of Rome "Tor Vergata") ABSTRACT  We show that the well known euvalence between the "fundamental theorem of
More informationFormula of Total Probability, Bayes Rule, and Applications
1 Formula of Total Probablty, Bayes Rule, and Applcatons Recall that for any event A, the par of events A and A has an ntersecton that s empty, whereas the unon A A represents the total populaton of nterest.
More informationTrafficlight a stress test for life insurance provisions
MEMORANDUM Date 006097 Authors Bengt von Bahr, Göran Ronge Traffclght a stress test for lfe nsurance provsons Fnansnspetonen P.O. Box 6750 SE113 85 Stocholm [Sveavägen 167] Tel +46 8 787 80 00 Fax
More informationPortfolio Risk Decomposition (and Risk Budgeting)
ortfolo Rsk Decomposton (and Rsk Budgetng) Jason MacQueen RSquared Rsk Management Introducton to Rsk Decomposton Actve managers take rsk n the expectaton of achevng outperformance of ther benchmark Mandates
More informationANALYSIS OF FINANCIAL FLOWS
ANALYSIS OF FINANCIAL FLOWS AND INVESTMENTS II 4 Annutes Only rarely wll one encounter an nvestment or loan where the underlyng fnancal arrangement s as smple as the lump sum, sngle cash flow problems
More informationNordea G10 Alpha Carry Index
Nordea G10 Alpha Carry Index Index Rules v1.1 Verson as of 10/10/2013 1 (6) Page 1 Index Descrpton The G10 Alpha Carry Index, the Index, follows the development of a rule based strategy whch nvests and
More informationGetting Started. with Penfriend XP. 1 Installing 2 Trying it out! 3 Word Prediction. Reviewing Lexicons 5 Preferences 6 Finding More Help 7
Gettng Started wth Penfrend XP Installng Tryng t out! Word Predcton Other Features Revewng Lexcons 5 Preferences 6 Fndng More Help 7 Installng 5 6 7 Before you can use Penfrend XP on your computer the
More informationADVA FINAN QUAN ADVANCED FINANCE AND QUANTITATIVE INTERVIEWS VAULT GUIDE TO. Customized for: Jason (jason.barquero@cgu.edu) 2002 Vault Inc.
ADVA FINAN QUAN 00 Vault Inc. VAULT GUIDE TO ADVANCED FINANCE AND QUANTITATIVE INTERVIEWS Copyrght 00 by Vault Inc. All rghts reserved. All nformaton n ths book s subject to change wthout notce. Vault
More informationCHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES
CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable
More informationAryabhata s Root Extraction Methods. Abhishek Parakh Louisiana State University Aug 31 st 2006
Aryabhata s Root Extracton Methods Abhshek Parakh Lousana State Unversty Aug 1 st 1 Introducton Ths artcle presents an analyss of the root extracton algorthms of Aryabhata gven n hs book Āryabhatīya [1,
More informationMultiplePeriod Attribution: Residuals and Compounding
MultplePerod Attrbuton: Resduals and Compoundng Our revewer gave these authors full marks for dealng wth an ssue that performance measurers and vendors often regard as propretary nformaton. In 1994, Dens
More informationUsage of LCG/CLCG numbers for electronic gambling applications
Usage of LCG/CLCG numbers for electronc gamblng applcatons Anders Knutsson Smovts Consultng, WennerGren Center, Sveavägen 166, 113 46 Stockholm, Sweden anders.knutsson@smovts.com Abstract. Several attacks
More informationbenefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
More informationStaff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall
SP 200502 August 2005 Staff Paper Department of Appled Economcs and Management Cornell Unversty, Ithaca, New York 148537801 USA Farm Savngs Accounts: Examnng Income Varablty, Elgblty, and Benefts Brent
More informationStock Profit Patterns
Stock Proft Patterns Suppose a share of Farsta Shppng stock n January 004 s prce n the market to 56. Assume that a September call opton at exercse prce 50 costs 8. A September put opton at exercse prce
More informationThe Mathematical Derivation of Least Squares
Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the ageold queston: When the hell
More informationSection 2.2 Future Value of an Annuity
Secton 2.2 Future Value of an Annuty Annuty s any sequence of equal perodc payments. Depost s equal payment each nterval There are two basc types of annutes. An annuty due requres that the frst payment
More informationSupport Vector Machines
Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.
More informationIntroduction to Regression
Introducton to Regresson Regresson a means of predctng a dependent varable based one or more ndependent varables. Ths s done by fttng a lne or surface to the data ponts that mnmzes the total error. 
More informationSolutions to First Midterm
rofessor Chrstano Economcs 3, Wnter 2004 Solutons to Frst Mdterm. Multple Choce. 2. (a) v. (b). (c) v. (d) v. (e). (f). (g) v. (a) The goods market s n equlbrum when total demand equals total producton,.e.
More information1.1 The University may award Higher Doctorate degrees as specified from timetotime in UPR AS11 1.
HIGHER DOCTORATE DEGREES SUMMARY OF PRINCIPAL CHANGES General changes None Secton 3.2 Refer to text (Amendments to verson 03.0, UPR AS02 are shown n talcs.) 1 INTRODUCTION 1.1 The Unversty may award Hgher
More informationInequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001.
Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.
More informationThe covariance is the two variable analog to the variance. The formula for the covariance between two variables is
Regresson Lectures So far we have talked only about statstcs that descrbe one varable. What we are gong to be dscussng for much of the remander of the course s relatonshps between two or more varables.
More informationShielding Equations and Buildup Factors Explained
Sheldng Equatons and uldup Factors Explaned Gamma Exposure Fluence Rate Equatons For an explanaton of the fluence rate equatons used n the unshelded and shelded calculatons, vst ths US Health Physcs Socety
More information