Dynamical Systems Analysis II: Evaluating Stability, Eigenvalues


 Clarence Lloyd
 2 years ago
 Views:
Transcription
1 Dynamical Systems Analysis II: Evaluating Stability, Eigenvalues By Peter Woolf University of Michigan Michigan Chemical Process Dynamics and Controls Open Textbook version 1.0 Creative commons
2 Problem: Given a large and complex system of ODEs describing the dynamics and control of your process, you want to know: 1)Where will it go? 2)What will it do? Steady state from last lecture. Topic for today! Is there anything fundamental you can say about it? E.g. With my control architecture, this process will always. Solution: Stability Analysis
3 What will your system do? Exponential decay Decay w/ oscillation Stable oscillation Exponential increase Increase w/ oscillation Only possible for nonlinear systems Periodic solution Nonperiodic solution chaotic)
4 How can we know where the system will go? Possible approaches: 1. Simulate system and observe Advantages: Works for any system you can simulate Intuitiveyou see the results Disadvantages: Can t provide guaranteed behavior, just samples of possible trajectories. Requires simulations starting from many points Assumes we have all variables defined, thus hard to use to design controllers.
5 How can we know where the system will go? Possible approaches: 1. Simulate system and observe 2. Stability Analysis this class) Advantages: Provides strong guarantees for linear systems General Disadvantages: Only works for linear models Linear approximations of nonlinear models break down away from the point of linearization
6 From last class Nonlinear model da dt = 3A " A2 " AB db = 2B " AB " 2B2 dt Linear approximation at A=0, B=0 A " = 3 0 A + 0 B " 0 2 B 0 Jacobian Intuitively, what will the linear system do if A is perturbed slightly! from 0? da dt = 30 + ") Increase in A above 0 yields a positive derivative Or in a different format da dt = 3A db dt = 2B Increase in slope of A Increase in A! Exponential increase
7 But what if our model is more complex? E.g. note: example below is made up) A " = 3 )2 A + 3 Or in a different B " 2 )2 B 4 format da dt db dt! da dt db dt da dt db dt = 3A " 2B + 3 = 2A " 2B + 4 What will happen if A or B are increased slightly from the steady state value of A=1, B=3? Increase A by Δ: = 31+ ") 23) + 3 = +3" = 21+ ") 23) + 4 = +2" Result: increase A, A and B increase!! Increase B by Δ: = 31) " 23+ ) + 3 = "2 = 21) " 23+ ) + 4 = "2 Result: increase B, A and B decrease!
8 Observations: 1. It is easy to predict where a linear system will go if the variables are decoupled da dt = 3A db dt = 2B A only influences A, B only influences B. > Variables are decoupled 2. Coupling between variables makes it harder to predict what will happen da dt db dt = 3A " 2B + 3 = 2A " 2B + 4 Changes in A influence changes in A and B. Changes in B influence changes in A and B. > Variables are coupled 3. Coupling is determined by the Jacobian
9 Is it possible to change a coupled system to a decoupled one? A " = k 11 A + k 13 B " k 21 k 22 B k 23 This is an eigenvalue " k 11 " A k 21 k 22 B?? " 1 0 A 0 1 B Can we find a λ value that satisfies this relationship? *" k 11 "! ) 1 0 , + k 21 k / " A B = 0 * k 11 " , ) + k 21 k 22 ". / A B ) = 0! k 11 " )A + B = 0 k 21 A + k 22 " )B = 0 Written differently..
10 k 11 " )A + B = 0 k 21 A + k 22 " )B = 0 expand k 11 A " A + B = 0 k 21 A + Bk 22 " B = 0 B = "k A + A 11 k 21 A + "k A + A 11 k 21 A " k 11Ak 22 + Ak 22 Solve for B! ) k 22 " "k A + A 11 ) = 0 + k 11A A k 21 " k 11k 22 + k 22 + k A = 0 ) = 0
11 A k 21 " k k k 22 + k ) = 0 Solve for λ [ ] " = 1 2 k 11 + k 22 ± k k 21 2k 11 k 22 + k 22 2 Observations: 1) Yes! There is always a way decouple a coupled linear system 2) Direct approach involves lots of algebra There is an easier way..
12 Goal: solve this system for λ * k 11 " , ) + k 21 k 22 ". / A B ) = 0 A bit of linear algebra background Determinant: a property of any square matrix that describes the degree of coupling between the equations. Determinant equals zero when the system is not linearly independent, meaning one of the equations can be cast as a linear combination of the others. " Det a c b = a* d b*c d " a b c " Det d e f = a* Det e f h i b * Det " d g g h i f i + c * Det " d g e h
13 Goal: solve this system for λ * k 11 " , ) + k 21 k 22 ". / A B ) = 0 A bit of linear algebra background Determinant: a property of any square matrix that describes the degree of coupling between the equations. Determinant equals zero when the system is not linearly independent, meaning one of the equations can be cast as a linear combination of the others. Revised Goal: find λ that satisfies Det k 11 " ) = 0 k 21 k 22 "! k 11 " ) k 22 " ) " k 21 = 0 [ ] " = 1 2 k 11 + k 22 ± k k 21 2k 11 k 22 + k 22 2
14 Similar Analysis can be done in Mathematica: Det[{a,b},{c,d}] :Find the determinant of a matrix Solve [{eqn1, eqn2,..},{var1, var2,..} ] : Solve algebraically Eigenvalues[{a,b},{c,d}] : Automatically find the eigenvalues
15 What do eigenvalues tell us about stability? Eigenvalues tell us the exponential part of the solution of the differential equation system Three possible values for an eigenvalue 1) Positive value: system will increase exponentially 2) Negative value: system will decay exponentially 3) Imaginary value: system will oscillate note combinations of the above are possible)
16 What do eigenvalues tell us about stability? Effect: If any eigenvalue has a positive real part, the system will tend to move away from the fixed point
17 Marble Analogy Case I: stable Case II: unstable x ss Case III: Saddle point x ss,,y ss x x ss Small perturbations left or right will cause the marble to decay back to the steady state position Negative real eigenvalue x Small perturbations left or right will cause the marble to decay away from the steady state position x ss ) Positive real eigenvalue y x Small perturbations in y are stable, while perturbations in x are unstable saddle point), thus overall point is unstable! Positive and negative real eigenvalues
18 Revisit our example: What will happen here? A " = 3 )2 A + 3 B " 2 )2 B 4 1) Calculate eigenvalues Eigenvalues: λ 1 =2, λ 2 = 1 2) Classify stability: At least one eigenvalue is positive, so the point is unstable and a saddle point. Exponential increase
19 " A " B " C = 3 ) )2 )1 2 0 A B C + 8 )2 4 A more complex example: What will happen here? 1) Calculate eigenvalues Force Mathematica to find a numerical value using N[ ] Using the Eigenvalue[ ] function in Mathematica Given these eigenvalues what will it do?
20 " A " B " C = 3 ) )2 )1 2 0 A B C + 8 )2 4 2) Classify stability: The real component of at least one eigenvalue is positive, so the system is unstable. There are imaginary eigenvalue components, so the response will oscillate. Increase w/ oscillation A more complex example: What will happen here?
21 What will your system do? according to eigenvalues) Exponential decay All λs are real and negative Decay w/ oscillation All λs have negative real parts, some imaginary parts Stable oscillation All λs have zero real parts and nonzero imaginary parts Exponential increase Increase w/ oscillation All λs are real and at least one positive At least one λ has positive real parts, some imaginary parts
22 Take Home Messages Stability of linear dynamical systems can be determined from eigenvalues Complicated sounding terms like eigenvalues and determinant can be derived from algebra alonefear not! Stability of nonlinear dynamical systems can be locally evaluated using eigenvalues
3.2 Sources, Sinks, Saddles, and Spirals
3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients
More informationThe PredatorPrey Equations. x = a x α xy y = c y + γ xy
The PredatorPrey Equations An application of the nonlinear system of differential equations in mathematical biology / ecology: to model the predatorprey relationship of a simple ecosystem. Suppose in
More informationScientific Computing: An Introductory Survey
Scientific Computing: An Introductory Survey Chapter 10 Boundary Value Problems for Ordinary Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at UrbanaChampaign
More information4 Lyapunov Stability Theory
4 Lyapunov Stability Theory In this section we review the tools of Lyapunov stability theory. These tools will be used in the next section to analyze the stability properties of a robot controller. We
More informationEigenvalues and Eigenvectors
Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution
More informationLecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10
Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction
More informationLecture 13 Linear quadratic Lyapunov theory
EE363 Winter 289 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discretetime
More informationNonlinear Systems of Ordinary Differential Equations
Differential Equations Massoud Malek Nonlinear Systems of Ordinary Differential Equations Dynamical System. A dynamical system has a state determined by a collection of real numbers, or more generally
More informationExample 1: Competing Species
Local Linear Analysis of Nonlinear Autonomous DEs Local linear analysis is the process by which we analyze a nonlinear system of differential equations about its equilibrium solutions (also known as critical
More informationEigenvalues, Eigenvectors, and Differential Equations
Eigenvalues, Eigenvectors, and Differential Equations William Cherry April 009 (with a typo correction in November 05) The concepts of eigenvalue and eigenvector occur throughout advanced mathematics They
More informationThe Phase Plane. Phase portraits; type and stability classifications of equilibrium solutions of systems of differential equations
The Phase Plane Phase portraits; type and stability classifications of equilibrium solutions of systems of differential equations Phase Portraits of Linear Systems Consider a systems of linear differential
More informationLecture 8 : Dynamic Stability
Lecture 8 : Dynamic Stability Or what happens to small disturbances about a trim condition 1.0 : Dynamic Stability Static stability refers to the tendency of the aircraft to counter a disturbance. Dynamic
More informationDefinition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
More informationReaction diffusion systems and pattern formation
Chapter 5 Reaction diffusion systems and pattern formation 5.1 Reaction diffusion systems from biology In ecological problems, different species interact with each other, and in chemical reactions, different
More informationMATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.
MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted
More informationSimilarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
More informationMath 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.
Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(
More information1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
More informationChapter 7. Lyapunov Exponents. 7.1 Maps
Chapter 7 Lyapunov Exponents Lyapunov exponents tell us the rate of divergence of nearby trajectories a key component of chaotic dynamics. For one dimensional maps the exponent is simply the average
More information(Refer Slide Time: 00:06:51 min)
Chaos Fractals and Dynamical Systems Prof. S.Banerjee Department of Electrical Engineering, Indian Institute of Technology, Kharagpur Lecture No. # 30 Control of Chaos A Set of lectures, you have learnt
More informationECE 516: System Control Engineering
ECE 516: System Control Engineering This course focuses on the analysis and design of systems control. This course will introduce timedomain systems dynamic control fundamentals and their design issues
More information/SOLUTIONS/ where a, b, c and d are positive constants. Study the stability of the equilibria of this system based on linearization.
echnische Universiteit Eindhoven Faculteit Elektrotechniek NIELINEAIRE SYSEMEN / NEURALE NEWERKEN (P6) gehouden op donderdag maart 7, van 9: tot : uur. Dit examenonderdeel bestaat uit 8 opgaven. /SOLUIONS/
More informationMath 2280  Assignment 6
Math 2280  Assignment 6 Dylan Zwick Spring 2014 Section 3.81, 3, 5, 8, 13 Section 4.11, 2, 13, 15, 22 Section 4.21, 10, 19, 28 1 Section 3.8  Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue
More informationLecture 5 Principal Minors and the Hessian
Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and
More informationChapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
More informationHW6 Solutions. MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) November 14, 2013. Checklist: Section 7.8: 1c, 2, 7, 10, [16]
HW6 Solutions MATH D Fall 3 Prof: Sun Hui TA: Zezhou Zhang David November 4, 3 Checklist: Section 7.8: c,, 7,, [6] Section 7.9:, 3, 7, 9 Section 7.8 In Problems 7.8. thru 4: a Draw a direction field and
More informationLinear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
More informationCONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation
Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in
More informationASEN 3112  Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1
19 MDOF Dynamic Systems ASEN 3112 Lecture 1 Slide 1 A TwoDOF MassSpringDashpot Dynamic System Consider the lumpedparameter, massspringdashpot dynamic system shown in the Figure. It has two point
More informationApplied Linear Algebra
Applied Linear Algebra OTTO BRETSCHER http://www.prenhall.com/bretscher Chapter 7 Eigenvalues and Eigenvectors ChiaHui Chang Email: chia@csie.ncu.edu.tw National Central University, Taiwan 7.1 DYNAMICAL
More informationThe dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w
Chapter 4 Vehicle Dynamics 4.. Introduction In order to design a controller, a good representative model of the system is needed. A vehicle mathematical model, which is appropriate for both acceleration
More information3. Reaction Diffusion Equations Consider the following ODE model for population growth
3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent
More informationDecember 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in twodimensional space (1) 2x y = 3 describes a line in twodimensional space The coefficients of x and y in the equation
More information15.062 Data Mining: Algorithms and Applications Matrix Math Review
.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop
More informationCOLLEGE ALGEBRA. Paul Dawkins
COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5
More informationMATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
More informationScicos is a Scilab toolbox included in the Scilab package. The Scicos editor can be opened by the scicos command
7 Getting Started 7.1 Construction of a Simple Diagram Scicos contains a graphical editor that can be used to construct block diagram models of dynamical systems. The blocks can come from various palettes
More informationLecture L19  Vibration, Normal Modes, Natural Frequencies, Instability
S. Widnall 16.07 Dynamics Fall 2009 Version 1.0 Lecture L19  Vibration, Normal Modes, Natural Frequencies, Instability Vibration, Instability An important class of problems in dynamics concerns the free
More informationBIOE 370 1. LotkaVolterra Model LV model with densitydependent prey population growth
BIOE 370 1 Populus Simulations of PredatorPrey Population Dynamics. LotkaVolterra Model LV model with densitydependent prey population growth ThetaLogistic Model Effects on dynamics of different functional
More informationChris DeMarco Power System Engineering Research Center Department of Electrical & Computer Engineering University of WisconsinMadison, USA
Grid Vulnerability in Remote Configuration of Generator Controllers: The Threat of Hacking with Megawatts Chris DeMarco Power System Engineering Research Center Department of Electrical & Computer Engineering
More informationSECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA
SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the
More informationChapter 11 Current Programmed Control
Chapter 11 Current Programmed Control Buck converter v g i s Q 1 D 1 L i L C v R The peak transistor current replaces the duty cycle as the converter control input. Measure switch current R f i s Clock
More informationUpdated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum
Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are
More information" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
More informationTransient chaos in smooth memristor oscillator
Transient chaos in smooth memristor oscillator Bao BoCheng( 包 伯 成 ) a)b), Liu Zhong( 刘 中 ) a), and Xu JianPing( 许 建 平 ) c) a) Department of Electronic Engineering, Nanjing University of Science and Technology,
More informationNonlinear normal modes of three degree of freedom mechanical oscillator
Mechanics and Mechanical Engineering Vol. 15, No. 2 (2011) 117 124 c Technical University of Lodz Nonlinear normal modes of three degree of freedom mechanical oscillator Marian Perlikowski Department of
More informationBrief Introduction to Vectors and Matrices
CHAPTER 1 Brief Introduction to Vectors and Matrices In this chapter, we will discuss some needed concepts found in introductory course in linear algebra. We will introduce matrix, vector, vectorvalued
More informationMATH10212 Linear Algebra B Homework 7
MATH22 Linear Algebra B Homework 7 Students are strongly advised to acquire a copy of the Textbook: D C Lay, Linear Algebra and its Applications Pearson, 26 (or other editions) Normally, homework assignments
More informationSECTION 8.3: THE INVERSE OF A SQUARE MATRIX
(Section 8.3: The Inverse of a Square Matrix) 8.47 SECTION 8.3: THE INVERSE OF A SQUARE MATRIX PART A: (REVIEW) THE INVERSE OF A REAL NUMBER If a is a nonzero real number, then aa 1 = a 1 a = 1. a 1, or
More informationEigenvalues, Eigenvectors, Matrix Factoring, and Principal Components
Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they
More informationUnderstanding Poles and Zeros
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function
More informationORDINARY DIFFERENTIAL EQUATIONS
ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. SEPTEMBER 4, 25 Summary. This is an introduction to ordinary differential equations.
More informationSECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS
(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic
More informationLinear Equations in One Variable
Linear Equations in One Variable MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this section we will learn how to: Recognize and combine like terms. Solve
More informationThe Method of Least Squares
The Method of Least Squares Steven J. Miller Mathematics Department Brown University Providence, RI 0292 Abstract The Method of Least Squares is a procedure to determine the best fit line to data; the
More informationNetwork Traffic Modelling
University of York Dissertation submitted for the MSc in Mathematics with Modern Applications, Department of Mathematics, University of York, UK. August 009 Network Traffic Modelling Author: David Slade
More informationUsing the Theory of Reals in. Analyzing Continuous and Hybrid Systems
Using the Theory of Reals in Analyzing Continuous and Hybrid Systems Ashish Tiwari Computer Science Laboratory (CSL) SRI International (SRI) Menlo Park, CA 94025 Email: ashish.tiwari@sri.com Ashish Tiwari
More informationNotice that v v w (4)( 15) ( 3)( 20) (0)(2) ( 2)( 15) (2)( 20) (5)(2)
The Cross Product When discussing the dot product, we showed how two vectors can be combined to get a number. Here, we shall see another way of combining vectors, this time resulting in a vector. This
More informationA Concrete Introduction. to the Abstract Concepts. of Integers and Algebra using Algebra Tiles
A Concrete Introduction to the Abstract Concepts of Integers and Algebra using Algebra Tiles Table of Contents Introduction... 1 page Integers 1: Introduction to Integers... 3 2: Working with Algebra Tiles...
More informationSoil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay
Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Module  2 Vibration Theory Lecture  8 Forced Vibrations, Dynamic Magnification Factor Let
More informationGeneral Theory of Differential Equations Sections 2.8, 3.13.2, 4.1
A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.13.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions
More informationThe Hadamard Product
The Hadamard Product Elizabeth Million April 12, 2007 1 Introduction and Basic Results As inexperienced mathematicians we may have once thought that the natural definition for matrix multiplication would
More informationNonlinear Algebraic Equations Example
Nonlinear Algebraic Equations Example Continuous Stirred Tank Reactor (CSTR). Look for steady state concentrations & temperature. s r (in) p,i (in) i In: N spieces with concentrations c, heat capacities
More informationSolution to Homework 2
Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if
More informationWhat are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
More informationLecture 5: Singular Value Decomposition SVD (1)
EEM3L1: Numerical and Analytical Techniques Lecture 5: Singular Value Decomposition SVD (1) EE3L1, slide 1, Version 4: 25Sep02 Motivation for SVD (1) SVD = Singular Value Decomposition Consider the system
More informationOscillations. Vern Lindberg. June 10, 2010
Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1
More informationIntrinsic LowDimensional Manifold Method for Rational Simplification of Chemical Kinetics
Intrinsic LowDimensional Manifold Method for Rational Simplification of Chemical Kinetics University of Notre Dame Department of Aerospace and Mechanical Engineering prepared by: Nicholas J. Glassmaker
More informationLogs Transformation in a Regression Equation
Fall, 2001 1 Logs as the Predictor Logs Transformation in a Regression Equation The interpretation of the slope and intercept in a regression change when the predictor (X) is put on a log scale. In this
More informationStudent name: Earlham College. Fall 2011 December 15, 2011
Student name: Earlham College MATH 320: Differential Equations Final exam  In class part Fall 2011 December 15, 2011 Instructions: This is a regular closedbook test, and is to be taken without the use
More informationLecture 5: Finite differences 1
Lecture 5: Finite differences 1 Sourendu Gupta TIFR Graduate School Computational Physics 1 February 17, 2010 c : Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CP 1 1 / 35 Outline 1 Finite differences
More informationLecture 8 February 4
ICS273A: Machine Learning Winter 2008 Lecture 8 February 4 Scribe: Carlos Agell (Student) Lecturer: Deva Ramanan 8.1 Neural Nets 8.1.1 Logistic Regression Recall the logistic function: g(x) = 1 1 + e θt
More informationNumerically integrating equations of motion
Numerically integrating equations of motion 1 Introduction to numerical ODE integration algorithms Many models of physical processes involve differential equations: the rate at which some thing varies
More informationUniversity of Lille I PC first year list of exercises n 7. Review
University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients
More informationAPPLICATIONS. are symmetric, but. are not.
CHAPTER III APPLICATIONS Real Symmetric Matrices The most common matrices we meet in applications are symmetric, that is, they are square matrices which are equal to their transposes In symbols, A t =
More informationKey words. Hyperbolicelliptic system, Traveling wave solutions, Singular perturbations
COMM. MATH. SCI. Vol. 4, No. 4, pp. 731 739 c 2006 International Press EXISTENCE OF TRAVELING WAVE SOLUTIONS IN A HYPERBOLICELLIPTIC SYSTEM OF EQUATIONS M. B. A. MANSOUR Abstract. In this paper we discuss
More informationFactoring Polynomials and Solving Quadratic Equations
Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3
More informationStability. Chapter 4. Topics : 1. Basic Concepts. 2. Algebraic Criteria for Linear Systems. 3. Lyapunov Theory with Applications to Linear Systems
Chapter 4 Stability Topics : 1. Basic Concepts 2. Algebraic Criteria for Linear Systems 3. Lyapunov Theory with Applications to Linear Systems 4. Stability and Control Copyright c Claudiu C. Remsing, 2006.
More informationSystem Modeling and Control for Mechanical Engineers
Session 1655 System Modeling and Control for Mechanical Engineers Hugh Jack, Associate Professor Padnos School of Engineering Grand Valley State University Grand Rapids, MI email: jackh@gvsu.edu Abstract
More informationModels of Cortical Maps II
CN510: Principles and Methods of Cognitive and Neural Modeling Models of Cortical Maps II Lecture 19 Instructor: Anatoli Gorchetchnikov dy dt The Network of Grossberg (1976) Ay B y f (
More informationFrancesco Sorrentino Department of Mechanical Engineering
Master stability function approaches to analyze stability of the synchronous evolution for hypernetworks and of synchronized clusters for networks with symmetries Francesco Sorrentino Department of Mechanical
More informationSection 2.1. Section 2.2. Exercise 6: We have to compute the product AB in two ways, where , B =. 2 1 3 5 A =
Section 2.1 Exercise 6: We have to compute the product AB in two ways, where 4 2 A = 3 0 1 3, B =. 2 1 3 5 Solution 1. Let b 1 = (1, 2) and b 2 = (3, 1) be the columns of B. Then Ab 1 = (0, 3, 13) and
More informationDeterminants. Dr. Doreen De Leon Math 152, Fall 2015
Determinants Dr. Doreen De Leon Math 52, Fall 205 Determinant of a Matrix Elementary Matrices We will first discuss matrices that can be used to produce an elementary row operation on a given matrix A.
More informationFundamentals of Microelectronics
Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors
More informationLecture 3: Linear methods for classification
Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,
More informationFactoring Patterns in the Gaussian Plane
Factoring Patterns in the Gaussian Plane Steve Phelps Introduction This paper describes discoveries made at the Park City Mathematics Institute, 00, as well as some proofs. Before the summer I understood
More informationInstability of Sunspot Equilibria in Real Business Cycle Models Under Adaptive Learning
Instability of Sunspot Equilibria in Real Business Cycle Models Under Adaptive Learning John Duffy Department of Economics University of Pittsburgh 230 S. Bouquet Street Pittsburgh, PA 15260 USA E mail:
More informationAutonomous Equations / Stability of Equilibrium Solutions. y = f (y).
Autonomous Equations / Stability of Equilibrium Solutions First order autonomous equations, Equilibrium solutions, Stability, Longterm behavior of solutions, direction fields, Population dynamics and logistic
More informationPredatorPrey Models. Stephanie Forrest Dept. of Computer Science Univ. of New Mexico Albuquerque, NM.
PredatorPrey Models Stephanie Forrest Dept. of Computer Science Univ. of New Mexico Albuquerque, NM http://cs.unm.edu/~forrest forrest@cs.unm.edu Dynamical Systems vs. Computation" Dynamics:" Focus on
More informationLecture 11: The Greeks and Risk Management
Lecture 11: The Greeks and Risk Management This lecture studies market risk management from the perspective of an options trader. First, we show how to describe the risk characteristics of derivatives.
More informationIntroduction to Complex Numbers in Physics/Engineering
Introduction to Complex Numbers in Physics/Engineering ference: Mary L. Boas, Mathematical Methods in the Physical Sciences Chapter 2 & 14 George Arfken, Mathematical Methods for Physicists Chapter 6 The
More informationHeating & Cooling in Molecular Clouds
Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core
More informationMatLab  Systems of Differential Equations
Fall 2015 Math 337 MatLab  Systems of Differential Equations This section examines systems of differential equations. It goes through the key steps of solving systems of differential equations through
More informationAlgebra 1 Course Information
Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through
More informationr (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + 1 = 1 1 θ(t) 1 9.4.4 Write the given system in matrix form x = Ax + f ( ) sin(t) x y 1 0 5 z = dy cos(t)
Solutions HW 9.4.2 Write the given system in matrix form x = Ax + f r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + We write this as ( ) r (t) θ (t) = ( ) ( ) 2 r(t) θ(t) + ( ) sin(t) 9.4.4 Write the given system
More informationAlgebra Practice Problems for Precalculus and Calculus
Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials
More informationStability Analysis for Systems of Differential Equations
Stability Analysis for Systems of Differential Equations David Eberly Geometric Tools, LLC http://wwwgeometrictoolscom/ Copyright c 19982016 All Rights Reserved Created: February 8, 2003 Last Modified:
More informationExample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x
Lecture 4. LaSalle s Invariance Principle We begin with a motivating eample. Eample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum Dynamics of a pendulum with friction can be written
More informationIntroduction to Matrices for Engineers
Introduction to Matrices for Engineers C.T.J. Dodson, School of Mathematics, Manchester Universit 1 What is a Matrix? A matrix is a rectangular arra of elements, usuall numbers, e.g. 1 08 4 01 1 0 11
More informationSecond Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard
More information