# t-test Statistics Overview of Statistical Tests Assumptions

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 t-test Statistics Overview of Statistical Tests Assumption: Testing for Normality The Student s t-distribution Inference about one mean (one sample t-test) Inference about two means (two sample t-test) Assumption: F-test for Variance Student s t-test - For homogeneous variances - For heterogeneous variances Statistical Power 1 Overview of Statistical Tests During the design of your experiment you must specify what statistical procedures you will use. You require at least 3 pieces of info: Type of Variable Number of Variables Number of Samples Then refer to end-papers of Sokal and Rohlf (1995) -REVIEW- Assumptions Virtually every statistic, parametric or nonparametric, has assumptions which must be met prior to the application of the experimental design and subsequent statistical analysis. We will discuss specific assumptions associated with individual tests as they come up. Virtually all parametric statistics have an assumption that the data come from a population that follows a known distribution. Most of the tests we will evaluate in this module require a normal distribution. 3

2 Assumption: Testing for Normality Review and Commentary: D Agostino, R.B., A. Belanger, and R.B. D Agostino A suggestion for using powerful and informative tests of normality. The American Statistician 44: (See Course Web Page for PDF version.) Most major normality tests have corresponding R code available in either the base stats package or affiliated package. We will review the options as we proceed. 4 Normality There are 5 major tests used: Shapiro-Wilk W test Anderson-Darling test Martinez-Iglewicz test Kolmogorov-Smirnov test D Agostino Omnibus test NB: Power of all is weak if N < 10 5 Shapiro-Wilk W test Developed by Shapiro and Wilk (1965). One of the most powerful overall tests. It is the ratio of two estimates of variance (actual calculation is cumbersome; adversely affected by ties). Test statistic is W; roughly a measure of the straightness of the quantile-quantile plot. The closer W is to 1, the more normal the sample is. Available in R and most other major stats applications. 6

3 Normal Q-Q Plot Sample Quantiles Example in R (Tutorial-3) Theoretical Quantiles 7 Anderson-Darling test Developed by Anderson and Darling (1954). Very popular test. Based on EDF (empirical distribution function) percentile statistics. Almost as powerful as Shapiro-Wilk W test. 8 Martinez-Iglewicz Test Based on the median & robust estimator of dispersion. Very powerful test. Works well with small sample sizes. Particularly useful for symmetrically skewed samples. A value close to 1.0 indicates normality. Strongly recommended during EDA. Not available in R. 9

4 Kolmogorov-Smirnov Test Calculates expected normal distribution and compares it with the observed distribution. Uses cumulative distribution functions. Based on the max difference between two distributions. Poor for discrimination below N = 30. Power to detect differences is low. Historically popular. Available in R and most other stats applications. 10 D Agostino et al. Tests Based on coefficients of skewness ( b 1 ) and kurtosis (b ). If normal, b 1 =1 and b =3 (tests based on this). Provides separate tests for skew and kurt: - Skewness test requires N 8 - Kurtosis test best if N > 0 Provides combined Omnibus test of normality. Available in R. 11 The t-distribution t-distribution is similar to Z-distribution Z = y / N Note similarity: vs. t = y S / N The functional difference is between σ and S. Virtually identical when N > 30. Much like Z, the t-distribution can be used for inferences about μ. One would use the t-statistic when σ is not known and S is (the general case). 1

5 The t-distribution See Appendix Statistical Table C t, ν = 1 Standard Normal (Z) t, ν = 6 13 One Sample t-test - Assumptions - The data must be continuous. The data must follow the normal probability distribution. The sample is a simple random sample from its population. 14 One Sample t-test t = y S / N y t,df SE y y t,df SE y df s /,df df s 1 /, df 15

6 One Sample t-test - Example - Twelve (N = 1) rats are weighed before and after being subjected to a regimen of forced exercise. Each weight change (g) is the weight after exercise minus the weight before: 1.7, 0.7, -0.4, -1.8, 0., 0.9, -1., -0.9, -1.8, -1.4, -1.8, -.0 H 0 : μ = 0 H A : μ 0 16 One Sample t-test - Example - > W<-c(1.7, 0.7, -0.4, -1.8, 0., 0.9, -1., -0.9, -1.8, -1.4, -1.8, -.0) > summary(w) Min. 1st Qu. Median Mean 3rd Qu. Max > hist(w, col= red ) > shapiro.test(w) Shapiro-Wilk normality test data: W W = , p-value = One-sample t-test using R > W<-c(1.7, 0.7, -0.4, -1.8, 0., 0.9, -1., -0.9, , -1.4, -1.8, -.0) > W [1] > t.test(w, mu=0) One Sample t-test data: W t = , df = 11, p-value = alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: sample estimates: mean of x

7 One Sample t-test For most statistical procedures, one will want to do a post-hoc test (particularly in the case of failing to reject H 0 ) of the required sample size necessary to test the hypothesis. For example, how large of a sample size would be needed to reject the null hypothesis of the onesample t-test we just did? Sample size questions and related error rates are best explored through a power analysis. 19 > power.t.test(n=15, delta=1.0, sd=1.53, sig.level=0.05, type="one.sample") One-sample t test power calculation n = 15 delta = 1 sd = 1.53 sig.level = 0.05 power = alternative = two.sided > power.t.test(n=0, delta=1.0, sd=1.53, sig.level=0.05, type="one.sample") One-sample t test power calculation n = 0 delta = 1 sd = 1.53 sig.level = 0.05 power = alternative = two.sided > power.t.test(n=5, delta=1.0, sd=1.53, sig.level=0.05, type="one.sample") One-sample t test power calculation n = 5 delta = 1 sd = 1.53 sig.level = 0.05 power = i i 0 Two Sample t-test - Assumptions - The data are continuous (not discrete). The data follow the normal probability distribution. The variances of the two populations are equal. (If not, the Aspin-Welch Unequal-Variance test is used.) The two samples are independent. There is no relationship between the individuals in one sample as compared to the other. Both samples are simple random samples from their respective populations. 1

8 Two Sample t-test Determination of which two-sample t-test to use is dependent upon first testing the variance assumption: Two Sample t-test for Homogeneous Variances Two-Sample t-test for Heterogeneous Variances Variance Ratio F-test - Variance Assumption - Must explicitly test for homogeneity of variance H o : S 1 = S H a : S 1 S Requires the use of F-test which relies on the F-distribution. F calc = S max / S min Get F table at N-1 df for each sample If F calc < F table then fail to reject H o. 3 Variance Ratio F-test - Example - Suppose you had the following sample data: Sample-A S a = 16.7 N = 1 Sample-B S b = N = 8 F calc = 16.7/13.98 = 1.16 F table = (df = 11,7) Decision: F calc < F table therefore fail to reject Ho. Conclusion: the variances are homogeneous. 4

9 Variance Ratio F-test - WARNING - Be careful! The F-test for variance requires that the two samples are drawn from normal populations (i.e., must test normality assumption first). If the two samples are not normally distributed, do not use Variance Ratio F-test! Use the Modified Levene Equal-Variance Test. 5 Modified Levene Equal-Variance Test z 1j = x j Med x z j = y j Med y First, redefine all of the variates as a function of the difference with their respective median. Then perform a twosample ANOVA to get F for redefined values. Stronger test of homogeneity of variance assumption. Not currently available in R, but code easily written and executed. 6 Two-sample t-test - for Homogeneous Variances - Begin by calculating the mean & variance for each of your two samples. Then determine pooled variance S p : S p = N 1 i=1 N y i y i y j y j j=1 N 1 1 N 1 = N 1 1 S 1 N 1 S N 1 N Theoretical formula Machine formula 7

10 Two-sample t-test - for Homogeneous Variances - Determine the test statistic t calc : t= y 1 y S p S p N 1 N df =N 1 N Go to t-table (Appendix) at the appropriate α and df to determine t table 8 Two-sample t-test - Example - Suppose a microscopist has just identified two potentially different types of cells based upon differential staining. She separates them out in to two groups (amber cells and blue cells). She suspects there may be a difference in cell wall thickness (cwt) so she wishes to test the hypothesis: Ho: AC cwt = BC cwt Ha: AC cwt BC cwt 9 Two-sample t-test - Example - Parameter AC-type BC-type Mean SS N Notes: She counts the number of cells in one randomly chosen field of view. SS is the sum of squares (theor. formula), or numerator of the variance equation. 30

11 Two-sample t-test - Example - S p = = 0.17 t calc = = df = =30 Ho: AC cwt = BC cwt Ha: AC cwt BC cwt At α = 0.05/, df = 30 t table =.04 t calc < t table Therefore Fail to reject Ho. Cell wall thickness is similar btw types. 31 Two-sample t-test using R > B<-c(8.8, 8.4,7.9,8.7,9.1,9.6) > G<-c(9.9,9.0,11.1,9.6,8.7,10.4,9.5) > var.test(b,g) F test to compare two variances data: B and G F = , num df = 5, denom df = 6, p-value = 0.47 alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: sample estimates: ratio of variances Two-sample t-test using R > t.test(b,g, var.equal=true) Two Sample t-test data: B and G t = , df = 11, p-value = alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean of x mean of y

12 Two-sample t-test - for Heterogeneous Variances - Q. Suppose we were able to meet the normality assumption, but failed the homogeneity of variance test. Can we still perform a t-test? A. Yes, but we but must calculate an adjusted degrees of freedom (df). 34 Two-sample t-test - Adjusted df for Heterogeneous Variances - df S1 N N 1 S S 1 N N 1 S 1 1 N N 1 Performs the t-test in exactly the same fashion as for homogeneous variances; but, you must enter the table at a different df. Note that this can have a big effect on decision. 35 Two-sample t-test using R - Heterogeneous Variance - > Captive<-c(10,11,1,11,10,11,11) > Wild<-c(9,8,11,1,10,13,11,10,1) > var.test(captive,wild) F test to compare two variances data: Captive and Wild F = , num df = 6, denom df = 8, p-value = alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: sample estimates: ratio of variances

13 Two-sample t-test using R - Heterogeneous Variance - > t.test(captive, Wild) Welch Two Sample t-test data: Captive and Wild t = 0.339, df = 11.48, p-value = alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean of x mean of y Matched-Pair t-test It is not uncommon in biology to conduct an experiment whereby each observation in a treatment sample has a matched pair in a control sample. Thus, we have violated the assumption of independence and can not do a standard t-test. The matched-pair t-test was developed to address this type of experimental design. 38 Matched-Pair t-test By definition, sample sizes must be equal. Such designs arise when: Same obs are exposed to treatments over time. Before and after experiments (temporally related). Side-by-side experiments (spatially related). Many early fertilizer studies used this design. One plot received fertilizer, an adjacent plot did not. Plots were replicated in a field and plant yield measured. 39

14 Matched-Pair t-test The approach to this type of analysis is a bit counter intuitive. Even though there are two samples, you will work with only one sample composed of: STANDARD DIFFERENCES and df = N ab Matched-Pair t-test - Assumptions - The data are continuous (not discrete). The data, i.e., the differences for the matchedpairs, follow a normal probability distribution. The sample of pairs is a simple random sample from its population. 41 Matched-Pair t-test y d = N y d d=1 N S d = N d=1 N y d y d /N d =1 N 1 t = y d S d / N 4

15 Matched-Pair t-test using R - Example - > New.Fert<-c(50,410,60,00,360,30,40,300,090) > Old.Fert<-c(190,00,060,1960,1960,140,1980,1940,1790) > hist(dif.fert) > Dif.Fert<-(New.Fert-Old.Fert) > shapiro.test(dif.fert) Shapiro-Wilk normality data: Dif.Fert W = , p-value = 0.60 Histogram of Dif.Fert Normal Q-Q Plot Frequency Sample Quantiles Dif.Fert Theoretical Quantiles 43 Matched-Pair t-test using R - One-tailed test - > t.test(new.fert, Old.Fert, alternative=c("greater"), mu=50, paired=true) Paired t-test data: New.Fert and Old.Fert t = , df = 8, p-value = alternative hypothesis: true difference in means is greater than percent confidence interval: Inf sample estimates: mean of the differences Statistical Power Q. What if I do a t-test on a pair of samples and fail to reject the null hypothesis--does this mean that there is no significant difference? A. Maybe yes, maybe no. Depends upon the POWER of your test and experiment. 45

16 Power Power is the probability of rejecting the hypothesis that the means are equal when they are in fact not equal. Power is one minus the probability of Type-II error (β). The power of the test depends upon the sample size, the magnitudes of the variances, the alpha level, and the actual difference between the two population means. 46 Power Usually you would only consider the power of a test when you failed to reject the null hypothesis. High power is desirable (0.7 to 1.0). High power means that there is a high probability of rejecting the null hypothesis when the null hypothesis is false. This is a critical measure of precision in hypothesis testing and needs to be considered with care. More on Power in the next lecture. 47 Stay tuned. Coming Soon: Responding to Assumption Violations, Power, Two-sample Nonparametric Tests 48

### NCSS Statistical Software

Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

### Nonparametric Two-Sample Tests. Nonparametric Tests. Sign Test

Nonparametric Two-Sample Tests Sign test Mann-Whitney U-test (a.k.a. Wilcoxon two-sample test) Kolmogorov-Smirnov Test Wilcoxon Signed-Rank Test Tukey-Duckworth Test 1 Nonparametric Tests Recall, nonparametric

### Statistics Review PSY379

Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses

### LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

### Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)

Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption

### Study Guide for the Final Exam

Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

### NCSS Statistical Software

Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

### Tutorial 5: Hypothesis Testing

Tutorial 5: Hypothesis Testing Rob Nicholls nicholls@mrc-lmb.cam.ac.uk MRC LMB Statistics Course 2014 Contents 1 Introduction................................ 1 2 Testing distributional assumptions....................

### Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of

### THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.

THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM

### INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

### Comparing Means in Two Populations

Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we

### Hypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam

Hypothesis Testing 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 3 2. Hypothesis Testing... 3 3. Hypothesis Tests Concerning the Mean... 10 4. Hypothesis Tests

### Hypothesis Testing. Dr. Bob Gee Dean Scott Bonney Professor William G. Journigan American Meridian University

Hypothesis Testing Dr. Bob Gee Dean Scott Bonney Professor William G. Journigan American Meridian University 1 AMU / Bon-Tech, LLC, Journi-Tech Corporation Copyright 2015 Learning Objectives Upon successful

### How to choose a statistical test. Francisco J. Candido dos Reis DGO-FMRP University of São Paulo

How to choose a statistical test Francisco J. Candido dos Reis DGO-FMRP University of São Paulo Choosing the right test One of the most common queries in stats support is Which analysis should I use There

### Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

### Statistical Inference and t-tests

1 Statistical Inference and t-tests Objectives Evaluate the difference between a sample mean and a target value using a one-sample t-test. Evaluate the difference between a sample mean and a target value

### Hypothesis testing S2

Basic medical statistics for clinical and experimental research Hypothesis testing S2 Katarzyna Jóźwiak k.jozwiak@nki.nl 2nd November 2015 1/43 Introduction Point estimation: use a sample statistic to

### Null Hypothesis H 0. The null hypothesis (denoted by H 0

Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property

### 1 SAMPLE SIGN TEST. Non-Parametric Univariate Tests: 1 Sample Sign Test 1. A non-parametric equivalent of the 1 SAMPLE T-TEST.

Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.

### Business Statistics. Lecture 8: More Hypothesis Testing

Business Statistics Lecture 8: More Hypothesis Testing 1 Goals for this Lecture Review of t-tests Additional hypothesis tests Two-sample tests Paired tests 2 The Basic Idea of Hypothesis Testing Start

### Data Analysis. Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) SS Analysis of Experiments - Introduction

Data Analysis Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) Prof. Dr. Dr. h.c. Dieter Rombach Dr. Andreas Jedlitschka SS 2014 Analysis of Experiments - Introduction

### Non-Inferiority Tests for Two Means using Differences

Chapter 450 on-inferiority Tests for Two Means using Differences Introduction This procedure computes power and sample size for non-inferiority tests in two-sample designs in which the outcome is a continuous

### Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

### Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

### Final Exam Practice Problem Answers

Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

### Seminar paper Statistics

Seminar paper Statistics The seminar paper must contain: - the title page - the characterization of the data (origin, reason why you have chosen this analysis,...) - the list of the data (in the table)

### One-sample normal hypothesis Testing, paired t-test, two-sample normal inference, normal probability plots

1 / 27 One-sample normal hypothesis Testing, paired t-test, two-sample normal inference, normal probability plots Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis

### Statistics 641 - EXAM II - 1999 through 2003

Statistics 641 - EXAM II - 1999 through 2003 December 1, 1999 I. (40 points ) Place the letter of the best answer in the blank to the left of each question. (1) In testing H 0 : µ 5 vs H 1 : µ > 5, the

### Testing: is my coin fair?

Testing: is my coin fair? Formally: we want to make some inference about P(head) Try it: toss coin several times (say 7 times) Assume that it is fair ( P(head)= ), and see if this assumption is compatible

### Module 5 Hypotheses Tests: Comparing Two Groups

Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this

### Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Learning Objective. Simple Hypothesis Testing

Exploring Confidence Intervals and Simple Hypothesis Testing 35 A confidence interval describes the amount of uncertainty associated with a sample estimate of a population parameter. 95% confidence level

### Two-Sample T-Test from Means and SD s

Chapter 07 Two-Sample T-Test from Means and SD s Introduction This procedure computes the two-sample t-test and several other two-sample tests directly from the mean, standard deviation, and sample size.

### Analysis of Variance ANOVA

Analysis of Variance ANOVA Overview We ve used the t -test to compare the means from two independent groups. Now we ve come to the final topic of the course: how to compare means from more than two populations.

### 12: Analysis of Variance. Introduction

1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider

### Permutation Tests for Comparing Two Populations

Permutation Tests for Comparing Two Populations Ferry Butar Butar, Ph.D. Jae-Wan Park Abstract Permutation tests for comparing two populations could be widely used in practice because of flexibility of

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### Non-parametric tests I

Non-parametric tests I Objectives Mann-Whitney Wilcoxon Signed Rank Relation of Parametric to Non-parametric tests 1 the problem Our testing procedures thus far have relied on assumptions of independence,

### Sociology 6Z03 Topic 15: Statistical Inference for Means

Sociology 6Z03 Topic 15: Statistical Inference for Means John Fox McMaster University Fall 2016 John Fox (McMaster University) Soc 6Z03: Statistical Inference for Means Fall 2016 1 / 41 Outline: Statistical

### NCSS Statistical Software. One-Sample T-Test

Chapter 205 Introduction This procedure provides several reports for making inference about a population mean based on a single sample. These reports include confidence intervals of the mean or median,

### 1.5 Oneway Analysis of Variance

Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

### individualdifferences

1 Simple ANalysis Of Variance (ANOVA) Oftentimes we have more than two groups that we want to compare. The purpose of ANOVA is to allow us to compare group means from several independent samples. In general,

### Nonparametric Statistics

Nonparametric Statistics References Some good references for the topics in this course are 1. Higgins, James (2004), Introduction to Nonparametric Statistics 2. Hollander and Wolfe, (1999), Nonparametric

### Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing

Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters

### Statistiek I. t-tests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. John Nerbonne 1/35

Statistiek I t-tests John Nerbonne CLCG, Rijksuniversiteit Groningen http://wwwletrugnl/nerbonne/teach/statistiek-i/ John Nerbonne 1/35 t-tests To test an average or pair of averages when σ is known, we

### One-Sample t-test. Example 1: Mortgage Process Time. Problem. Data set. Data collection. Tools

One-Sample t-test Example 1: Mortgage Process Time Problem A faster loan processing time produces higher productivity and greater customer satisfaction. A financial services institution wants to establish

### Chi-Square Test. Contingency Tables. Contingency Tables. Chi-Square Test for Independence. Chi-Square Tests for Goodnessof-Fit

Chi-Square Tests 15 Chapter Chi-Square Test for Independence Chi-Square Tests for Goodness Uniform Goodness- Poisson Goodness- Goodness Test ECDF Tests (Optional) McGraw-Hill/Irwin Copyright 2009 by The

### Outline. Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test

The t-test Outline Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test - Dependent (related) groups t-test - Independent (unrelated) groups t-test Comparing means Correlation

### ANOVA Analysis of Variance

ANOVA Analysis of Variance What is ANOVA and why do we use it? Can test hypotheses about mean differences between more than 2 samples. Can also make inferences about the effects of several different IVs,

### Data Analysis Tools. Tools for Summarizing Data

Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool

### Lecture Notes Module 1

Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific

### Paired vs. 2 sample comparisons. Comparing means. Paired comparisons allow us to account for a lot of extraneous variation.

Comparing means! Tests with one categorical and one numerical variable Paired vs. sample comparisons! Goal: to compare the mean of a numerical variable for different groups. Paired comparisons allow us

2. DATA AND EXERCISES (Geos2911 students please read page 8) 2.1 Data set The data set available to you is an Excel spreadsheet file called cyclones.xls. The file consists of 3 sheets. Only the third is

### Two-sample inference: Continuous data

Two-sample inference: Continuous data Patrick Breheny April 5 Patrick Breheny STA 580: Biostatistics I 1/32 Introduction Our next two lectures will deal with two-sample inference for continuous data As

### UNDERSTANDING THE INDEPENDENT-SAMPLES t TEST

UNDERSTANDING The independent-samples t test evaluates the difference between the means of two independent or unrelated groups. That is, we evaluate whether the means for two independent groups are significantly

### Hypothesis Testing COMP 245 STATISTICS. Dr N A Heard. 1 Hypothesis Testing 2 1.1 Introduction... 2 1.2 Error Rates and Power of a Test...

Hypothesis Testing COMP 45 STATISTICS Dr N A Heard Contents 1 Hypothesis Testing 1.1 Introduction........................................ 1. Error Rates and Power of a Test.............................

### 2 Sample t-test (unequal sample sizes and unequal variances)

Variations of the t-test: Sample tail Sample t-test (unequal sample sizes and unequal variances) Like the last example, below we have ceramic sherd thickness measurements (in cm) of two samples representing

### Normality Testing in Excel

Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com

### THE KRUSKAL WALLLIS TEST

THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKAL-WALLIS TEST: The non-parametric alternative to ANOVA: testing for difference between several independent groups 2 NON

### Testing for differences I exercises with SPSS

Testing for differences I exercises with SPSS Introduction The exercises presented here are all about the t-test and its non-parametric equivalents in their various forms. In SPSS, all these tests can

### Chapter 7 Section 7.1: Inference for the Mean of a Population

Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used

### Point Biserial Correlation Tests

Chapter 807 Point Biserial Correlation Tests Introduction The point biserial correlation coefficient (ρ in this chapter) is the product-moment correlation calculated between a continuous random variable

### Box plots & t-tests. Example

Box plots & t-tests Box Plots Box plots are a graphical representation of your sample (easy to visualize descriptive statistics); they are also known as box-and-whisker diagrams. Any data that you can

### Principles of Hypothesis Testing for Public Health

Principles of Hypothesis Testing for Public Health Laura Lee Johnson, Ph.D. Statistician National Center for Complementary and Alternative Medicine johnslau@mail.nih.gov Fall 2011 Answers to Questions

### SPSS on two independent samples. Two sample test with proportions. Paired t-test (with more SPSS)

SPSS on two independent samples. Two sample test with proportions. Paired t-test (with more SPSS) State of the course address: The Final exam is Aug 9, 3:30pm 6:30pm in B9201 in the Burnaby Campus. (One

### Exercise Solutions, enote3, Part3

enote 3 29 Exercise Solutions, enote3, Part3 Exercise 5 Transport times A company, MM, selling items online wants to compare the transport times for two transport firms for delivery of the goods. To compare

### 3. Nonparametric methods

3. Nonparametric methods If the probability distributions of the statistical variables are unknown or are not as required (e.g. normality assumption violated), then we may still apply nonparametric tests

### UNDERSTANDING THE ONE-WAY ANOVA

UNDERSTANDING The One-way Analysis of Variance (ANOVA) is a procedure for testing the hypothesis that K population means are equal, where K >. The One-way ANOVA compares the means of the samples or groups

### Let s look at some data provided by Crawley on ozone levels (in pphm) taken on 10 days from two market gardens B & C:

Tutorial 4: Two-sample tests, power analysis, and tabular data Goal: To provide a more in depth look at univariate statistics and to explore quantitative and graphical methods necessary for determining

### Dongfeng Li. Autumn 2010

Autumn 2010 Chapter Contents Some statistics background; ; Comparing means and proportions; variance. Students should master the basic concepts, descriptive statistics measures and graphs, basic hypothesis

### Difference of Means and ANOVA Problems

Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly

### Null Hypothesis Significance Testing Signifcance Level, Power, t-tests. 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom

Null Hypothesis Significance Testing Signifcance Level, Power, t-tests 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom Simple and composite hypotheses Simple hypothesis: the sampling distribution is

### Paired T-Test. Chapter 208. Introduction. Technical Details. Research Questions

Chapter 208 Introduction This procedure provides several reports for making inference about the difference between two population means based on a paired sample. These reports include confidence intervals

### Tests for Two Proportions

Chapter 200 Tests for Two Proportions Introduction This module computes power and sample size for hypothesis tests of the difference, ratio, or odds ratio of two independent proportions. The test statistics

### DATA INTERPRETATION AND STATISTICS

PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE

BIOSTATISTICS QUIZ ANSWERS 1. When you read scientific literature, do you know whether the statistical tests that were used were appropriate and why they were used? a. Always b. Mostly c. Rarely d. Never

### MEASURES OF LOCATION AND SPREAD

Paper TU04 An Overview of Non-parametric Tests in SAS : When, Why, and How Paul A. Pappas and Venita DePuy Durham, North Carolina, USA ABSTRACT Most commonly used statistical procedures are based on the

### Guide to Microsoft Excel for calculations, statistics, and plotting data

Page 1/47 Guide to Microsoft Excel for calculations, statistics, and plotting data Topic Page A. Writing equations and text 2 1. Writing equations with mathematical operations 2 2. Writing equations with

### 9-3.4 Likelihood ratio test. Neyman-Pearson lemma

9-3.4 Likelihood ratio test Neyman-Pearson lemma 9-1 Hypothesis Testing 9-1.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental

### ANOVA MULTIPLE CHOICE QUESTIONS. In the following multiple-choice questions, select the best answer.

ANOVA MULTIPLE CHOICE QUESTIONS In the following multiple-choice questions, select the best answer. 1. Analysis of variance is a statistical method of comparing the of several populations. a. standard

### Null and Alternative Hypotheses. Lecture # 3. Steps in Conducting a Hypothesis Test (Cont d) Steps in Conducting a Hypothesis Test

Lecture # 3 Significance Testing Is there a significant difference between a measured and a standard amount (that can not be accounted for by random error alone)? aka Hypothesis testing- H 0 (null hypothesis)

### Non-Parametric Tests (I)

Lecture 5: Non-Parametric Tests (I) KimHuat LIM lim@stats.ox.ac.uk http://www.stats.ox.ac.uk/~lim/teaching.html Slide 1 5.1 Outline (i) Overview of Distribution-Free Tests (ii) Median Test for Two Independent

### Pearson's Correlation Tests

Chapter 800 Pearson's Correlation Tests Introduction The correlation coefficient, ρ (rho), is a popular statistic for describing the strength of the relationship between two variables. The correlation

### Chapter 2 Drawing Statistical Conclusions

Chapter 2 Drawing Statistical Conclusions STAT 3022 School of Statistic, University of Minnesota 2013 spring 1 / 50 Population and Parameters Suppose there s a population of interest that we wish to study:

### UCLA STAT 13 Statistical Methods - Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates

UCLA STAT 13 Statistical Methods - Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates 1. (a) (i) µ µ (ii) σ σ n is exactly Normally distributed. (c) (i) is approximately Normally

### L.8: Analysing continuous data

L.8: Analysing continuous data - Types of variables - Comparing two means: - independent samples - Comparing two means: - dependent samples - Checking the assumptions - Nonparametric test Types of variables

### SPSS Workbook 4 T-tests

TEESSIDE UNIVERSITY SCHOOL OF HEALTH & SOCIAL CARE SPSS Workbook 4 T-tests Research, Audit and data RMH 2023-N Module Leader:Sylvia Storey Phone:016420384969 s.storey@tees.ac.uk SPSS Workbook 4 Differences

### Hypothesis Testing hypothesis testing approach formulation of the test statistic

Hypothesis Testing For the next few lectures, we re going to look at various test statistics that are formulated to allow us to test hypotheses in a variety of contexts: In all cases, the hypothesis testing

### EXST SAS Lab Lab #7: Hypothesis testing with Paired t-tests and One-tailed t-tests

EXST SAS Lab Lab #7: Hypothesis testing with Paired t-tests and One-tailed t-tests Objectives 1. Infile two external data sets (TXT files) 2. Calculate a difference between two variables in the data step

### Nonparametric tests, Bootstrapping

Nonparametric tests, Bootstrapping http://www.isrec.isb-sib.ch/~darlene/embnet/ Hypothesis testing review 2 competing theories regarding a population parameter: NULL hypothesis H ( straw man ) ALTERNATIVEhypothesis

### AP Statistics 2007 Scoring Guidelines

AP Statistics 2007 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college

### Chapter 7. One-way ANOVA

Chapter 7 One-way ANOVA One-way ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The t-test of Chapter 6 looks

### Projects Involving Statistics (& SPSS)

Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,

### 3.4 Statistical inference for 2 populations based on two samples

3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted

### MCQ TESTING OF HYPOTHESIS

MCQ TESTING OF HYPOTHESIS MCQ 13.1 A statement about a population developed for the purpose of testing is called: (a) Hypothesis (b) Hypothesis testing (c) Level of significance (d) Test-statistic MCQ

### Factorial Analysis of Variance

Chapter 560 Factorial Analysis of Variance Introduction A common task in research is to compare the average response across levels of one or more factor variables. Examples of factor variables are income