Why do mathematicians make things so complicated?


 Clementine Gibbs
 1 years ago
 Views:
Transcription
1 Why do mathematicians make things so complicated? Zhiqin Lu, The Math Department March 9, 2010
2 Introduction What is Mathematics?
3 Introduction What is Mathematics? 24,100,000 answers from Google.
4 Introduction What is Mathematics? 24,100,000 answers from Google. Such a FAQ!
5 Introduction From Wikipedia Mathematics is the study of quantity, structure, space, and change. Mathematicians seek out patterns,[2][3] formulate new conjectures, and establish truth by rigorous deduction from appropriately chosen axioms and definitions.[4]
6 Introduction An example The Real World vs. The Math World
7 Introduction An example The Real World vs. The Math World How to become a millionaire
8 Introduction An example The Real World vs. The Math World How to become a millionaire in a month?
9 Introduction An example Fact/Secret/Assumption: Most interest checking accounts generate interest at least one cent a month.
10 Introduction An example Fact/Secret/Assumption: Most interest checking accounts generate interest at least one cent a month. Here is How: 1 Open 100,000,000 interest checking accounts and deposit one cent to each account;
11 Introduction An example Fact/Secret/Assumption: Most interest checking accounts generate interest at least one cent a month. Here is How: 1 Open 100,000,000 interest checking accounts and deposit one cent to each account; 2 Wait for a month.
12 Introduction An example Fact/Secret/Assumption: Most interest checking accounts generate interest at least one cent a month. Here is How: 1 Open 100,000,000 interest checking accounts and deposit one cent to each account; 2 Wait for a month. The profit?
13 Introduction An example Fact/Secret/Assumption: Most interest checking accounts generate interest at least one cent a month. Here is How: 1 Open 100,000,000 interest checking accounts and deposit one cent to each account; 2 Wait for a month. The profit? 100, 000, 000 $0.01 = $1, 000, 000!
14 Introduction An example...and that is not the end of the story...
15 Introduction An example...and that is not the end of the story... Mathematicians like to say
16 Introduction An example...and that is not the end of the story... Mathematicians like to say Let n (infinity)
17 Introduction An example...and that is not the end of the story... Mathematicians like to say Let n (infinity) If we let the number of checking accounts go to infinity, what will happen?
18 Introduction An example...and that is not the end of the story... Mathematicians like to say Let n (infinity) If we let the number of checking accounts go to infinity, what will happen? One can earn the whole Universe in a month!
19 Introduction An example Since that is not possible, we get the following result by Reductio ad absurdum (proof by contradiction).
20 Introduction An example Since that is not possible, we get the following result by Reductio ad absurdum (proof by contradiction). Theorem No banks can afford a free $0.01 interest.
21 Introduction An example Since that is not possible, we get the following result by Reductio ad absurdum (proof by contradiction). Theorem No banks can afford a free $0.01 interest. (in the math world)
22 Introduction Summary I am going to talk about
23 Introduction Summary I am going to talk about 1 Why everything has to be done in an indirect way?
24 Introduction Summary I am going to talk about 1 Why everything has to be done in an indirect way? 2 The power of symbols/abstractions.
25 Introduction Summary I am going to talk about 1 Why everything has to be done in an indirect way? 2 The power of symbols/abstractions. 3 How do we choose a problem/project to work on?
26 Introduction Summary I am going to talk about 1 Why everything has to be done in an indirect way? 2 The power of symbols/abstractions. 3 How do we choose a problem/project to work on? 4 Why do we care about other sciences?
27 Introduction Summary I am going to talk about 1 Why everything has to be done in an indirect way? 2 The power of symbols/abstractions. 3 How do we choose a problem/project to work on? 4 Why do we care about other sciences? 5 Use of Computer.
28 My field Mathematics
29 My field Mathematics Differential Geometry
30 My field Mathematics Differential Geometry Complex Geometry
31 My field 1 One of my projects is in the mathematical aspects of Super String Theory.
32 My field 1 One of my projects is in the mathematical aspects of Super String Theory. 2 It is related to the Mirror Symmetry.
33 My field 1 One of my projects is in the mathematical aspects of Super String Theory. 2 It is related to the Mirror Symmetry. 3 Two Universes, quite different, but have the same Quantum Field Theory.
34 My field Figure: Brain Greene, The Elegant Universe, NY Times Best Selling Book.
35 Why everything has to be done in an... indirect way? A problem in Math 2E. Triple integralsa Problem in Math 2E
36 Why everything has to be done in an... indirect way? A problem in Math 2E. Triple integralsa Problem in Math 2E Compute W xdxdydz, where W is the region bounded by the planes x = 0, y = 0, and z = 2, and the surface z = x 2 + y 2 and lying in the quadrant x 0, y 0.
37 II IV Why do mathematicians make things so complicated? Why everything has to be done in an... indirect way? A problem in Math 2E. Triple integralsa Problem in Math 2E Compute W xdxdydz, where W is the region bounded by the planes x = 0, y = 0, and z = 2, and the surface z = x 2 + y 2 and lying in the quadrant x 0, y 0. N '<: II N >< II II >< 0 N + ~ ~ '<:
38 Why everything has to be done in an... indirect way? A problem in Math 2E. How to compute integrations over an ndimensional object?
39 Why everything has to be done in an... indirect way? A problem in Math 2E. Figure: From the internet. It is the intersection of the quintic CalabiYau threefold to our three dimensional space.
40 Why everything has to be done in an... indirect way? A problem in Math 2E. How to study high dimensional geometric object? Use Calculus;
41 Why everything has to be done in an... indirect way? A problem in Math 2E. How to study high dimensional geometric object? Use Calculus; PDE, functional analysis, complex analysis, etc
42 Why everything has to be done in an... indirect way? A problem in Math 2E. How to study high dimensional geometric object? Use Calculus; PDE, functional analysis, complex analysis, etc Use Linear Algebra;
43 Why everything has to be done in an... indirect way? A problem in Math 2E. How to study high dimensional geometric object? Use Calculus; PDE, functional analysis, complex analysis, etc Use Linear Algebra; Lie algebra, commutative algebra, algebraic topology, etc
44 Why everything has to be done in an... indirect way? A problem in Math 2E. How to study high dimensional geometric object? Use Calculus; PDE, functional analysis, complex analysis, etc Use Linear Algebra; Lie algebra, commutative algebra, algebraic topology, etc Use the results in all other mathematics fields.
45 Why everything has to be done in an... indirect way? A problem in Math 2E. How to study high dimensional geometric object? Use Calculus; PDE, functional analysis, complex analysis, etc Use Linear Algebra; Lie algebra, commutative algebra, algebraic topology, etc Use the results in all other mathematics fields. Euclidean Geometry methods usually do not apply.
46 Why everything has to be done in an... indirect way? A simpler example. An even simpler example
47 Why everything has to be done in an... indirect way? A simpler example. An even simpler example 1 xdy ydx = 1. 2π circle x 2 + y 2
48 Why everything has to be done in an... indirect way? A simpler example. Conclusion: Since Human Beings can t image or sense a high dimensional object, we have to study it indirectly. Mathematics is our seventh sense organ.
49 The power of symbols/abstractions. An example The mirror map (in the simplest case) is (5ψ) 5 exp 5 (5n)! (n!) 5 (5ψ) 5n n=0 where ψ 1. { 5n } (5n)! 1 1 (n!) 5 j (5ψ) 5n j=n+1, n=1
50 The power of symbols/abstractions. An example The mirror map (in the simplest case) is (5ψ) 5 exp 5 (5n)! (n!) 5 (5ψ) 5n n=0 { 5n } (5n)! 1 1 (n!) 5 j (5ψ) 5n j=n+1, n=1 where ψ 1. Although complicated, it is very concrete.
51 The power of symbols/abstractions. An example...and we denoted it as q(ψ)
52 The power of symbols/abstractions. Another Example. Newton s Law of universal gravitation F = G m 1m 2 r 2
53 The power of symbols/abstractions. Another Example. Newton s Law of universal gravitation The Coulomb s Law F = G m 1m 2 r 2 F = k e q 1 q 2 r 2
54 The power of symbols/abstractions. Another Example. Newton s Law of universal gravitation The Coulomb s Law F = G m 1m 2 r 2 F = k e q 1 q 2 r 2 In mathematics we study the function y = C 1 r 2 which applies to both laws.
55 The power of symbols/abstractions. Another Example. The evolution of mathematics largely depends on the evolution of symbols.
56 How do we choose a problem/project to work on? Mathematicians choose problems/projects in a counterproductive way.
57 How do we choose a problem/project to work on? Mathematicians choose problems/projects in a counterproductive way. 1 Choose a problem that is unlikely to be solved.
58 How do we choose a problem/project to work on? Mathematicians choose problems/projects in a counterproductive way. 1 Choose a problem that is unlikely to be solved. 2 Choose a problem whose outcome is unexpected.
59 How do we choose a problem/project to work on? 1 Andrew Wiles proved the Fermat Last Theorem, a conjecture that lasted 398 years.
60 How do we choose a problem/project to work on? 1 Andrew Wiles proved the Fermat Last Theorem, a conjecture that lasted 398 years. 2 Grigori Perelman solved Poincaré Conjecture, almost 100 years old, using the Ricci flow method.
61 How do we choose a problem/project to work on? Pros 1 Very creative and original; 2 Usually quite deep in the discovery of new phenomena. Cons papers a year means very productive? 2 collaborative work becomes difficult. 3 the work usually finishes in the last minute.
62 Why do we care about other sciences? The evolution of Mathematics. The evolution of Mathematics How to push math forward?
63 Why do we care about other sciences? The evolution of Mathematics. 1 generalization
64 Why do we care about other sciences? The evolution of Mathematics. 1 generalization (Differential Geometry=Calculus on curved space)
65 Why do we care about other sciences? The evolution of Mathematics. 1 generalization (Differential Geometry=Calculus on curved space) 2 similar to bionical creativity engineering, get hints from other sciences
66 Why do we care about other sciences? My results in the math aspect of super string theory. There are some mathematical implications from Mirror Symmetry, one of which is the socalled BCOV Conjecture.
67 Why do we care about other sciences? My results in the math aspect of super string theory. There are some mathematical implications from Mirror Symmetry, one of which is the socalled BCOV Conjecture. BershadskyCecottiOoguriVafa Conjecture 1 Let F A be an invariant obtained from symplectic geometry of one CalabiYau manifold; 2 Let F B be an invariant obtained from complex geometry of the Mirror CalabiYau manifold. Then F A = F B.
68 Why do we care about other sciences? My results in the math aspect of super string theory. Setup of Conjecture (B) Let X be a compact Kähler manifold.
69 Why do we care about other sciences? My results in the math aspect of super string theory. Setup of Conjecture (B) Let X be a compact Kähler manifold. Let = p,q be the Laplacian on (p, q) forms;
70 Why do we care about other sciences? My results in the math aspect of super string theory. Setup of Conjecture (B) Let X be a compact Kähler manifold. Let = p,q be the Laplacian on (p, q) forms; By compactness, the spectrum of are eigenvalues: 0 λ 0 λ 1 λ n +.
71 Why do we care about other sciences? My results in the math aspect of super string theory. Setup of Conjecture (B) Let X be a compact Kähler manifold. Let = p,q be the Laplacian on (p, q) forms; By compactness, the spectrum of are eigenvalues: 0 λ 0 λ 1 λ n +. Define det = λ i 0 λ i.
72 Why do we care about other sciences? My results in the math aspect of super string theory. Setup of Conjecture (B) Let X be a compact Kähler manifold. Let = p,q be the Laplacian on (p, q) forms; By compactness, the spectrum of are eigenvalues: 0 λ 0 λ 1 λ n +. Define det = λ i 0 λ i. ζ function regularization (for example: Riemann ζfunction)
73 Why do we care about other sciences? My results in the math aspect of super string theory. Setup of Conjecture B BershadskyCeccottiOoguriVafa defined T def = (det p,q ) ( 1)p+qpq. p,q
74 Why do we care about other sciences? My results in the math aspect of super string theory. Setup of Conjecture B BershadskyCeccottiOoguriVafa defined T def = (det p,q ) ( 1)p+qpq. p,q Why define such a strange quantity?
75 Why do we care about other sciences? My results in the math aspect of super string theory. Conjecture (B) Let be the Hermitian metric on the line bundle (π K W/CP 1) 62 (T (CP 1 )) 3 CP 1 \D induced from the L 2 metric on π K W/CP 1 and from the WeilPetersson metric on T (CP 1 ). Then the following identity holds: ( ) 62 ( 1 Ωψ τ BCOV (W ψ ) = Const. F top q d ) 2 3 3, 1,B (ψ)3 y 0 (ψ) dq where Ω is the local holomorphic section of the (3, 0) forms.
76 Why do we care about other sciences? My results in the math aspect of super string theory. Conjecture (B) was proved by FangLYoshikawa. FangLYoshikawa Asymptotic behavior of the BCOV torsion of CalabiYau moduli ArXiv: JDG (80), 2008, ,
77 Why do we care about other sciences? My results in the math aspect of super string theory. Conjecture (B) was proved by FangLYoshikawa. FangLYoshikawa Asymptotic behavior of the BCOV torsion of CalabiYau moduli ArXiv: JDG (80), 2008, , Aleksey Zinger proved Conjecture (A). Combining the two results, we proved the BCOV Conjecture, which is an evidence that Super String Theory may be true.
78 Why do we care about other sciences? My results in the math aspect of super string theory. String theorists believe that there are parallel universes to our Universe. AshokDouglas developed a method to count the number of those parallel universes.
79 Why do we care about other sciences? My results in the math aspect of super string theory. String theorists believe that there are parallel universes to our Universe. AshokDouglas developed a method to count the number of those parallel universes. Joint with Michael R. Douglas, we proved that, if string theory is true, the the number of parallel universes is finite.
80 The use of computer Computer usage is absolutely important in pure math.
81 The use of computer Two kinds of math theorems Theorem π 2 > 9.8
82 The use of computer Two kinds of math theorems Theorem π 2 > 9.8 Theorem x 2 + y 2 2xy
83 The use of computer From Wikipedia A computerassisted proof is a mathematical proof that has been at least partially generated by computer.
84 The use of computer The AntunesFreitas Conjecture. AntunesFreitas Conjecture A triangle drum with its longest side equal to 1. Let λ 1, λ 2 be the two lowest frequencies. Then λ 2 λ 1 64π2 9
85 The use of computer The AntunesFreitas Conjecture. The conjecture was recently solved by BetckeLRowlett, with an extensive use of computer. It is a computer assisted proof!
86 The use of computer The AntunesFreitas Conjecture. The key part is, although there are infinitely many different triangles, we proved that by checking the conjecture for finitely many of them (In fact, we checked 10,000 triangles), the conjecture must be true for any triangles.
87 The use of computer The AntunesFreitas Conjecture. We proved that 1 for triangles with hight < 0.04, the conjecture is true;
88 The use of computer The AntunesFreitas Conjecture. We proved that 1 for triangles with hight < 0.04, the conjecture is true; 2 for triangles closed enough to the equilateral triangle, the conjecture is true;
89 The use of computer The AntunesFreitas Conjecture. We proved that 1 for triangles with hight < 0.04, the conjecture is true; 2 for triangles closed enough to the equilateral triangle, the conjecture is true; 3 If for any triangle the gap is more than 64π 2 /9, there is a neighborhood such that for any triangle in that neighborhood, the AntunesFreitas Conjecture is true.
90 Thank you!
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
More informationUnderstanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
More informationHandout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
More informationHow many numbers there are?
How many numbers there are? RADEK HONZIK Radek Honzik: Charles University, Department of Logic, Celetná 20, Praha 1, 116 42, Czech Republic radek.honzik@ff.cuni.cz Contents 1 What are numbers 2 1.1 Natural
More informationMetric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
More informationSouth Carolina College and CareerReady (SCCCR) PreCalculus
South Carolina College and CareerReady (SCCCR) PreCalculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
More information6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives
6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise
More informationDELAWARE MATHEMATICS CONTENT STANDARDS GRADES 910. PAGE(S) WHERE TAUGHT (If submission is not a book, cite appropriate location(s))
Prentice Hall University of Chicago School Mathematics Project: Advanced Algebra 2002 Delaware Mathematics Content Standards (Grades 910) STANDARD #1 Students will develop their ability to SOLVE PROBLEMS
More informationPrentice Hall Algebra 2 2011 Correlated to: Colorado P12 Academic Standards for High School Mathematics, Adopted 12/2009
Content Area: Mathematics Grade Level Expectations: High School Standard: Number Sense, Properties, and Operations Understand the structure and properties of our number system. At their most basic level
More informationAlex, I will take congruent numbers for one million dollars please
Alex, I will take congruent numbers for one million dollars please Jim L. Brown The Ohio State University Columbus, OH 4310 jimlb@math.ohiostate.edu One of the most alluring aspectives of number theory
More informationQuantum Mechanics and Representation Theory
Quantum Mechanics and Representation Theory Peter Woit Columbia University Texas Tech, November 21 2013 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 1 / 30
More information1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?
1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width
More informationMA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES
MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2016 47 4. Diophantine Equations A Diophantine Equation is simply an equation in one or more variables for which integer (or sometimes rational) solutions
More informationMaster of Arts in Mathematics
Master of Arts in Mathematics Administrative Unit The program is administered by the Office of Graduate Studies and Research through the Faculty of Mathematics and Mathematics Education, Department of
More informationRIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES
RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES GAUTAM BHARALI AND INDRANIL BISWAS Abstract. In the study of holomorphic maps, the term rigidity refers to certain types of results that give us very specific
More informationIntroduction to Topology
Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................
More informationSECTION 102 Mathematical Induction
73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms
More informationNumerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number
More informationold supersymmetry as new mathematics
old supersymmetry as new mathematics PILJIN YI Korea Institute for Advanced Study with help from Sungjay Lee AtiyahSinger Index Theorem ~ 1963 CalabiYau ~ 1978 Calibrated Geometry ~ 1982 (Harvey & Lawson)
More informationG C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Performance Assessment Task Circle and Squares Grade 10 This task challenges a student to analyze characteristics of 2 dimensional shapes to develop mathematical arguments about geometric relationships.
More information8.1 Examples, definitions, and basic properties
8 De Rham cohomology Last updated: May 21, 211. 8.1 Examples, definitions, and basic properties A kform ω Ω k (M) is closed if dω =. It is exact if there is a (k 1)form σ Ω k 1 (M) such that dσ = ω.
More informationTHREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
More informationTrigonometric Functions and Equations
Contents Trigonometric Functions and Equations Lesson 1 Reasoning with Trigonometric Functions Investigations 1 Proving Trigonometric Identities... 271 2 Sum and Difference Identities... 276 3 Extending
More informationRICCI SUMMER SCHOOL COURSE PLANS AND BACKGROUND READING LISTS
RICCI SUMMER SCHOOL COURSE PLANS AND BACKGROUND READING LISTS The Summer School consists of four courses. Each course is made up of four 1hour lectures. The titles and provisional outlines are provided
More informationUltraproducts and Applications I
Ultraproducts and Applications I Brent Cody Virginia Commonwealth University September 2, 2013 Outline Background of the Hyperreals Filters and Ultrafilters Construction of the Hyperreals The Transfer
More informationNot Even Wrong, ten years later: a view from mathematics February on prospects 3, 2016for fundamenta 1 / 32. physics without experiment
Not Even Wrong, ten years later: a view from mathematics on prospects for fundamental physics without experiment Peter Woit Columbia University Rutgers Physics Colloquium, February 3, 2016 Not Even Wrong,
More informationClassical theorems on hyperbolic triangles from a projective point of view
tmcsszilasi 2012/3/1 0:14 page 175 #1 10/1 (2012), 175 181 Classical theorems on hyperbolic triangles from a projective point of view Zoltán Szilasi Abstract. Using the CayleyKlein model of hyperbolic
More informationLAKE ELSINORE UNIFIED SCHOOL DISTRICT
LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1Semester 2 Grade Level: 1012 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:
More informationANALYTICITY OF SETS ASSOCIATED TO LELONG NUMBERS AND THE EXTENSION OF MEROMORPHIC MAPS 1
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 79, Number 6, November 1973 ANALYTICITY OF SETS ASSOCIATED TO LELONG NUMBERS AND THE EXTENSION OF MEROMORPHIC MAPS 1 BY YUMTONG SIU 2 Communicated
More informationComplex Function Theory. Second Edition. Donald Sarason >AMS AMERICAN MATHEMATICAL SOCIETY
Complex Function Theory Second Edition Donald Sarason >AMS AMERICAN MATHEMATICAL SOCIETY Contents Preface to the Second Edition Preface to the First Edition ix xi Chapter I. Complex Numbers 1 1.1. Definition
More informationMathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 PreAlgebra 4 Hours
MAT 051 PreAlgebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT
More informationalternate interior angles
alternate interior angles two nonadjacent angles that lie on the opposite sides of a transversal between two lines that the transversal intersects (a description of the location of the angles); alternate
More informationDEGREE OF NEGATION OF AN AXIOM
DEGREE OF NEGATION OF AN AXIOM Florentin Smarandache, Ph D Professor of Mathematics Chair of Department of Math & Sciences University of New Mexico 200 College Road Gallup, NM 87301, USA Email: smarand@unm.edu
More informationSection 13.5 Equations of Lines and Planes
Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines  specifically, tangent lines.
More informationDiablo Valley College Catalog 20142015
Mathematics MATH Michael Norris, Interim Dean Math and Computer Science Division Math Building, Room 267 Possible career opportunities Mathematicians work in a variety of fields, among them statistics,
More informationMathematics Program Description Associate in Arts Degree Program Outcomes Required Courses............................. Units
Program Description Successful completion of this maj will assure competence in mathematics through differential and integral calculus, providing an adequate background f employment in many technological
More informationAllocation of Mathematics Modules at Maynooth to Areas of Study for PME (Professional Masters in Education)
Allocation of Mathematics Modules at Maynooth to Areas of Study for PME (Professional Masters in Education) Module Code Module Title Credits Area 1 Area 2 MT101 Differential Calculus In One Real Variable
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationMetric Spaces. Chapter 1
Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence
More informationMath 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
More informationMathematics Review for MS Finance Students
Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,
More informationSection 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
More informationDecember 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in twodimensional space (1) 2x y = 3 describes a line in twodimensional space The coefficients of x and y in the equation
More informationMath 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:1512:05. Exam 1 will be based on: Sections 12.112.5, 14.114.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
More informationMA651 Topology. Lecture 6. Separation Axioms.
MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples
More informationTHE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationMATHEMATICS Department Chair: Michael Cordova  mccordova@dcsdk12.org
MATHEMATICS Department Chair: Michael Cordova  mccordova@dcsdk12.org Course Offerings Grade 9 Algebra I Algebra II/Trig Honors Geometry Honors Geometry Grade 10 Integrated Math II (20142015 only) Algebra
More informationparent ROADMAP MATHEMATICS SUPPORTING YOUR CHILD IN HIGH SCHOOL
parent ROADMAP MATHEMATICS SUPPORTING YOUR CHILD IN HIGH SCHOOL HS America s schools are working to provide higher quality instruction than ever before. The way we taught students in the past simply does
More informationMATH. ALGEBRA I HONORS 9 th Grade 12003200 ALGEBRA I HONORS
* Students who scored a Level 3 or above on the Florida Assessment Test Math Florida Standards (FSAMAFS) are strongly encouraged to make Advanced Placement and/or dual enrollment courses their first choices
More informationElementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
More informationtr g φ hdvol M. 2 The EulerLagrange equation for the energy functional is called the harmonic map equation:
Notes prepared by Andy Huang (Rice University) In this note, we will discuss some motivating examples to guide us to seek holomorphic objects when dealing with harmonic maps. This will lead us to a brief
More informationIn mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.
MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target
More informationMathematics. Mathematics MATHEMATICS. 298 201516 Sacramento City College Catalog. Degree: A.S. Mathematics AST Mathematics for Transfer
MATH Degree: A.S. AST for Transfer Division of /Statistics & Engineering Anne E. Licciardi, Dean South Gym 220 9165582202 Associate in Science Degree Program Information The mathematics program provides
More informationMATHEMATICS (MATH) 3. Provides experiences that enable graduates to find employment in sciencerelated
194 / Department of Natural Sciences and Mathematics MATHEMATICS (MATH) The Mathematics Program: 1. Provides challenging experiences in Mathematics, Physics, and Physical Science, which prepare graduates
More information1D 3D 1D 3D. is called eigenstate or state function. When an operator act on a state, it can be written as
Chapter 3 (Lecture 45) Postulates of Quantum Mechanics Now we turn to an application of the preceding material, and move into the foundations of quantum mechanics. Quantum mechanics is based on a series
More informationCHAPTER 1 BASIC TOPOLOGY
CHAPTER 1 BASIC TOPOLOGY Topology, sometimes referred to as the mathematics of continuity, or rubber sheet geometry, or the theory of abstract topological spaces, is all of these, but, above all, it is
More informationLecture 4 DISCRETE SUBGROUPS OF THE ISOMETRY GROUP OF THE PLANE AND TILINGS
1 Lecture 4 DISCRETE SUBGROUPS OF THE ISOMETRY GROUP OF THE PLANE AND TILINGS This lecture, just as the previous one, deals with a classification of objects, the original interest in which was perhaps
More informationBachelor Degree in Business Administration Academic year 2015/16
University of Catania Department of Economics and Business Bachelor Degree in Business Administration Academic year 2015/16 Mathematics for Social Sciences (1st Year, 1st Semester, 9 Credits) Name of Lecturer:
More information2. THE xy PLANE 7 C7
2. THE xy PLANE 2.1. The Real Line When we plot quantities on a graph we can plot not only integer values like 1, 2 and 3 but also fractions, like 3½ or 4¾. In fact we can, in principle, plot any real
More informationWeek 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test
Thinkwell s Homeschool Geometry Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Geometry! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson plan
More informationGeometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
More informationMillion Dollar Mathematics!
Million Dollar Mathematics! Alissa S. Crans Loyola Marymount University Southern California Undergraduate Math Day University of California, San Diego April 30, 2011 This image is from the Wikipedia article
More informationSingularity Theory and Symplectic Topology
Singularity Theory and Symplectic Topology Alexander B. Givental It is mandatory to begin a lecture with something transparent for any undergraduate math major. Preparing this talk I tried to recall what
More informationLuminy Lecture 1: The inverse spectral problem
Luminy Lecture 1: The inverse spectral problem Steve Zelditch Northwestern University Luminy April 10, 2015 The inverse spectral problem The goal of the lectures is to introduce the ISP = the inverse spectral
More informationFiber sums of genus 2 Lefschetz fibrations
Proceedings of 9 th Gökova GeometryTopology Conference, pp, 1 10 Fiber sums of genus 2 Lefschetz fibrations Denis Auroux Abstract. Using the recent results of Siebert and Tian about the holomorphicity
More informationTennessee Mathematics Standards 20092010 Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes
Tennessee Mathematics Standards 20092010 Implementation Grade Six Mathematics Standard 1 Mathematical Processes GLE 0606.1.1 Use mathematical language, symbols, and definitions while developing mathematical
More informationMA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem
MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and
More informationINTRODUCTION TO EUCLID S GEOMETRY
78 MATHEMATICS INTRODUCTION TO EUCLID S GEOMETRY CHAPTER 5 5.1 Introduction The word geometry comes form the Greek words geo, meaning the earth, and metrein, meaning to measure. Geometry appears to have
More informationNonzero degree tangential maps between dual symmetric spaces
ISSN 14722739 (online) 14722747 (printed) 709 Algebraic & Geometric Topology Volume 1 (2001) 709 718 Published: 30 November 2001 ATG Nonzero degree tangential maps between dual symmetric spaces Boris
More informationPrentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)
New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct
More informationFurther Steps: Geometry Beyond High School. Catherine A. Gorini Maharishi University of Management Fairfield, IA cgorini@mum.edu
Further Steps: Geometry Beyond High School Catherine A. Gorini Maharishi University of Management Fairfield, IA cgorini@mum.edu Geometry the study of shapes, their properties, and the spaces containing
More informationCongruent Number Problem
University of Waterloo October 28th, 2015 Number Theory Number theory, can be described as the mathematics of discovering and explaining patterns in numbers. There is nothing in the world which pleases
More informationThe Tangent Bundle. Jimmie Lawson Department of Mathematics Louisiana State University. Spring, 2006
The Tangent Bundle Jimmie Lawson Department of Mathematics Louisiana State University Spring, 2006 1 The Tangent Bundle on R n The tangent bundle gives a manifold structure to the set of tangent vectors
More informationCHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,
More informationCOURSE SYLLABUS 
Last Reviewed by: Leslie Wurst Date Approved: Date Revised: Fall 2012 COURSE SYLLABUS Syllabus for: MATH 1010 Math for General Studies Former Course and Title: Former Quarter Course(s): Mat 1260 Contemporary
More informationCONICS ON THE PROJECTIVE PLANE
CONICS ON THE PROJECTIVE PLANE CHRIS CHAN Abstract. In this paper, we discuss a special property of conics on the projective plane and answer questions in enumerative algebraic geometry such as How many
More informationDoug Ravenel. October 15, 2008
Doug Ravenel University of Rochester October 15, 2008 s about Euclid s Some s about primes that every mathematician should know (Euclid, 300 BC) There are infinitely numbers. is very elementary, and we
More informationBasic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
More informationDimension Theory for Ordinary Differential Equations
Vladimir A. Boichenko, Gennadij A. Leonov, Volker Reitmann Dimension Theory for Ordinary Differential Equations Teubner Contents Singular values, exterior calculus and Lozinskiinorms 15 1 Singular values
More informationCurriculum Map by Block Geometry Mapping for Math Block Testing 20072008. August 20 to August 24 Review concepts from previous grades.
Curriculum Map by Geometry Mapping for Math Testing 20072008 Pre s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)
More informationGeometry and Topology
Geometry and Topology CMUP 21/07/2008 CMUP (21/07/2008) Geometry and Topology 1 / 9 People Permanent academic staff (plurianual 2007 2010) Inês Cruz Poisson and symplectic geometry, singularities of vector
More informationGeometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.
Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.
More informationCARTAN S GENERALIZATION OF LIE S THIRD THEOREM
CARTAN S GENERALIZATION OF LIE S THIRD THEOREM ROBERT L. BRYANT MATHEMATICAL SCIENCES RESEARCH INSTITUTE JUNE 13, 2011 CRM, MONTREAL In many ways, this talk (and much of the work it reports on) owes its
More informationThe program also provides supplemental modules on topics in geometry and probability and statistics.
Algebra 1 Course Overview Students develop algebraic fluency by learning the skills needed to solve equations and perform important manipulations with numbers, variables, equations, and inequalities. Students
More informationSequence of Mathematics Courses
Sequence of ematics Courses Where do I begin? Associates Degree and Nontransferable Courses (For math course below prealgebra, see the Learning Skills section of the catalog) MATH M09 PREALGEBRA 3 UNITS
More informationGeorgia Standards of Excellence 20152016 Mathematics
Georgia Standards of Excellence 20152016 Mathematics Standards GSE Coordinate Algebra K12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical
More informationAlgebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 201213 school year.
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra
More informationGlencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 33, 58 84, 87 16, 49
Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 68 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,
More informationRemarks on Lagrangian singularities, caustics, minimum distance lines
Remarks on Lagrangian singularities, caustics, minimum distance lines Department of Mathematics and Statistics Queen s University CRM, Barcelona, Spain June 2014 CRM CRM, Barcelona, SpainJune 2014 CRM
More informationWe call this set an ndimensional parallelogram (with one vertex 0). We also refer to the vectors x 1,..., x n as the edges of P.
Volumes of parallelograms 1 Chapter 8 Volumes of parallelograms In the present short chapter we are going to discuss the elementary geometrical objects which we call parallelograms. These are going to
More informationCopyrighted Material. Chapter 1 DEGREE OF A CURVE
Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two
More informationColumbia University in the City of New York New York, N.Y. 10027
Columbia University in the City of New York New York, N.Y. 10027 DEPARTMENT OF MATHEMATICS 508 Mathematics Building 2990 Broadway Fall Semester 2005 Professor Ioannis Karatzas W4061: MODERN ANALYSIS Description
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More informationUnit 6 Coordinate Geometry
Mathematics I Frameworks Student Edition Unit 6 Coordinate Geometry 2 nd Edition Table of Contents Introduction:... 3 Video Game Learning Task... 6 New York Learning Task... 11 Quadrilaterals Revisited
More informationON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING. 0. Introduction
ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING Abstract. In [1] there was proved a theorem concerning the continuity of the composition mapping, and there was announced a theorem on sequential continuity
More informationCredit Number Lecture Lab / Shop Clinic / Coop Hours. MAC 224 Advanced CNC Milling 1 3 0 2. MAC 229 CNC Programming 2 0 0 2
MAC 224 Advanced CNC Milling 1 3 0 2 This course covers advanced methods in setup and operation of CNC machining centers. Emphasis is placed on programming and production of complex parts. Upon completion,
More informationEstimated Pre Calculus Pacing Timeline
Estimated Pre Calculus Pacing Timeline 20102011 School Year The timeframes listed on this calendar are estimates based on a fiftyminute class period. You may need to adjust some of them from time to
More informationThe fundamental group of the Hawaiian earring is not free (International Journal of Algebra and Computation Vol. 2, No. 1 (1992), 33 37) Bart de Smit
The fundamental group of the Hawaiian earring is not free Bart de Smit The fundamental group of the Hawaiian earring is not free (International Journal of Algebra and Computation Vol. 2, No. 1 (1992),
More informationMath Course Descriptions & Student Learning Outcomes
Math Course Descriptions & Student Learning Outcomes Table of Contents MAC 100: Business Math... 1 MAC 101: Technical Math... 3 MA 090: Basic Math... 4 MA 095: Introductory Algebra... 5 MA 098: Intermediate
More information