# 15-441: Computer Networks Homework 2 Solution

Save this PDF as:

Size: px
Start display at page:

## Transcription

4 7 7 Replacing with bps I 7 and simplifying we get I Solution 2 (accepted with full points): I to From previous answer, I. -:- -:- I Replacing with I and simplifying we get -:- I I:I bps 5 ongestion ontrol Harry Bovik thinks that if the sources in the Internet use additive increase additive decrease (AIAD) the system should still converge to fairness and efficiency. onnection 2 throughput Region I Region II Region III Region IV onnection throughput Figure 2: TP Phase-plot Harry decides to use phase-plots (see pg. 269 of the book) to check his intuition for the two-user case. Figure 2 shows a simple phase plot. In the graph, the state of the system is represented by a point (x, x2), where x is stream s current rate and x2 is stream 2 s current rate. The total capacity of the link is bits/s. Assume that after the packet loss the window sizes have been reduced according to AIAD and now the system state is in either one of the labelled regions.. On the figure, for each of the labelled regions, I, II, III, and IV, draw vectors indicating the direction in which the system will move next i.e., after the AIAD response to the packet loss. Answer: See Figure In each of the following regions, does the response after the packet loss increase, reduce or keep fairness the same? Region I: Answer: Increases Region II: Answer: Decreases 4

6 3. Harry Bovik says that since there are negligible losses within the US, the streaming multimedia applications do not need to have a playback buffer in US. What would be your response? Answer: The playback buffer is required to smooth out the video. Delay variance causes packets to arrive after their playout time and hence are missed. The playback buffer is needed even if there are no losses. 7 Reliability For all parts of this question, refer to figure 4. The graph shows the packets sent and AKs received by a TP Reno sender. The x-axis shows the time in seconds and the y-axis shows the sequence number of the packet (or AK) being sent (or received). Assume that all packets that are not lost will arrive in order at both the sender and receiver. Also assume that receiver keeps all the out of order received packets. Seqno Sender view of packets and AKs in TP Reno Packets AKs Time Figure 4: Reno : Fast Retransmission. Mark on the x-axis of the graph, the time interval when the connection is in slow-start. Answer: Slow start is approximately from time 0 to.4sec, 2.2 to 3. sec, and 3.5 to 3.7 (though it is fine if you missed this last one). 2. Mark the packets (if any) with that are lost. Answer: Packet Numbers: 25, 26, 27, 29, 32, 36, 4, 46, 47, 48, 49 6

7 3. Mark the duplicate packets received by the receiver (if any) with a. Answer: Packet Numbers: 28(2nd), 30(2nd), 3(2nd), 33(2nd), 34(2nd), 35(2nd), 36(3rd), 37(2nd), 38(2nd), 39(2nd), 40(2nd), 4(3rd), 42(2nd), 43(2nd), 44(2nd), 45(2nd), 46(3rd), 50(2nd) 4. Mark the timed out packet (if any) with a T. Answer: Packet Number: Draw on the graph an approximate curve showing how a Tahoe TP Sender would behave. Answer: Tahoe will behave the same as Reno for the first.5sec. Then while Reno would wait for a timeout, Tahoe will start slow start around.5sec and continue roughly parallel to Reno but being about sec earlier than Reno. 7

### Answer: that dprop equals dtrans. seconds. a) d prop. b) d trans

Chapter 1 1) p. 98: P-6 This elementary problem begins to explore propagation delay and transmission delay, two central concepts in data networking. Consider two hosts, A and B, connected by single link

### Data Networks Summer 2007 Homework #3

Data Networks Summer Homework # Assigned June 8, Due June in class Name: Email: Student ID: Problem Total Points Problem ( points) Host A is transferring a file of size L to host B using a TCP connection.

### TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page

### Review for Chapter 3

Review for Chapter 3 R3.Describle why an application developer might choose to run an application over UDP rather than TCP. Answer: An application developer may not want its application to use TCP s congestion

### Computer Networks - CS132/EECS148 - Spring 2013 ------------------------------------------------------------------------------

Computer Networks - CS132/EECS148 - Spring 2013 Instructor: Karim El Defrawy Assignment 3 - Solutions Deadline : May 9 th 9:30pm (hard and soft copies required) ------------------------------------------------------------------------------

### TCP in Wireless Mobile Networks

TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer

### Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1)

Lecture Objectives Wireless and Mobile Systems Design Lecture 07 Mobile Networks: TCP in Wireless Networks Describe TCP s flow control mechanism Describe operation of TCP Reno and TCP Vegas, including

### Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage

Lecture 15: Congestion Control CSE 123: Computer Networks Stefan Savage Overview Yesterday: TCP & UDP overview Connection setup Flow control: resource exhaustion at end node Today: Congestion control Resource

### TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 socket door point-to-point: one sender, one receiver reliable, in-order byte steam: no message boundaries pipelined: TCP congestion and flow control set

### Final for ECE374 05/06/13 Solution!!

1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

### First Midterm for ECE374 03/24/11 Solution!!

1 First Midterm for ECE374 03/24/11 Solution!! Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit if you show your

### 17: Queue Management. Queuing. Mark Handley

17: Queue Management Mark Handley Queuing The primary purpose of a queue in an IP router is to smooth out bursty arrivals, so that the network utilization can be high. But queues add delay and cause jitter.

### A Survey on Congestion Control Mechanisms for Performance Improvement of TCP

A Survey on Congestion Control Mechanisms for Performance Improvement of TCP Shital N. Karande Department of Computer Science Engineering, VIT, Pune, Maharashtra, India Sanjesh S. Pawale Department of

### The following reference answers are based on the trace files provided with the text book, which can be downloaded from the textbook website.

Wireshark Lab 3 TCP The following reference answers are based on the trace files provided with the text book, which can be downloaded from the textbook website. TCP Basics Answer the following questions

### EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science Examination Computer Networks (2IC15) on Monday, June 22 nd 2009, 9.00h-12.00h. First read the entire examination. There

### CS 421: Computer Networks FALL MIDTERM I November 22, minutes

CS 421: Computer Networks FALL 2004 MIDTERM I November 22, 2004 120 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with

### Chapter 3 Transport Layer

Chapter 3 Transport Layer All material copyright 1996-2009 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April

### Tutorial 1 (Week 6) Introduction

COMP 333/933 Computer Networks and Applications Tutorial (Week 6) Introduction Problem Set, Question 7 Suppose two hosts, A and B are separated by, kms and are connected by a direct link of R = Mbps. Suppose

### Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.

### A Comparative Analysis of TCP Tahoe, Reno, New-Reno, SACK and Vegas

A Comparative Analysis of TCP Tahoe, Reno, New-Reno, SACK and Vegas Abstract: The purpose of this paper is to analyze and compare the different congestion control and avoidance mechanisms which have been

### Computer Networks I (spring 2008)

521261A Computer Networks I (spring 2008) Problem set #5 Problem solving session #5 Time: Fri 25.4.2008 at 12:15-13:45 Location: TS101 Intermediate exam #5 Time: Mon 28.4.2008 2008 at 10:15-11:45 11:45

### COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions)

COMP 3331/9331: Computer Networks and Applications Lab Exercise 3: TCP and UDP (Solutions) AIM To investigate the behaviour of TCP and UDP in greater detail. EXPERIMENT 1: Understanding TCP Basics Tools

### First Midterm for ECE374 03/09/12 Solution!!

1 First Midterm for ECE374 03/09/12 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam

### TCP over Wireless Networks

TCP over Wireless Networks Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-10/

### Livello di trasporto TCP

Livello di trasporto TCP TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 point-to-point: one sender, one receiver reliable, in-order byte stream: pipelined: no message boundaries TCP congestion and flow

### First Midterm for ECE374 02/25/15 Solution!!

1 First Midterm for ECE374 02/25/15 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam

### Lab 3. According to above figure, the client computer (source) s IP address is and the TPC port number is 1161.

Lab 3 1. What is the IP address and TCP port number used by the client computer (source) that is transferring the file to gaia.cs.umass.edu? To answer this question, it s probably easiest to select an

### Requirements of Voice in an IP Internetwork

Requirements of Voice in an IP Internetwork Real-Time Voice in a Best-Effort IP Internetwork This topic lists problems associated with implementation of real-time voice traffic in a best-effort IP internetwork.

### Good Ideas So Far Computer Networking. Outline. Sequence Number Space. Lecture 18 More TCP & Congestion Control. The devilish details of TCP

Good Ideas So Far 15-441 Computer Networking Lecture 18 More TCP & Congestion Control Flow control Stop & wait Parallel stop & wait Sliding window (e.g., advertised windows) Loss recovery outs Acknowledgement-driven

### Lecture 6: Congestion Control

Lecture 6: Congestion Control Overview Internet is a network of networks Narrow waist of IP: unreliable, best-effort datagram delivery Packet forwarding: input port to output port Routing protocols: computing

### Sources: Chapter 6 from. Computer Networking: A Top-Down Approach Featuring the Internet, by Kurose and Ross

Multimedia Communication Multimedia Systems(Module 5 Lesson 2) Summary: H Internet Phone Example Making the Best use of Internet s Best-Effort Service. Sources: H Chapter 6 from Computer Networking: A

### Digital Audio and Video Data

Multimedia Networking Reading: Sections 3.1.2, 3.3, 4.5, and 6.5 CS-375: Computer Networks Dr. Thomas C. Bressoud 1 Digital Audio and Video Data 2 Challenges for Media Streaming Large volume of data Each

### Streaming Audio and Video

Streaming Audio and Video CS 360 Internet Programming Daniel Zappala Brigham Young University Computer Science Department Streaming Audio and Video Daniel Zappala 1/27 Types of Streaming stored audio and

### Transport Layer Outline

Transport Layer Outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP

### Tutorial 1 Solutions (Week 5)

COMP 333/933 Computer Networks and Applications Tutorial Solutions (Week 5) Introduction Suppose two hosts, A and B are separated by, kms and are connected by a direct link of R = Mbps. Suppose the propagation

### CH.1. Lecture # 2. Computer Networks and the Internet. Eng. Wafaa Audah. Islamic University of Gaza. Faculty of Engineering

Islamic University of Gaza Faculty of Engineering Computer Engineering Department Networks Discussion ECOM 4021 Lecture # 2 CH1 Computer Networks and the Internet By Feb 2013 (Theoretical material: page

### 6.263/16.37: Lectures 3 & 4. The Data Link Layer: ARQ Protocols

6.263/16.37: Lectures 3 & 4 The Data Link Layer: ARQ Protocols MIT 1 Automatic Repeat ReQuest (ARQ) When the receiver detects errors in a packet, how does it let the transmitter know to re-send the corresponding

### QoS issues in Voice over IP

COMP9333 Advance Computer Networks Mini Conference QoS issues in Voice over IP Student ID: 3058224 Student ID: 3043237 Student ID: 3036281 Student ID: 3025715 QoS issues in Voice over IP Abstract: This

### AN IMPROVED SNOOP FOR TCP RENO AND TCP SACK IN WIRED-CUM- WIRELESS NETWORKS

AN IMPROVED SNOOP FOR TCP RENO AND TCP SACK IN WIRED-CUM- WIRELESS NETWORKS Srikanth Tiyyagura Department of Computer Science and Engineering JNTUA College of Engg., pulivendula, Andhra Pradesh, India.

### Low-rate TCP-targeted Denial of Service Attack Defense

Low-rate TCP-targeted Denial of Service Attack Defense Johnny Tsao Petros Efstathopoulos University of California, Los Angeles, Computer Science Department Los Angeles, CA E-mail: {johnny5t, pefstath}@cs.ucla.edu

### Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics

Outline 15-441 Computer Networking Lecture 8 TCP & Congestion Control TCP connection setup/data transfer TCP Reliability Congestion sources and collapse Congestion control basics Lecture 8: 09-23-2002

### Computer Networks Homework 1

Computer Networks Homework 1 Reference Solution 1. (15%) Suppose users share a 1 Mbps link. Also suppose each user requires 100 kbps when transmitting, but each user transmits only 10 percent of the time.

### ECE 333: Introduction to Communication Networks Fall 2002

ECE 333: Introduction to Communication Networks Fall 2002 Lecture 14: Medium Access Control II Dynamic Channel Allocation Pure Aloha In the last lecture we began discussing medium access control protocols

### CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013

CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60

### Applications. Network Application Performance Analysis. Laboratory. Objective. Overview

Laboratory 12 Applications Network Application Performance Analysis Objective The objective of this lab is to analyze the performance of an Internet application protocol and its relation to the underlying

### Sources: Chapter 6 from. Computer Networking: A Top-Down Approach Featuring the Internet, by Kurose and Ross

M ultimedia Communication Multimedia Systems(Module 5 Lesson 3) Summary: Beyond Best-Effort Motivating QoS Q uality of Service (QoS) Scheduling and Policing Sources: Chapter 6 from Computer Networking:

### CSE 123: Computer Networks

CSE 123: Computer Networks Homework 4 Solutions Out: 12/03 Due: 12/10 1. Routers and QoS Packet # Size Flow 1 100 1 2 110 1 3 50 1 4 160 2 5 80 2 6 240 2 7 90 3 8 180 3 Suppose a router has three input

### Mobile Communications Chapter 9: Mobile Transport Layer

Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery

### Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages

Part I: The problem specifications NTNU The Norwegian University of Science and Technology Department of Telematics Note! The problem set consists of two parts: Part I: The problem specifications pages

Homework 3 1 DNS Suppose you have a Host C, a local name server L, and authoritative name servers A root, A com, and A google.com, where the naming convention A x means that the name server knows about

### A Survey: High Speed TCP Variants in Wireless Networks

ISSN: 2321-7782 (Online) Volume 1, Issue 7, December 2013 International Journal of Advance Research in Computer Science and Management Studies Research Paper Available online at: www.ijarcsms.com A Survey:

### Congestions and Control Mechanisms n Wired and Wireless Networks

International OPEN ACCESS Journal ISSN: 2249-6645 Of Modern Engineering Research (IJMER) Congestions and Control Mechanisms n Wired and Wireless Networks MD Gulzar 1, B Mahender 2, Mr.B.Buchibabu 3 1 (Asst

### Lecture 33. Streaming Media. Streaming Media. Real-Time. Streaming Stored Multimedia. Streaming Stored Multimedia

Streaming Media Lecture 33 Streaming Audio & Video April 20, 2005 Classes of applications: streaming stored video/audio streaming live video/audio real-time interactive video/audio Examples: distributed

### TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme

Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the

### Overview. Lecture 4: Congestion Control TCP. Transport. A Bit of History TCP. Internet is a network of networks

Overview Internet is a network of networks Lecture 4: Congestion Control Narrow waist of IP: unreliable, best-effort datagram delivery Packet forwarding: input port to output port Routing protocols: computing

### Transport Layer Protocols

Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

### Professor: Ian Foster TAs: Xuehai Zhang, Yong Zhao. Winter Quarter. www.classes.cs.uchicago.edu/classes/archive/2003/winter/54001-1

Professor: Ian oster Ts: Xuehai Zhang, Yong Zhao Winter Quarter www.classes.cs.uchicago.edu/classes/archive//winter/541-1 alculate the total time required to transfer a 1 KB file (RTT=1 ms, packet size

### Transport Control Protocol (TCP)

Transport Control Protocol (TCP) Richard T. B. Ma School of Computing National University of Singapore CS 3103: Compute Networks and Protocols Transport services and protocols provide logical communication

### Data Communication & Networks G22.2262-001. Session 9 - Main Theme The Internet Transport Protocols: TCP, UDP. Dr. Jean-Claude Franchitti

Data Communication & Networks G22.2262-001 Session 9 - Main Theme The Internet Transport Protocols: TCP, UDP Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute

### Q3. (4 points) Is it possible for an application to enjoy reliable data transfer even when the application runs over UDP? If so, how?

CNT4007C Computer Networks Fundamentals, Fall 2015 Instructor: Prof. Ahmed Helmy Homework #2 On the Transport Layer, Congestion Control and TCP & Wireshark Exp. [Date Assigned: Oct 12 th, 2014. Due Date:

### Stop And Wait. ACK received; transmit frame 2 CS 455 3

Data Link Layer, Part 5 Sliding Window Protocols These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable

### Comparative Analysis of Congestion Control Algorithms Using ns-2

www.ijcsi.org 89 Comparative Analysis of Congestion Control Algorithms Using ns-2 Sanjeev Patel 1, P. K. Gupta 2, Arjun Garg 3, Prateek Mehrotra 4 and Manish Chhabra 5 1 Deptt. of Computer Sc. & Engg,

### Computer Networks. Chapter 5 Transport Protocols

Computer Networks Chapter 5 Transport Protocols Transport Protocol Provides end-to-end transport Hides the network details Transport protocol or service (TS) offers: Different types of services QoS Data

### Improving our Evaluation of Transport Protocols. Sally Floyd Hamilton Institute July 29, 2005

Improving our Evaluation of Transport Protocols Sally Floyd Hamilton Institute July 29, 2005 Computer System Performance Modeling and Durable Nonsense A disconcertingly large portion of the literature

### The network we see so far. Internet Best Effort Service. Is best-effort good enough? An Audio Example. Network Support for Playback

The network we see so far CSE56 - Lecture 08 QoS Network Xiaowei Yang TCP saw-tooth FIFO w/ droptail or red Best-effort service Web-surfing, email, ftp, file-sharing Internet Best Effort Service Our network

### Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding

Names & Addresses EE 122: IP Forwarding and Transport Protocols Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)

### Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network

Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network 作 者 :Daiqin Yang, Ka-Cheong Leung, and Victor O. K. Li 出 處 :Wireless Communications and Networking Conference, 2007.WCNC

### Analysis and Detection of a Denial-of-Service Attack Scenario generated by TCP Receivers to Edge Network

Analysis and Detection of a Denial-of-Service Attack Scenario generated by TCP Receivers to Edge Network V. Anil Kumar 1 and Dorgham Sisalem 2 (anil@cmmacs.ernet.in, sisalem@fokus.fhg.de) 1 CSIR Centre

### Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi

Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi 1. Introduction Ad hoc wireless networks pose a big challenge for transport layer protocol and transport layer protocols

### Data Link Layer(1) Principal service: Transferring data from the network layer of the source machine to the one of the destination machine

Data Link Layer(1) Principal service: Transferring data from the network layer of the source machine to the one of the destination machine Virtual communication versus actual communication: Specific functions

### Problem 1 Suppose that the client A initiates a TCP connection to a Web server whose name is S. More or less simultaneously,

Note: Here you have the original answer proposed by working groups. Spelling mistakes from original answers have not been corrected. Sometimes teacher note is included in red. Problem 1 Suppose that the

### Congestion Control Review. 15-441 Computer Networking. Resource Management Approaches. Traffic and Resource Management. What is congestion control?

Congestion Control Review What is congestion control? 15-441 Computer Networking What is the principle of TCP? Lecture 22 Queue Management and QoS 2 Traffic and Resource Management Resource Management

### Mul\$media Networking. #3 Mul\$media Networking Semester Ganjil PTIIK Universitas Brawijaya. #3 Requirements of Mul\$media Networking

Mul\$media #3 Mul\$media Semester Ganjil PTIIK Universitas Brawijaya Schedule of Class Mee\$ng 1. Introduc\$on 2. Applica\$ons of MN 3. Requirements of MN 4. Coding and Compression 5. RTP 6. IP Mul\$cast 7.

### COMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination

COMP 361 Computer Communications Networks Fall Semester 2003 Midterm Examination Date: October 23, 2003, Time 18:30pm --19:50pm Name: Student ID: Email: Instructions: 1. This is a closed book exam 2. This

### Voice over IP: RTP/RTCP The transport layer

Advanced Networking Voice over IP: /RTCP The transport layer Renato Lo Cigno Requirements For Real-Time Transmission Need to emulate conventional telephone system Isochronous output timing same with input

### TCP for Wireless Networks

TCP for Wireless Networks Outline Motivation TCP mechanisms Indirect TCP Snooping TCP Mobile TCP Fast retransmit/recovery Transmission freezing Selective retransmission Transaction oriented TCP Adapted

### CS3C03/SE4C03 Midterm 2 (Mar 17) Winter No aids allowed. Answer all questions on test paper. Use backs of sheets if necessary.

CS3C03/SE4C03 Midterm 2 (Mar 17) Winter 2014 Name Student No. No aids allowed. Answer all questions on test paper. Use backs of sheets if necessary. Total Marks: 30 [10] 1. Consider the figure below. Assuming

### TCP - Introduction. Features of TCP

TCP - Introduction The Internet Protocol (IP) provides unreliable datagram service between hosts The Transmission Control Protocol (TCP) provides reliable data delivery It uses IP for datagram delivery

### Topics. Computer Networks. Introduction. Transport Entity. Quality of Service. Transport Protocol

Topics Introduction (6.1) Connection Issues (6. - 6..3) TCP (6.4) Computer Networks Transport Layer Introduction Efficient, reliable and cost-effective service to users (application layer) despite limitations

### TCP Westwood for Wireless

TCP Westwood for Wireless מבוא רקע טכני בקרת עומס ב- TCP TCP על קשר אלחוטי שיפור תפוקה עם פרוטוקול TCP Westwood סיכום.1.2.3.4.5 Seminar in Computer Networks and Distributed Systems Hadassah College Spring

### 10/27/2014. Transport Service. The Transport Layer. Services Provided to the Upper Layers. Transport Service Primitives (1) Berkeley Sockets (1)

Transport Service The Transport Layer Chapter 6 Upper Layer Services Transport Service Primitives Berkeley Sockets Example of Socket Programming: Internet File Server Services Provided to the Upper Layers

### CS268 Exam Solutions. 1) End-to-End (20 pts)

CS268 Exam Solutions General comments: ) If you would like a re-grade, submit in email a complete explanation of why your solution should be re-graded. Quote parts of your solution if necessary. In person

### Advanced Networking Voice over IP: RTP/RTCP The transport layer

Advanced Networking Voice over IP: RTP/RTCP The transport layer Renato Lo Cigno Requirements For Real-Time Transmission Need to emulate conventional telephone system Isochronous output timing same with

### Lecture 3: The Transport Layer: UDP and TCP

Lecture 3: The Transport Layer: UDP and TCP Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG 4185 3-1 The Transport Layer Provides efficient and robust end-to-end

### TCP PACKET CONTROL FOR WIRELESS NETWORKS

TCP PACKET CONTROL FOR WIRELESS NETWORKS by Wan Gang Zeng B. Sc. in Computer Science, University of Ottawa, 2000 THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

### L41: Lab 5 - TCP Latency and Bandwidth

L41: Lab 5 - TCP Latency and Bandwidth Lent Term 2015 The goals of this lab are to: Learn to draw TCP time-bandwidth and time sequence-number diagrams Evaluate the effects of latency on TCP Evaluate the

### Chapter 6 Congestion Control and Resource Allocation

Chapter 6 Congestion Control and Resource Allocation 6.3 TCP Congestion Control Additive Increase/Multiplicative Decrease (AIMD) o Basic idea: repeatedly increase transmission rate until congestion occurs;

### Ch 14 Understanding. Magda El Zarki Prof. of CS Univ. of CA, Irvine

Ch 14 Understanding Transport Protocols Magda El Zarki Prof. of CS Univ. of CA, Irvine Email:elzarki@uci.edu http://www.ics.uci.edu/~magda Overview The most common end-to-end transport protocols today

### Denial-of-Service Shrew Attacks

Denial-of-Service Shrew Attacks Bhuvana Mahalingam mbhuvana@cs.bu.edu 1. Introduction A Denial of Service Attack is defined as An incident in which a user or organization is deprived of the services of

### Chapter 9: Mobile Transport Layer. Mobile Communications. TCP for 2.5G/3G wireless. Additional optimizations. Classical approaches.

Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery

### Effects of Filler Traffic In IP Networks. Adam Feldman April 5, 2001 Master s Project

Effects of Filler Traffic In IP Networks Adam Feldman April 5, 2001 Master s Project Abstract On the Internet, there is a well-documented requirement that much more bandwidth be available than is used

### application reads data socket door TCP receive buffer 32 bits source port # dest port # sequence number acknowledgement number not used checksum

socket door TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 point-to-point: one sender, one receiver reliable, in-order, byte steam: no message boundaries pipelined: TCP congestion and flow control set

### Active Queue Management

Course of Multimedia Internet (Sub-course Reti Internet Multimediali ), AA 2010-2011 Prof. 6. Active queue management Pag. 1 Active Queue Management Active Queue Management (AQM) is a feature that can

### Optimization of Communication Systems Lecture 6: Internet TCP Congestion Control

Optimization of Communication Systems Lecture 6: Internet TCP Congestion Control Professor M. Chiang Electrical Engineering Department, Princeton University ELE539A February 21, 2007 Lecture Outline TCP

### Transport Layer: UDP vs. TCP

EEC 189Q: Computer Networks Transport Layer: UDP vs. TCP Reading: 8.4 & 8.5 Review: Internet Protocol Stack Application Telnet FTP HTTP Transport Network Link Physical bits on wire TCP LAN IP UDP Packet

### Analysis of IP Network for different Quality of Service

2009 International Symposium on Computing, Communication, and Control (ISCCC 2009) Proc.of CSIT vol.1 (2011) (2011) IACSIT Press, Singapore Analysis of IP Network for different Quality of Service Ajith

### Computer Networking. TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

Computer Networking Connec1on- Oriented Transport: : Overview RFCs: 793, 1122, 1323, 2018, 2581 point- to- point: one sender, one receiver reliable, in- order byte steam: no message boundaries pipelined: