Data Networks Summer 2007 Homework #3
|
|
- Mae Parsons
- 2 years ago
- Views:
Transcription
1 Data Networks Summer Homework # Assigned June 8, Due June in class Name: Student ID: Problem Total Points
2 Problem ( points) Host A is transferring a file of size L to host B using a TCP connection. Host A sends the file data in fixed size segments (or packets) equal to the Maximum Segment Size (MSS), a predetermined value, which gives the maximum number of data bytes that can be sent in a TCP segment. Host B sends an acknowledgement immediately upon receiving a data segment. Let R be the round trip delay between A and B. The transmission delay to send a data segment is T. Assume the transmission delay to send an acknowledgement is negligible. The advertised receiver window size of host B is W. In this problem, we are only concerned with the data transmission phase of TCP. We assume the TCP connection is already established. TCP performs the slow start and congestion avoidance mechanisms. There is no error or packet loss during transmission. (a) Given W = *MSS, L = *MSS, how long does it take for the file to be sent and acknowledged? ( points) Advertised receiver window limits how large the sender s window can grow to. Therefore, when slow start opens up the sender s window size to W, the sender s window size will become fixed at W unless packet loss occurs. Here, we will also assume R to be larger than *T. As can be seen, the total time required is *(T+R). Given W = *MSS, L = *MSS, how long does it take for the file to be sent and acknowledged? ( points) Now, since W is *MSS, the situation is shown in the left. The total time is now *(T+R) + *T.
3 Problem ( points) TCP congestion control has many undesirable properties in practice. In the following scenarios, explain in detail what undesirable characteristics may a TCP data transfer exhibit and the underlying reasons for them. (a) A single TCP connection on a link with Gbps of bandwidth and the RTT is ms. ( points) At this bandwidth and RTT, it takes a window size of.mb (Gbps * ms) to fully utilize the link. TCP slow start would take many round trip times to reach a window size of.mb because the beginning window size is one segment and a segment is usually small (approx. bytes). Thus, TCP s efficiency over a high bandwidth high delay link is very poor. A TCP connection with a ms RTT sharing a bottleneck link with other TCP connections with a ms RTT. ( points) Since TCP s throughput, as we have analyzed in class, is inversely proportional to the RTT of the connection, TCP will provide unfair allocation of bandwidth among the data flows in this scenario. (c) A TCP connection over a wireless link where random bit errors may occur due to interference. ( points) Since TCP uses packet loss as an implicit indicator of congestion and cut back the sender s window size to slow down, when a random bit error occurs in the wireless transmission and corrupt a packet, TCP would mis-interpret that as a sign of congestion and reduce sending window size by half, even though there is no congestion in the network.
4 Problem ( points) Consider a network link with the following characteristics: Link speed = Gbps, RTT = ms, and Data packet size = bytes. Assume all traffic is transmitted using a TCP-like window-based transmission protocol with the following congestion control algorithm: () Congestion avoidance, cwnd = cwnd + after one RTT, and () Fast recovery, cwnd = cwnd/ when loss occurs. (a) What is the congestion window size W such that when the traffic is transmitted using this window size, the network link is fully utilized? ( points) W = Links speed * RTT =.MB (c) Suppose exactly when the congestion window size W reaches W, a loss occurs and the sender immediately (assume the loss is instantaneously known by the sender) activates the fast recovery algorithm. What is the asymptotic average throughput of this transmission? ( points) cwnd will oscillate between.mb and.mb. Since for each.mb RTT, cwnd only grows by one packet (KB), it takes RTTs to reach the peak cwnd size..mb Average rate = total number of bytes sent per cycle / cycle time = (*.MB (the bottom rectangular area) + (++ +9)*) (the upper triangle area) / (*ms) (cycle time) = 9.9Mbps With the same assumptions made in, compute the time it takes for the flow to recover from a loss, that is the time it takes to increase its congestion window size to W after a loss. ( points) That is simply RTTs, i.e. seconds. BTW, it is okay if you used the TCP model equation to calculate the answer for
5 Problem ( points) Below is a graph showing the changes in the congestion windows size of a TCP Reno connection over time. There are several places in this graph where the congestion window size changes abruptly. In particular, points have been labeled below using A to D. Explain what happened to the TCP Reno connection at each of the labeled points in the graph that caused the abrupt changes in congestion window size. Congestion window size A C B D Time A: Packet loss occurred during slow start, no more new acknowledgement is received, so congestion window stops growing B: Packet loss causes a timeout, congestion window is reset to, ssthresh is reset to half the previous congestion window size C: Slow start opens the congestion window size to ssthresh, slow start stops, and congestion avoidance begins D: Three duplicate acks were received, so fast recovery causes the the congestion window size to be halved, and the ssthresh is set to the same value. Congestion avoidance continues.
6 Problem ( points): Suppose two flows A and B are arriving at a weighted fair queuing scheduler. For simplicity, the link capacity is bits per second. The two flows have equal weight. The arrival times, and packet sizes are shown in the tables below. Flow A Flow B Arrival time (second) Pkt size (bits) Arrival time (second) Pkt size (bits) (a) Compute the start time and the finish time of every packet in the fluid flow system. You may draw a fluid flow system picture to help illustrate your answers. (8 points) A B 8 9 Write down the packet transmission order in the real packet system. Use A. to denote the first packet of flow A. ( points) A., B. (interchangeable) A., B., A. B., A. (interchangeable) B., B., A. A., B. (interchangeable) A., B. (interchangeable)
7 (c) Recall that the system virtual time V(t) is the number of rounds of service the WFQ server has given at time t. V(t=) =. One round of service is provided when bit of service is given to every flow that has traffic to send. When a packet of flow A arrives at the system at time t, its virtual start time is either the current system virtual time V(t) or the virtual finish time of the previous packet in flow A, whichever is larger. For this problem, the virtual finish time of a packet is its virtual start time plus the packet s size in bits. Compute the virtual start time and the virtual finish time of every packet in the system. (8 points) A B 8 9 Flow A Flow B Virtual S Virtual F Virtual S Virtual F (V(t))
First Midterm for ECE374 03/24/11 Solution!!
1 First Midterm for ECE374 03/24/11 Solution!! Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit if you show your
2 TCP-like Design. Answer
Homework 3 1 DNS Suppose you have a Host C, a local name server L, and authoritative name servers A root, A com, and A google.com, where the naming convention A x means that the name server knows about
TCP in Wireless Mobile Networks
TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer
Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage
Lecture 15: Congestion Control CSE 123: Computer Networks Stefan Savage Overview Yesterday: TCP & UDP overview Connection setup Flow control: resource exhaustion at end node Today: Congestion control Resource
Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan
Application Level Congestion Control Enhancements in High BDP Networks Anupama Sundaresan Organization Introduction Motivation Implementation Experiments and Results Conclusions 2 Developing a Grid service
TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)
TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page
15-441: Computer Networks Homework 2 Solution
5-44: omputer Networks Homework 2 Solution Assigned: September 25, 2002. Due: October 7, 2002 in class. In this homework you will test your understanding of the TP concepts taught in class including flow
CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013
CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60
Computer Networks - CS132/EECS148 - Spring 2013 ------------------------------------------------------------------------------
Computer Networks - CS132/EECS148 - Spring 2013 Instructor: Karim El Defrawy Assignment 3 - Solutions Deadline : May 9 th 9:30pm (hard and soft copies required) ------------------------------------------------------------------------------
First Midterm for ECE374 03/09/12 Solution!!
1 First Midterm for ECE374 03/09/12 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam
Final for ECE374 05/06/13 Solution!!
1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -
Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation
Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.
First Midterm for ECE374 02/25/15 Solution!!
1 First Midterm for ECE374 02/25/15 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam
TCP over Wireless Networks
TCP over Wireless Networks Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-10/
The following reference answers are based on the trace files provided with the text book, which can be downloaded from the textbook website.
Wireshark Lab 3 TCP The following reference answers are based on the trace files provided with the text book, which can be downloaded from the textbook website. TCP Basics Answer the following questions
Congestion Control Review. 15-441 Computer Networking. Resource Management Approaches. Traffic and Resource Management. What is congestion control?
Congestion Control Review What is congestion control? 15-441 Computer Networking What is the principle of TCP? Lecture 22 Queue Management and QoS 2 Traffic and Resource Management Resource Management
Chapter 6 Congestion Control and Resource Allocation
Chapter 6 Congestion Control and Resource Allocation 6.3 TCP Congestion Control Additive Increase/Multiplicative Decrease (AIMD) o Basic idea: repeatedly increase transmission rate until congestion occurs;
CS268 Exam Solutions. 1) End-to-End (20 pts)
CS268 Exam Solutions General comments: ) If you would like a re-grade, submit in email a complete explanation of why your solution should be re-graded. Quote parts of your solution if necessary. In person
A Survey on Congestion Control Mechanisms for Performance Improvement of TCP
A Survey on Congestion Control Mechanisms for Performance Improvement of TCP Shital N. Karande Department of Computer Science Engineering, VIT, Pune, Maharashtra, India Sanjesh S. Pawale Department of
TCP Westwood for Wireless
TCP Westwood for Wireless מבוא רקע טכני בקרת עומס ב- TCP TCP על קשר אלחוטי שיפור תפוקה עם פרוטוקול TCP Westwood סיכום.1.2.3.4.5 Seminar in Computer Networks and Distributed Systems Hadassah College Spring
Transport Layer Protocols
Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements
Prefix AggregaNon. Company X and Company Y connect to the same ISP, and they are assigned the prefixes:
Data Transfer Consider transferring an enormous file of L bytes from Host A to B using a MSS of 1460 bytes and a 66 byte header. What is the maximum value of L such that TCP sequence numbers are not exhausted?
APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM
152 APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM A1.1 INTRODUCTION PPATPAN is implemented in a test bed with five Linux system arranged in a multihop topology. The system is implemented
Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network
Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network 作 者 :Daiqin Yang, Ka-Cheong Leung, and Victor O. K. Li 出 處 :Wireless Communications and Networking Conference, 2007.WCNC
SJBIT, Bangalore, KARNATAKA
A Comparison of the TCP Variants Performance over different Routing Protocols on Mobile Ad Hoc Networks S. R. Biradar 1, Subir Kumar Sarkar 2, Puttamadappa C 3 1 Sikkim Manipal Institute of Technology,
4 High-speed Transmission and Interoperability
4 High-speed Transmission and Interoperability Technology 4-1 Transport Protocols for Fast Long-Distance Networks: Comparison of Their Performances in JGN KUMAZOE Kazumi, KOUYAMA Katsushi, HORI Yoshiaki,
International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1169 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1169 Comparison of TCP I-Vegas with TCP Vegas in Wired-cum-Wireless Network Nitin Jain & Dr. Neelam Srivastava Abstract
Congestions and Control Mechanisms n Wired and Wireless Networks
International OPEN ACCESS Journal ISSN: 2249-6645 Of Modern Engineering Research (IJMER) Congestions and Control Mechanisms n Wired and Wireless Networks MD Gulzar 1, B Mahender 2, Mr.B.Buchibabu 3 1 (Asst
Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1)
Lecture Objectives Wireless and Mobile Systems Design Lecture 07 Mobile Networks: TCP in Wireless Networks Describe TCP s flow control mechanism Describe operation of TCP Reno and TCP Vegas, including
An Overview and Comparison of Analytical TCP Models
An Overview and Comparison of Analytical TCP Models Inas Khalifa and Ljiljana Trajkovic Communication Networks Laboratory http://www.ensc.sfu.ca/research/cnl School of Engineering Science Simon Fraser
Review for Chapter 3
Review for Chapter 3 R3.Describle why an application developer might choose to run an application over UDP rather than TCP. Answer: An application developer may not want its application to use TCP s congestion
This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio).
Client App Network Server App 25-May-13 15:32 (Page 1) This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). TCP is an end to end protocol which
Optimization of Communication Systems Lecture 6: Internet TCP Congestion Control
Optimization of Communication Systems Lecture 6: Internet TCP Congestion Control Professor M. Chiang Electrical Engineering Department, Princeton University ELE539A February 21, 2007 Lecture Outline TCP
Tutorial 1 (Week 6) Introduction
COMP 333/933 Computer Networks and Applications Tutorial (Week 6) Introduction Problem Set, Question 7 Suppose two hosts, A and B are separated by, kms and are connected by a direct link of R = Mbps. Suppose
Chapter 3 Transport Layer
Chapter 3 Transport Layer All material copyright 1996-2009 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April
Sample Network Analysis Report
Sample Network Analysis Report Report Information Report created on 1/9/2014 9:35:19 PM. Analyst Information Name Sample Analysis Report E-mail Address info@chappellu.com Phone Number 408-378-7841 Client
High-Speed TCP Performance Characterization under Various Operating Systems
High-Speed TCP Performance Characterization under Various Operating Systems Y. Iwanaga, K. Kumazoe, D. Cavendish, M.Tsuru and Y. Oie Kyushu Institute of Technology 68-4, Kawazu, Iizuka-shi, Fukuoka, 82-852,
Overview. Lecture 4: Congestion Control TCP. Transport. A Bit of History TCP. Internet is a network of networks
Overview Internet is a network of networks Lecture 4: Congestion Control Narrow waist of IP: unreliable, best-effort datagram delivery Packet forwarding: input port to output port Routing protocols: computing
Answer: that dprop equals dtrans. seconds. a) d prop. b) d trans
Chapter 1 1) p. 98: P-6 This elementary problem begins to explore propagation delay and transmission delay, two central concepts in data networking. Consider two hosts, A and B, connected by single link
Applications. Network Application Performance Analysis. Laboratory. Objective. Overview
Laboratory 12 Applications Network Application Performance Analysis Objective The objective of this lab is to analyze the performance of an Internet application protocol and its relation to the underlying
Good Ideas So Far Computer Networking. Outline. Sequence Number Space. Lecture 18 More TCP & Congestion Control. The devilish details of TCP
Good Ideas So Far 15-441 Computer Networking Lecture 18 More TCP & Congestion Control Flow control Stop & wait Parallel stop & wait Sliding window (e.g., advertised windows) Loss recovery outs Acknowledgement-driven
ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer. By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 UPRM
ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 Outline The transport service Elements of transport protocols A
EFFECT OF TRANSFER FILE SIZE ON TCP-ADaLR PERFORMANCE: A SIMULATION STUDY
EFFECT OF TRANSFER FILE SIZE ON PERFORMANCE: A SIMULATION STUDY Modupe Omueti and Ljiljana Trajković Simon Fraser University Vancouver British Columbia Canada {momueti, ljilja}@cs.sfu.ca ABSTRACT Large
TCP transmission control protocol
TCP transmission control protocol Suguru Yamaguchi 2014 Information Network 1 Functions that transport layer provides! Model: inter-process communication Identification of process Communication pair of
COMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination
COMP 361 Computer Communications Networks Fall Semester 2003 Midterm Examination Date: October 23, 2003, Time 18:30pm --19:50pm Name: Student ID: Email: Instructions: 1. This is a closed book exam 2. This
TCP - Introduction. Features of TCP
TCP - Introduction The Internet Protocol (IP) provides unreliable datagram service between hosts The Transmission Control Protocol (TCP) provides reliable data delivery It uses IP for datagram delivery
Homework 2 assignment for ECE374 Posted: 02/21/14 Due: 02/28/14
1 Homework 2 assignment for ECE374 Posted: 02/21/14 Due: 02/28/14 Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit
EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science
EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science Examination Computer Networks (2IC15) on Monday, June 22 nd 2009, 9.00h-12.00h. First read the entire examination. There
TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581
TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 socket door point-to-point: one sender, one receiver reliable, in-order byte steam: no message boundaries pipelined: TCP congestion and flow control set
Quality of Service versus Fairness. Inelastic Applications. QoS Analogy: Surface Mail. How to Provide QoS?
18-345: Introduction to Telecommunication Networks Lectures 20: Quality of Service Peter Steenkiste Spring 2015 www.cs.cmu.edu/~prs/nets-ece Overview What is QoS? Queuing discipline and scheduling Traffic
B-2 Analyzing TCP/IP Networks with Wireshark. Ray Tompkins Founder of Gearbit www.gearbit.com
B-2 Analyzing TCP/IP Networks with Wireshark June 15, 2010 Ray Tompkins Founder of Gearbit www.gearbit.com SHARKFEST 10 Stanford University June 14-17, 2010 TCP In this session we will examine the details
Murari Sridharan Windows TCP/IP Networking, Microsoft Corp. (Collaborators: Kun Tan, Jingmin Song, MSRA & Qian Zhang, HKUST)
Murari Sridharan Windows TCP/IP Networking, Microsoft Corp. (Collaborators: Kun Tan, Jingmin Song, MSRA & Qian Zhang, HKUST) Design goals Efficiency Improve throughput by efficiently using the spare capacity
WITH THE universal adoption of the Internet as a global
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 2, APRIL 2005 339 Performance Analysis of TCP-Friendly AIMD Algorithms for Multimedia Applications Lin Cai, Student Member, IEEE, Xuemin Shen, Senior Member,
Chaoyang University of Technology, Taiwan, ROC. {changb,s9227623}@mail.cyut.edu.tw 2 Department of Computer Science and Information Engineering
TCP-Taichung: A RTT-based Predictive Bandwidth Based with Optimal Shrink Factor for TCP Congestion Control in Heterogeneous Wired and Wireless Networks Ben-Jye Chang 1, Shu-Yu Lin 1, and Ying-Hsin Liang
Internet Congestion Control for Future High Bandwidth-Delay Product Environments
Internet Congestion Control for Future High Bandwidth-Delay Product Environments Dina Katabi Mark Handley Charlie Rohrs MIT-LCS ICSI Tellabs dk@mit.edu mjh@icsi.berkeley.edu crhors@mit.edu Abstract Theory
Chapter 15. Transmission Control Protocol (TCP) TCP/IP Protocol Suite 1
Chapter 15 Transmission Control Protocol (TCP) TCP/IP Protocol Suite 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter Outline TCP/IP Protocol Suite 2
An Improved TCP Congestion Control Algorithm for Wireless Networks
An Improved TCP Congestion Control Algorithm for Wireless Networks Ahmed Khurshid Department of Computer Science University of Illinois at Urbana-Champaign Illinois, USA khurshi1@illinois.edu Md. Humayun
Computer Networks Homework 1
Computer Networks Homework 1 Reference Solution 1. (15%) Suppose users share a 1 Mbps link. Also suppose each user requires 100 kbps when transmitting, but each user transmits only 10 percent of the time.
Research of TCP ssthresh Dynamical Adjustment Algorithm Based on Available Bandwidth in Mixed Networks
Research of TCP ssthresh Dynamical Adjustment Algorithm Based on Available Bandwidth in Mixed Networks 1 Wang Zhanjie, 2 Zhang Yunyang 1, First Author Department of Computer Science,Dalian University of
Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi
Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi 1. Introduction Ad hoc wireless networks pose a big challenge for transport layer protocol and transport layer protocols
High Speed Internet Access Using Satellite-Based DVB Networks
High Speed Internet Access Using Satellite-Based DVB Networks Nihal K. G. Samaraweera and Godred Fairhurst Electronics Research Group, Department of Engineering University of Aberdeen, Aberdeen, AB24 3UE,
CSE331: Introduction to Networks and Security. Lecture 9 Fall 2006
CSE33: Introduction to Networks and Security Lecture 9 Fall 2006 Announcements Project Due TODAY HW Due on Friday Midterm I will be held next Friday, Oct. 6th. Will cover all course material up to next
TCP based Denial-of-Service Attacks to Edge Network: Analysis and Detection
TCP based Denial-of-Service Attacks to Edge Network: Analysis and Detection V. Anil Kumar 1 and Dorgham Sisalem 2 1 CSIR Centre for Mathematical Modelling and Computer Simulation, Bangalore, India 2 Fraunhofer
CHAPTER 24. Questions PRACTICE SET
CHAPTER 24 PRACTICE SET Questions Q24-1. The protocol field of the datagram defines the transport-layer protocol that should receive the transport-layer packet. If the value is 06, the protocol is TCP;
Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford
Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford The difference between theory and practice is in theory somewhat smaller than in practice. In theory, this
A Congestion Control Algorithm for Data Center Area Communications
A Congestion Control Algorithm for Data Center Area Communications Hideyuki Shimonishi, Junichi Higuchi, Takashi Yoshikawa, and Atsushi Iwata System Platforms Research Laboratories, NEC Corporation 1753
Operating Systems and Networks Sample Solution 1
Spring Term 2014 Operating Systems and Networks Sample Solution 1 1 byte = 8 bits 1 kilobyte = 1024 bytes 10 3 bytes 1 Network Performance 1.1 Delays Given a 1Gbps point to point copper wire (propagation
Low-rate TCP-targeted Denial of Service Attack Defense
Low-rate TCP-targeted Denial of Service Attack Defense Johnny Tsao Petros Efstathopoulos University of California, Los Angeles, Computer Science Department Los Angeles, CA E-mail: {johnny5t, pefstath}@cs.ucla.edu
TCP, Active Queue Management and QoS
TCP, Active Queue Management and QoS Don Towsley UMass Amherst towsley@cs.umass.edu Collaborators: W. Gong, C. Hollot, V. Misra Outline motivation TCP friendliness/fairness bottleneck invariant principle
Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics
Outline 15-441 Computer Networking Lecture 8 TCP & Congestion Control TCP connection setup/data transfer TCP Reliability Congestion sources and collapse Congestion control basics Lecture 8: 09-23-2002
Lab 3. According to above figure, the client computer (source) s IP address is and the TPC port number is 1161.
Lab 3 1. What is the IP address and TCP port number used by the client computer (source) that is transferring the file to gaia.cs.umass.edu? To answer this question, it s probably easiest to select an
TCP/IP Over Lossy Links - TCP SACK without Congestion Control
Wireless Random Packet Networking, Part II: TCP/IP Over Lossy Links - TCP SACK without Congestion Control Roland Kempter The University of Alberta, June 17 th, 2004 Department of Electrical And Computer
THE Transmission Control Protocol (TCP) has proved
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 3, NO. 2, APRIL-JUNE 2004 1 Bandwidth Estimation Schemes for TCP over Wireless Networks Antonio Capone, Member, IEEE, Luigi Fratta, Fellow, IEEE, and Fabio Martignon,
A Comparative Analysis of TCP Tahoe, Reno, New-Reno, SACK and Vegas
A Comparative Analysis of TCP Tahoe, Reno, New-Reno, SACK and Vegas Abstract: The purpose of this paper is to analyze and compare the different congestion control and avoidance mechanisms which have been
A Survey: High Speed TCP Variants in Wireless Networks
ISSN: 2321-7782 (Online) Volume 1, Issue 7, December 2013 International Journal of Advance Research in Computer Science and Management Studies Research Paper Available online at: www.ijarcsms.com A Survey:
L41: Lab 5 - TCP Latency and Bandwidth
L41: Lab 5 - TCP Latency and Bandwidth Lent Term 2015 The goals of this lab are to: Learn to draw TCP time-bandwidth and time sequence-number diagrams Evaluate the effects of latency on TCP Evaluate the
Performance evaluation of TCP connections in ideal and non-ideal network environments
Computer Communications 24 2001) 1769±1779 www.elsevier.com/locate/comcom Performance evaluation of TCP connections in ideal and non-ideal network environments Hala ElAarag, Mostafa Bassiouni* School of
TCP PACKET CONTROL FOR WIRELESS NETWORKS
TCP PACKET CONTROL FOR WIRELESS NETWORKS by Wan Gang Zeng B. Sc. in Computer Science, University of Ottawa, 2000 THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE
The Data Replication Bottleneck: Overcoming Out of Order and Lost Packets across the WAN
The Data Replication Bottleneck: Overcoming Out of Order and Lost Packets across the WAN By Jim Metzler, Cofounder, Webtorials Editorial/Analyst Division Background and Goal Many papers have been written
Transmission Control Protocol (TCP) A brief summary
Transmission Control Protocol (TCP) A brief summary TCP Basics TCP (RFC 793) is a connection-oriented transport protocol TCP entities only present at hosts (end-end) retain state of each open connection
Active Queue Management (AQM) based Internet Congestion Control
Active Queue Management (AQM) based Internet Congestion Control October 1 2002 Seungwan Ryu (sryu@eng.buffalo.edu) PhD Student of IE Department University at Buffalo Contents Internet Congestion Control
Per-Flow Queuing Allot's Approach to Bandwidth Management
White Paper Per-Flow Queuing Allot's Approach to Bandwidth Management Allot Communications, July 2006. All Rights Reserved. Table of Contents Executive Overview... 3 Understanding TCP/IP... 4 What is Bandwidth
TCP loss sensitivity analysis ADAM KRAJEWSKI, IT-CS-CE
TCP loss sensitivity analysis ADAM KRAJEWSKI, IT-CS-CE Original problem IT-DB was backuping some data to Wigner CC. High transfer rate was required in order to avoid service degradation. 4G out of... 10G
TCP/IP Revisited. IP s Transport Layer UDP and TCP. Computer Science 742 S2C, 2010 TCP UDP
TCP/IP, COMPSCI 742, 2010 p. 3/29 IP s Transport Layer UDP and TCP TCP/IP, COMPSCI 742, 2010 p. 4/29 TCP/IP Revisited Computer Science 742 S2C, 2010 Nevil Brownlee, with acknowledgements to Ulrich Speidel
Comparative Analysis of Congestion Control Algorithms Using ns-2
www.ijcsi.org 89 Comparative Analysis of Congestion Control Algorithms Using ns-2 Sanjeev Patel 1, P. K. Gupta 2, Arjun Garg 3, Prateek Mehrotra 4 and Manish Chhabra 5 1 Deptt. of Computer Sc. & Engg,
Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding
Names & Addresses EE 122: IP Forwarding and Transport Protocols Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)
Oscillations of the Sending Window in Compound TCP
Oscillations of the Sending Window in Compound TCP Alberto Blanc 1, Denis Collange 1, and Konstantin Avrachenkov 2 1 Orange Labs, 905 rue Albert Einstein, 06921 Sophia Antipolis, France 2 I.N.R.I.A. 2004
Ina Minei Reuven Cohen. The Technion. Haifa 32000, Israel. e-mail: faminei,rcoheng@cs.technion.ac.il. Abstract
High Speed Internet Access Through Unidirectional Geostationary Satellite Channels Ina Minei Reuven Cohen Computer Science Department The Technion Haifa 32000, Israel e-mail: faminei,rcoheng@cs.technion.ac.il
An enhanced approach for transmission control protocol traffic management Mechanism for Wireless Network
An enhanced approach for transmission control protocol traffic management Mechanism for Wireless Network Nitesh Mishra 1, Prof. Shaileena John 2 Department of Electronics & Communication 1, 2 niteshmish20@gmail.com
A Study on TCP Performance over Mobile Ad Hoc Networks
215 A Study on TCP Performance over Mobile Ad Hoc Networks Shweta Sharma 1, Anshika Garg 2 1 School of Computing Science and Engineering, Galgotias University, Greater Noida 2 School of Computing Science
TCP Behavior across Multihop Wireless Networks and the Wired Internet
TCP Behavior across Multihop Wireless Networks and the Wired Internet Kaixin Xu, Sang Bae, Mario Gerla, Sungwook Lee Computer Science Department University of California, Los Angeles, CA 90095 (xkx, sbae,
Analytic Models for the Latency and Steady-State Throughput of TCP Tahoe, Reno and SACK
REVISION 1 1 Analytic Models for the Latency and Steady-State Throughput of TCP Tahoe, Reno and SACK B. Sikdar, S. Kalyanaraman and K. S. Vastola Dept. of ECSE, Rensselaer Polytechnic Institute Troy, NY
Energy Consumption of TCP Reno, Newreno, and SACK in Multi-Hop Wireless Networks
Energy Consumption of TCP Reno, Newreno, and SACK in Multi-Hop Wireless Networks Harkirat Singh Department of Computer Science Portland State University Portland, OR 977 harkirat@cs.pdx.edu Suresh Singh
AN IMPROVED SNOOP FOR TCP RENO AND TCP SACK IN WIRED-CUM- WIRELESS NETWORKS
AN IMPROVED SNOOP FOR TCP RENO AND TCP SACK IN WIRED-CUM- WIRELESS NETWORKS Srikanth Tiyyagura Department of Computer Science and Engineering JNTUA College of Engg., pulivendula, Andhra Pradesh, India.
Chapter 15. Transmission Control Protocol (TCP) TCP/IP Protocol Suite 1
Chapter 15 Transmission Control Protocol (TCP) TCP/IP Protocol Suite 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. OBJECTIVES: To introduce TCP as a protocol
SELECTIVE-TCP FOR WIRED/WIRELESS NETWORKS
SELECTIVE-TCP FOR WIRED/WIRELESS NETWORKS by Rajashree Paul Bachelor of Technology, University of Kalyani, 2002 PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF
Sliding Window Protocol and TCP Congestion Control
Sliding Window Protocol and TCP Congestion Control Simon S. Lam Department of Computer Science The University it of Texas at Austin 2/25/2014 1 1 2 Sliding Window Protocol Consider an infinite array, Source,
Analysis and Detection of a Denial-of-Service Attack Scenario generated by TCP Receivers to Edge Network
Analysis and Detection of a Denial-of-Service Attack Scenario generated by TCP Receivers to Edge Network V. Anil Kumar 1 and Dorgham Sisalem 2 (anil@cmmacs.ernet.in, sisalem@fokus.fhg.de) 1 CSIR Centre
WORST-CASE PERFORMANCE LIMITATION OF TCP SACK AND A FEASIBLE SOLUTION
WORST-CASE PERFORMANCE LIMITATION OF TCP SACK AND A FEASIBLE SOLUTION K.N. Srijith, Lillykutty Jacob, A.L. Ananda School of Computing, National University of Singapore, Singapore 117543, {srijith,jacobl,ananda}@comp.nus.edu.sg
IMPROVE PERFORMANCE OF TCP NEW RENO OVER MOBILE AD-HOC NETWORK USING ABRA
IMPROVE PERFORMANCE OF TCP NEW RENO OVER MOBILE AD-HOC NETWORK USING ABRA Dhananjay Bisen 1 and Sanjeev Sharma 2 1 M.Tech, School Of Information Technology, RGPV, BHOPAL, INDIA 1 bisen.it2007@gmail.com