TCP Westwood for Wireless

Size: px
Start display at page:

Download "TCP Westwood for Wireless"

Transcription

1 TCP Westwood for Wireless מבוא רקע טכני בקרת עומס ב- TCP TCP על קשר אלחוטי שיפור תפוקה עם פרוטוקול TCP Westwood סיכום Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 1

2 TCP Over Wireless Wireless internet Widely used Routine workflow Requires TCP/IP Problem TCP handles packet loss as congestion Lost packet bit error or congestion TCP designed for cable (BER < 1-9 ) Congestion slow packet transmission Wireless BER 1-3 Many random errors without congestion No need (or efficacy) in lower packet rate Westwood Modified TCP SEQ/ACK mechanism Improved treatment of random errors Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 2

3 Congestion Control Flow control Avoid overflow in TCP receiver buffer Congestion control Avoid overflow in router buffers Flow Control TCP Buffer Router Buffer Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 3

4 Slow-Start Congestion window (cwnd) Source window Maximum number of "unacked" bytes Initial cwnd = 1 MSS (maximum segment size) Data rate = 1 MSS / RTT RTT Sender ACK 1 MSS Receiver ACK 2 MSS Exponential growth On each ACK cwnd cwnd + size of data ACKed if (cwnd > maximum cwnd = destination window) cwnd max cwnd if (ACK timeout) Segment size threshold (ssthresh) last cwnd cwnd initial cwnd = 1 MSS Timeout ACK 3 MSS Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 4

5 RTT and Buffer Errors Round Trip Time RTT = data transmit time + send buffer times + ACK transmit time + ACK buffer times Buffer time ~ typical service time buffer level RTT = random variable (rise / fall sharply) RTT Sender SEQ ACK Receiver Buffer time in TCP Timeout Buffer level RTT > RTO (retransmit timeout) Packet considered lost Out-of-order packet Buffer level RTT(packet k) > RTT(packet k+1) Receiver will send cumulative ACK if OOO packet not lost Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 5

6 RTT and Congestion Buffer error condition Sender Receiver Buffer level RTT > RTO for time T error Isolated error T error < time between packets Buffer empties before next packet No need to lower transmission rate RTT SEQ ACK Congestion T error > time between packets Multiple buffer errors Lower transmission rate to prevent buffer errors Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 6

7 Congestion Avoidance TCP Reno protocol Slow start phase On (ACK && cwnd < ssthresh) cwnd cwnd + size of data ACKed On (ACK timeout) ssthresh cwnd cwnd initial cwnd = 1 MSS RTO 2 * RTO Congestion avoidance phase On (ACK && cwnd > ssthresh) cwnd cwnd + 1 MSS Fast retransmit with fast recovery On (3 dupacks) ssthresh cwnd cwnd cwnd / 2 Retransmit lost packet Wait 1 RTT continue sending For > 3 dupacks cwnd++ on each new dupack Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 7

8 Error-Free Transmission 1 8 ACK SEQ cwnd 6 Latency = 2.77 Utilization = 34.2% goodput = 34.2% 4 2 Slow Start Collision Avoidance 1 2 Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 8

9 Congestion Longer RTT 1 8 ACK (no congestion) SEQ (no congestion) cwnd (no congestion) ACK SEQ cwnd 6 4 Latency = 3.7 Latency (lossless) = 2.77 Excess latency = 33.57% Utilization = 25.6% goodput = 25.6% Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 9

10 1 Lost Packet Early 1 8 ACK SEQ cwnd 6 Latency = 6.87 Latency (lossless) = 2.77 Excess latency = 148.1% Utilization = 14.% goodput = 13.8% 4 2 Packet 3 lost Timeout Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 1

11 Steady State 1 8 ACK SEQ cwnd 6 Latency = 5.32 Latency (lossless) = 2.77 Excess latency = 92.6% Utilization = 2.8% goodput = 17.8% Packet 9 lost 3 dupacks Packet 29 lost 3 dupacks Packet 49 lost 3 dupacks Packet 69 lost 3 dupacks Packet 89 lost 3 dupacks Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 11

12 The Trouble with Wireless 1 Variations in transmission medium Multiple correlated packet losses + bit errors TCP interprets as serious congestion timeouts + slow start Fading channels Refraction Reflection Absorption Multipath refraction reflection absorption medium EMI (electromagnetic interference) Other users Other radio equipment Other radiating equipment station station station station Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 12

13 The Trouble with Wireless 2 Mobility drops User moves between wireless domains Adds delays + buffers + dupacks + timeouts MSC MSC RNC-1 RNC-2 Clusters RNC-1 RNC Node-B Cells TCP request in cell 1 TCP response in cell 4 Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 13

14 The Trouble with Wireless 3 Link asymmetry Upstream channel slower than downstream channel Larger buffer longer buffer delay lower average B/s ACK compression Base Mobile ACKs delayed in upstream buffer RTT B/s All ACKs arrive together cwnd sharply Sender floods forward channel buffer Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 14

15 The Trouble with Wireless 4 MACA in WiFi Required to prevent hidden node problem RTS RTS CTS CTS A B C D E F DATA ACK MAC MACA overhead RTS+CTS+ACK MAC time TCP ACK time TCP WiFi ACK delay = 2 wired TCP ACK delay RTT Timeouts cwnd cwnd segment size B/s= RTT RTT and cwnd B/s Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 15

16 TCP Westwood Reference Saverio Mascolo, ClaudioCasetti, MarioGerla, M. Y.SanadidiandRenWang, TCP Westwood: Bandwidth Estimation for Enhanced Transport over Wireless Links(21) ACM SIGMOBILE. Modifies TCP sender Not dependent on negotiation with TCP sender Not dependent on support in router or receiver Estimates available bandwidth Counts dupacks as successful traffic On packet loss set cwnd = available bandwidth Improves on Reno cwnd = cwnd / 2 Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 16

17 Average Transmission Rate in Reno Senders must measure bandwidth estimate R Know cwnd packets sent R= = Measure <RTT> time to ACK cwnd RTT TCP average RTT (simplified) R'= last RTT measurement SRTT (1 - α) * SRTT + α * R' RTO max(1 sec, SRTT) α = 1/8 Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 17

18 Noise Filtering in Westwood Model bandwidth as noisy signal BW meas (time) = BW (time) + noise (time) Filter out noise with low-pass filter H 2πift x t X f e df ( ) = ( ) 2πift y t H f X f e df ( ) = ( ) ( ) ( f) = 1 f 1+ f 2 Fourier transform input signal Filter in frequency domain Low-pass filter Output signal "cut off" at frequency f Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 18

19 Low Pass Filter Example Filter input Filter output 1 x( t) = sin( 2π t) + sin( 2π t) y t t t ( ) = sin( 2π ) + sin( 2π ) ( ) ( ) x t y t 1 H( f) =, f 2 = f 1+ f 2 X ( f ) 1 1 f Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 19

20 DSP Low Pass Filter for Sampled Signals Sample input at times t k k, k =,1, 2,... t = t t b k k k 1 Sample stream from input dk dk number of bytes ACKed = = =, k =,1, 2,... t t t time of ACK time of previous ACK k k k 1 Output stream (Tustin approximation) ˆ ˆ b + b bk =αkbk 1+ αk 2 2τ tk α k = < 1, 2τ> t 2τ+ t Cutoff frequency τ= 1 f k k k 1 ( 1 ) k parameter related to Nyquist sampling theorem Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 2

21 Bandwidth Sampling inwestwind Bandwidth sample b k dk dk number of bytes ACKed = = = t t t time of ACK time of previous ACK k k k 1 No ACK for time > 2τ insert "virtual ACK" Insert d = b at time= t + 2τ k k k 1 Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 21

22 Westwood Packet Counting Example Packet transmission times t t 1 t 2 t 3 t 6 Time ACK Arrived at Receiver Packets for BWE Counted dupack BWE t /(t 1 t ) t /(t 2 t 1 ) t /(t 3 t 2 ) t /(t 4 t 3 ) t /(t 5 t 4 ) t /(t 6 t 5 ) t /(t 7 t 6 ) ACK jumps to 9 from 4 = 5 but 3 ACKs (6, 7, 8) already counted as dupacks Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 22

23 Westwood ACK Counter (for BWE) newack = ACK prevack ; Packets ACKed by new ACK // if (newack = 1) do nothing No error condition report 1 ACK if (newack = ) count++ ; newack = 1 ; if (newack > 1) if (count >= newack) count = count newack + 1 ; newack = 1 ; else if (count < newack) newack = newack - count ; count = ; ACK "stuck" on old value (dupack) Increment dupack counter Count 1 dupack ACK advances Not all arrived packets ACKed Remove ACKed from dupack count Count as additional dupack All packets ACKed in order ReportACKed counted (new ACKs) Zero dupack counter prevack = ACK ; return(newack); Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 23

24 Westwood Scenario 1 No Errors Receive 1 2,3 4,5,6,7 8,9,1,11,12,13,14,15 ACK newack = newack = ACK prevack ; if (newack = ) count++ ; newack = 1 ; if (newack > 1) if (count >= newack) count = count newack + 1 ; newack = 1 ; else if (count < newack) newack = newack - count ; count = ; prevack = ACK ; return(newack); Total = Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 24

25 Westwood Scenario 2 1 Packet Out-of-Order Receive 1 2,3 5,6,7,4 8,9,1,11,12,13,14,15 ACK newack = ACK prevack ; if (newack = ) count++ ; newack = 1 ; if (newack > 1) if (count >= newack) count = count newack + 1 ; newack = 1 ; else if (count < newack) newack = newack - count ; count = ; prevack = ACK ; return(newack); Total = Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 25

26 Westwind Congestion Control Reno slow start On (ACK && cwnd < ssthresh) cwnd cwnd + size of data ACKed Reno congestion avoidance On (ACK && cwnd > ssthresh) cwnd cwnd + 1 Modified fast recovery On 3 dupacks ssthresh = BWE * RTT_min / segment_size if (cwnd > ssthresh) cwnd = ssthresh Modified timeout ssthresh = BWE * RTT_min / segment_size if (ssthresh < 2) ssthresh = 2 cwnd = 1 Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 26

27 Westwood Performance Throughput Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 27

28 Loss Example Reno After 1 packets cwnd = 32 ssthresh = 16 Transmit 32 packets packet 129 lost Round cwnd Packets ACK dupacks = (cumulative ACK) Performance Total time to ACK = 4 RTT Average BW = (67 packets b bits per packet) / (4 RTT) For RTT = 1 msec with 1, bits per packet Average BW = Mbps Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 28

29 Reno versus Westwood Example After 1 packets cwnd = 32 Transmit 32 packets packet 129 lost Round BWE cwnd Packets ACK 1 32 b / RTT dupacks = b / RTT (cumulative ACK) 3 32 b / RTT b / RTT Comparison of round 2 Reno: cwnd cwnd / 2 = 4 Westwood: ssthresh = cwnd BWE = 32 Performance Total time to ACK = 4 RTT Average BW = 2.4 Mbps = 43% (96/67) better than Reno ( ) ( ) ( 31 ) + ( 32 ) bˆ =α α α = Seminar in Computer Networks and Distributed Systems Hadassah College Spring 215 TCP over Wireless Networks Dr. Martin Land 29

A Survey on Congestion Control Mechanisms for Performance Improvement of TCP

A Survey on Congestion Control Mechanisms for Performance Improvement of TCP A Survey on Congestion Control Mechanisms for Performance Improvement of TCP Shital N. Karande Department of Computer Science Engineering, VIT, Pune, Maharashtra, India Sanjesh S. Pawale Department of

More information

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP) TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page

More information

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.

More information

TCP in Wireless Mobile Networks

TCP in Wireless Mobile Networks TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer

More information

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1)

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1) Lecture Objectives Wireless and Mobile Systems Design Lecture 07 Mobile Networks: TCP in Wireless Networks Describe TCP s flow control mechanism Describe operation of TCP Reno and TCP Vegas, including

More information

TCP over Wireless Networks

TCP over Wireless Networks TCP over Wireless Networks Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-10/

More information

Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage

Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage Lecture 15: Congestion Control CSE 123: Computer Networks Stefan Savage Overview Yesterday: TCP & UDP overview Connection setup Flow control: resource exhaustion at end node Today: Congestion control Resource

More information

TCP in Wireless Networks

TCP in Wireless Networks Outline Lecture 10 TCP Performance and QoS in Wireless s TCP Performance in wireless networks TCP performance in asymmetric networks WAP Kurose-Ross: Chapter 3, 6.8 On-line: TCP over Wireless Systems Problems

More information

Data Networks Summer 2007 Homework #3

Data Networks Summer 2007 Homework #3 Data Networks Summer Homework # Assigned June 8, Due June in class Name: Email: Student ID: Problem Total Points Problem ( points) Host A is transferring a file of size L to host B using a TCP connection.

More information

Research of TCP ssthresh Dynamical Adjustment Algorithm Based on Available Bandwidth in Mixed Networks

Research of TCP ssthresh Dynamical Adjustment Algorithm Based on Available Bandwidth in Mixed Networks Research of TCP ssthresh Dynamical Adjustment Algorithm Based on Available Bandwidth in Mixed Networks 1 Wang Zhanjie, 2 Zhang Yunyang 1, First Author Department of Computer Science,Dalian University of

More information

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the

More information

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network

Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network 作 者 :Daiqin Yang, Ka-Cheong Leung, and Victor O. K. Li 出 處 :Wireless Communications and Networking Conference, 2007.WCNC

More information

SJBIT, Bangalore, KARNATAKA

SJBIT, Bangalore, KARNATAKA A Comparison of the TCP Variants Performance over different Routing Protocols on Mobile Ad Hoc Networks S. R. Biradar 1, Subir Kumar Sarkar 2, Puttamadappa C 3 1 Sikkim Manipal Institute of Technology,

More information

Mobile Communications Chapter 9: Mobile Transport Layer

Mobile Communications Chapter 9: Mobile Transport Layer Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery

More information

Congestions and Control Mechanisms n Wired and Wireless Networks

Congestions and Control Mechanisms n Wired and Wireless Networks International OPEN ACCESS Journal ISSN: 2249-6645 Of Modern Engineering Research (IJMER) Congestions and Control Mechanisms n Wired and Wireless Networks MD Gulzar 1, B Mahender 2, Mr.B.Buchibabu 3 1 (Asst

More information

Mobile Computing/ Mobile Networks

Mobile Computing/ Mobile Networks Mobile Computing/ Mobile Networks TCP in Mobile Networks Prof. Chansu Yu Contents Physical layer issues Communication frequency Signal propagation Modulation and Demodulation Channel access issues Multiple

More information

TCP for Wireless Networks

TCP for Wireless Networks TCP for Wireless Networks Outline Motivation TCP mechanisms Indirect TCP Snooping TCP Mobile TCP Fast retransmit/recovery Transmission freezing Selective retransmission Transaction oriented TCP Adapted

More information

Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan

Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan Application Level Congestion Control Enhancements in High BDP Networks Anupama Sundaresan Organization Introduction Motivation Implementation Experiments and Results Conclusions 2 Developing a Grid service

More information

Linux 2.4 Implementation of Westwood+ TCP with rate-halving: A Performance Evaluation over the Internet

Linux 2.4 Implementation of Westwood+ TCP with rate-halving: A Performance Evaluation over the Internet Linux. Implementation of TCP with rate-halving: A Performance Evaluation over the Internet A. Dell Aera, L. A. Grieco, S. Mascolo Dipartimento di Elettrotecnica ed Elettronica Politecnico di Bari Via Orabona,

More information

First Midterm for ECE374 03/24/11 Solution!!

First Midterm for ECE374 03/24/11 Solution!! 1 First Midterm for ECE374 03/24/11 Solution!! Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit if you show your

More information

Chaoyang University of Technology, Taiwan, ROC. {changb,s9227623}@mail.cyut.edu.tw 2 Department of Computer Science and Information Engineering

Chaoyang University of Technology, Taiwan, ROC. {changb,s9227623}@mail.cyut.edu.tw 2 Department of Computer Science and Information Engineering TCP-Taichung: A RTT-based Predictive Bandwidth Based with Optimal Shrink Factor for TCP Congestion Control in Heterogeneous Wired and Wireless Networks Ben-Jye Chang 1, Shu-Yu Lin 1, and Ying-Hsin Liang

More information

TCP PACKET CONTROL FOR WIRELESS NETWORKS

TCP PACKET CONTROL FOR WIRELESS NETWORKS TCP PACKET CONTROL FOR WIRELESS NETWORKS by Wan Gang Zeng B. Sc. in Computer Science, University of Ottawa, 2000 THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

More information

Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi

Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi 1. Introduction Ad hoc wireless networks pose a big challenge for transport layer protocol and transport layer protocols

More information

EECS 122: Introduction to Computer Networks Multiaccess Protocols. ISO OSI Reference Model for Layers

EECS 122: Introduction to Computer Networks Multiaccess Protocols. ISO OSI Reference Model for Layers EECS 122: Introduction to Computer Networks Multiaccess Protocols Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720-1776

More information

Network Performance: Networks must be fast. What are the essential network performance metrics: bandwidth and latency

Network Performance: Networks must be fast. What are the essential network performance metrics: bandwidth and latency Network Performance: Networks must be fast What are the essential network performance metrics: bandwidth and latency Transmission media AS systems Input'signal'f(t) Has'bandwidth'B System'with'H(-) Output'signal'g(t)

More information

Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics

Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics Outline 15-441 Computer Networking Lecture 8 TCP & Congestion Control TCP connection setup/data transfer TCP Reliability Congestion sources and collapse Congestion control basics Lecture 8: 09-23-2002

More information

TTC New Reno - Consistent Control of Packet Traffic

TTC New Reno - Consistent Control of Packet Traffic IMPROVE PERFORMANCE OF TCP NEW RENO OVER MOBILE AD-HOC NETWORK USING ABRA Dhananjay Bisen 1 and Sanjeev Sharma 2 1 M.Tech, School Of Information Technology, RGPV, BHOPAL, INDIA 1 bisen.it2007@gmail.com

More information

THE Transmission Control Protocol (TCP) has proved

THE Transmission Control Protocol (TCP) has proved IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 3, NO. 2, APRIL-JUNE 2004 1 Bandwidth Estimation Schemes for TCP over Wireless Networks Antonio Capone, Member, IEEE, Luigi Fratta, Fellow, IEEE, and Fabio Martignon,

More information

An Improved TCP Congestion Control Algorithm for Wireless Networks

An Improved TCP Congestion Control Algorithm for Wireless Networks An Improved TCP Congestion Control Algorithm for Wireless Networks Ahmed Khurshid Department of Computer Science University of Illinois at Urbana-Champaign Illinois, USA khurshi1@illinois.edu Md. Humayun

More information

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM 152 APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM A1.1 INTRODUCTION PPATPAN is implemented in a test bed with five Linux system arranged in a multihop topology. The system is implemented

More information

CS551 End-to-End Internet Packet Dynamics [Paxson99b]

CS551 End-to-End Internet Packet Dynamics [Paxson99b] CS551 End-to-End Internet Packet Dynamics [Paxson99b] Bill Cheng http://merlot.usc.edu/cs551-f12 1 End-to-end Packet Dynamics How do you measure Internet performance? Why do people want to know? Are ISPs

More information

TCP Adaptation for MPI on Long-and-Fat Networks

TCP Adaptation for MPI on Long-and-Fat Networks TCP Adaptation for MPI on Long-and-Fat Networks Motohiko Matsuda, Tomohiro Kudoh Yuetsu Kodama, Ryousei Takano Grid Technology Research Center Yutaka Ishikawa The University of Tokyo Outline Background

More information

Student, Haryana Engineering College, Haryana, India 2 H.O.D (CSE), Haryana Engineering College, Haryana, India

Student, Haryana Engineering College, Haryana, India 2 H.O.D (CSE), Haryana Engineering College, Haryana, India Volume 5, Issue 6, June 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A New Protocol

More information

First Midterm for ECE374 03/09/12 Solution!!

First Midterm for ECE374 03/09/12 Solution!! 1 First Midterm for ECE374 03/09/12 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam

More information

AN IMPROVED SNOOP FOR TCP RENO AND TCP SACK IN WIRED-CUM- WIRELESS NETWORKS

AN IMPROVED SNOOP FOR TCP RENO AND TCP SACK IN WIRED-CUM- WIRELESS NETWORKS AN IMPROVED SNOOP FOR TCP RENO AND TCP SACK IN WIRED-CUM- WIRELESS NETWORKS Srikanth Tiyyagura Department of Computer Science and Engineering JNTUA College of Engg., pulivendula, Andhra Pradesh, India.

More information

Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages

Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages Part I: The problem specifications NTNU The Norwegian University of Science and Technology Department of Telematics Note! The problem set consists of two parts: Part I: The problem specifications pages

More information

Performance evaluation of TCP connections in ideal and non-ideal network environments

Performance evaluation of TCP connections in ideal and non-ideal network environments Computer Communications 24 2001) 1769±1779 www.elsevier.com/locate/comcom Performance evaluation of TCP connections in ideal and non-ideal network environments Hala ElAarag, Mostafa Bassiouni* School of

More information

SELECTIVE-TCP FOR WIRED/WIRELESS NETWORKS

SELECTIVE-TCP FOR WIRED/WIRELESS NETWORKS SELECTIVE-TCP FOR WIRED/WIRELESS NETWORKS by Rajashree Paul Bachelor of Technology, University of Kalyani, 2002 PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

More information

STUDY OF TCP VARIANTS OVER WIRELESS NETWORK

STUDY OF TCP VARIANTS OVER WIRELESS NETWORK STUDY OF VARIANTS OVER WIRELESS NETWORK 1 DEVENDRA SINGH KUSHWAHA, 2 VIKASH K SINGH, 3 SHAIBYA SINGH, 4 SONAL SHARMA 1,2,3,4 Assistant Professor, Dept. of Computer Science, Indira Gandhi National Tribal

More information

Basic Multiplexing models. Computer Networks - Vassilis Tsaoussidis

Basic Multiplexing models. Computer Networks - Vassilis Tsaoussidis Basic Multiplexing models? Supermarket?? Computer Networks - Vassilis Tsaoussidis Schedule Where does statistical multiplexing differ from TDM and FDM Why are buffers necessary - what is their tradeoff,

More information

Applying Active Queue Management to Link Layer Buffers for Real-time Traffic over Third Generation Wireless Networks

Applying Active Queue Management to Link Layer Buffers for Real-time Traffic over Third Generation Wireless Networks Applying Active Queue Management to Link Layer Buffers for Real-time Traffic over Third Generation Wireless Networks Jian Chen and Victor C.M. Leung Department of Electrical and Computer Engineering The

More information

Chapter 6 Congestion Control and Resource Allocation

Chapter 6 Congestion Control and Resource Allocation Chapter 6 Congestion Control and Resource Allocation 6.3 TCP Congestion Control Additive Increase/Multiplicative Decrease (AIMD) o Basic idea: repeatedly increase transmission rate until congestion occurs;

More information

Final for ECE374 05/06/13 Solution!!

Final for ECE374 05/06/13 Solution!! 1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

More information

A Study on TCP Performance over Mobile Ad Hoc Networks

A Study on TCP Performance over Mobile Ad Hoc Networks 215 A Study on TCP Performance over Mobile Ad Hoc Networks Shweta Sharma 1, Anshika Garg 2 1 School of Computing Science and Engineering, Galgotias University, Greater Noida 2 School of Computing Science

More information

Low-rate TCP-targeted Denial of Service Attack Defense

Low-rate TCP-targeted Denial of Service Attack Defense Low-rate TCP-targeted Denial of Service Attack Defense Johnny Tsao Petros Efstathopoulos University of California, Los Angeles, Computer Science Department Los Angeles, CA E-mail: {johnny5t, pefstath}@cs.ucla.edu

More information

Analysis of TCP Performance Over Asymmetric Wireless Links

Analysis of TCP Performance Over Asymmetric Wireless Links Virginia Tech ECPE 6504: Wireless Networks and Mobile Computing Analysis of TCP Performance Over Asymmetric Kaustubh S. Phanse (kphanse@vt.edu) Outline Project Goal Notions of Asymmetry in Wireless Networks

More information

Energy Efficient Congestion Control Operation in WSNs Adel Gaafar A. Elrahim Electrical Engineering Dept. Red Sea University, Port Sudan, Sudan

Energy Efficient Congestion Control Operation in WSNs Adel Gaafar A. Elrahim Electrical Engineering Dept. Red Sea University, Port Sudan, Sudan Energy Efficient Congestion Control Operation in WSNs Adel Gaafar A. Elrahim Electrical Engineering Dept. Red Sea University, Port Sudan, Sudan Abstract: The development of wireless technologies makes

More information

Improving Throughput Performance of the IEEE 802.11 MAC Layer Using Congestion Control Methods

Improving Throughput Performance of the IEEE 802.11 MAC Layer Using Congestion Control Methods Improving Throughput Performance of the IEEE 802.11 MAC Layer Using Congestion Control Methods Song Ci CS Department University of Michigan-Flint Flint, MI48502 cisong@umich.edu Guevara Noubir College

More information

CS268 Exam Solutions. 1) End-to-End (20 pts)

CS268 Exam Solutions. 1) End-to-End (20 pts) CS268 Exam Solutions General comments: ) If you would like a re-grade, submit in email a complete explanation of why your solution should be re-graded. Quote parts of your solution if necessary. In person

More information

Performance improvement of TCP over wireless network

Performance improvement of TCP over wireless network Performance improvement of TCP over wireless network Raja singh Computer science Department, SRIT, Jabalpur, M.P.India, rajasinghpatel@gmail.com Brajesh patel Asst. Prof. SRIT,Jabalpur M.P., India, Abstract:

More information

TCP/IP In Cellular Networks

TCP/IP In Cellular Networks TCP/IP In Cellular Networks Two Techniques To Improve TCP Performance In Cellular Networks UNC Wireless Networks 790-088 November, 29 2010 John DeArmon M-TCP: TCP for Cellular Networks Improving TCP Performance

More information

2 TCP-like Design. Answer

2 TCP-like Design. Answer Homework 3 1 DNS Suppose you have a Host C, a local name server L, and authoritative name servers A root, A com, and A google.com, where the naming convention A x means that the name server knows about

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1169 ISSN 2229-5518

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1169 ISSN 2229-5518 International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1169 Comparison of TCP I-Vegas with TCP Vegas in Wired-cum-Wireless Network Nitin Jain & Dr. Neelam Srivastava Abstract

More information

TCP/IP Over Lossy Links - TCP SACK without Congestion Control

TCP/IP Over Lossy Links - TCP SACK without Congestion Control Wireless Random Packet Networking, Part II: TCP/IP Over Lossy Links - TCP SACK without Congestion Control Roland Kempter The University of Alberta, June 17 th, 2004 Department of Electrical And Computer

More information

IMPROVING CONGESTION CONTROL FOR END- TO END DELIVERY IN WIRELESS NETWORKS

IMPROVING CONGESTION CONTROL FOR END- TO END DELIVERY IN WIRELESS NETWORKS IMPROVING CONGESTION CONTROL FOR END- TO END DELIVERY IN WIRELESS NETWORKS Satishkumar D. Prajapati 1, Dhaval J. Varia 2 1 PG Student, 2 Assistant Professor, Computer Science and Engineering Government

More information

An enhanced TCP mechanism Fast-TCP in IP networks with wireless links

An enhanced TCP mechanism Fast-TCP in IP networks with wireless links Wireless Networks 6 (2000) 375 379 375 An enhanced TCP mechanism Fast-TCP in IP networks with wireless links Jian Ma a, Jussi Ruutu b and Jing Wu c a Nokia China R&D Center, No. 10, He Ping Li Dong Jie,

More information

15-441: Computer Networks Homework 2 Solution

15-441: Computer Networks Homework 2 Solution 5-44: omputer Networks Homework 2 Solution Assigned: September 25, 2002. Due: October 7, 2002 in class. In this homework you will test your understanding of the TP concepts taught in class including flow

More information

Improving Effective WAN Throughput for Large Data Flows By Peter Sevcik and Rebecca Wetzel November 2008

Improving Effective WAN Throughput for Large Data Flows By Peter Sevcik and Rebecca Wetzel November 2008 Improving Effective WAN Throughput for Large Data Flows By Peter Sevcik and Rebecca Wetzel November 2008 When you buy a broadband Wide Area Network (WAN) you want to put the entire bandwidth capacity to

More information

Active Queue Management (AQM) based Internet Congestion Control

Active Queue Management (AQM) based Internet Congestion Control Active Queue Management (AQM) based Internet Congestion Control October 1 2002 Seungwan Ryu (sryu@eng.buffalo.edu) PhD Student of IE Department University at Buffalo Contents Internet Congestion Control

More information

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science Examination Computer Networks (2IC15) on Monday, June 22 nd 2009, 9.00h-12.00h. First read the entire examination. There

More information

This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio).

This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). Client App Network Server App 25-May-13 15:32 (Page 1) This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). TCP is an end to end protocol which

More information

An enhanced approach for transmission control protocol traffic management Mechanism for Wireless Network

An enhanced approach for transmission control protocol traffic management Mechanism for Wireless Network An enhanced approach for transmission control protocol traffic management Mechanism for Wireless Network Nitesh Mishra 1, Prof. Shaileena John 2 Department of Electronics & Communication 1, 2 niteshmish20@gmail.com

More information

Transport layer protocols for ad hoc networks

Transport layer protocols for ad hoc networks Transport layer protocols for ad hoc networks Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2616/ Which transport layer protocol? Classification of transport

More information

CSE331: Introduction to Networks and Security. Lecture 6 Fall 2006

CSE331: Introduction to Networks and Security. Lecture 6 Fall 2006 CSE331: Introduction to Networks and Security Lecture 6 Fall 2006 Open Systems Interconnection (OSI) End Host Application Reference model not actual implementation. Transmits messages (e.g. FTP or HTTP)

More information

TCP Westwood: End-to-End Congestion Control for Wired/Wireless Networks

TCP Westwood: End-to-End Congestion Control for Wired/Wireless Networks Wireless Networks 8, 467 479, 2002 2002 Kluwer Academic Publishers. Manufactured in The Netherlands. TCP Westwood: End-to-End Congestion Control for Wired/Wireless Networks CLAUDIO CASETTI Politecnico

More information

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit

More information

Chapter 2. Background. 2.1 Basic Introduction to Computer Networking

Chapter 2. Background. 2.1 Basic Introduction to Computer Networking Chapter 2 Background We first give a basic introduction to Computer Networking in Section 2.1. It is followed by a detailed description of TCP and its background in Section 2.2. In Section 2.3, we describe

More information

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013 CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60

More information

Based on Computer Networking, 4 th Edition by Kurose and Ross

Based on Computer Networking, 4 th Edition by Kurose and Ross Computer Networks Ethernet Hubs and Switches Based on Computer Networking, 4 th Edition by Kurose and Ross Ethernet dominant wired LAN technology: cheap $20 for NIC first widely used LAN technology Simpler,

More information

La couche transport dans l'internet (la suite TCP/IP)

La couche transport dans l'internet (la suite TCP/IP) La couche transport dans l'internet (la suite TCP/IP) C. Pham Université de Pau et des Pays de l Adour Département Informatique http://www.univ-pau.fr/~cpham Congduc.Pham@univ-pau.fr Cours de C. Pham,

More information

Lecture 17: 802.11 Wireless Networking"

Lecture 17: 802.11 Wireless Networking Lecture 17: 802.11 Wireless Networking" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Lili Qiu, Nitin Vaidya Lecture 17 Overview" Project discussion Intro to 802.11 WiFi Jigsaw discussion

More information

EXAMPLES AND PROBLEMS. Competence Based Education Internet Protocols

EXAMPLES AND PROBLEMS. Competence Based Education Internet Protocols EXAMPLES AND PROBLEMS Competence Based Education Internet Protocols Example 1 In following figure frames are generated at node A and sent to node C through node B. Determine the minimum transmission rate

More information

Visualizations and Correlations in Troubleshooting

Visualizations and Correlations in Troubleshooting Visualizations and Correlations in Troubleshooting Kevin Burns Comcast kevin_burns@cable.comcast.com 1 Comcast Technology Groups Cable CMTS, Modem, Edge Services Backbone Transport, Routing Converged Regional

More information

Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks

Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks 1 Mr. Praveen S Patil, 2 Mr. Rabinarayan Panda, 3 Mr. Sunil Kumar R D 1,2,3 Asst. Professor, Department of MCA, The Oxford College of Engineering,

More information

THE UNIVERSITY OF AUCKLAND

THE UNIVERSITY OF AUCKLAND COMPSCI 742 THE UNIVERSITY OF AUCKLAND SECOND SEMESTER, 2008 Campus: City COMPUTER SCIENCE Data Communications and Networks (Time allowed: TWO hours) NOTE: Attempt all questions. Calculators are NOT permitted.

More information

The Problem with TCP. Overcoming TCP s Drawbacks

The Problem with TCP. Overcoming TCP s Drawbacks White Paper on managed file transfers How to Optimize File Transfers Increase file transfer speeds in poor performing networks FileCatalyst Page 1 of 6 Introduction With the proliferation of the Internet,

More information

B-2 Analyzing TCP/IP Networks with Wireshark. Ray Tompkins Founder of Gearbit www.gearbit.com

B-2 Analyzing TCP/IP Networks with Wireshark. Ray Tompkins Founder of Gearbit www.gearbit.com B-2 Analyzing TCP/IP Networks with Wireshark June 15, 2010 Ray Tompkins Founder of Gearbit www.gearbit.com SHARKFEST 10 Stanford University June 14-17, 2010 TCP In this session we will examine the details

More information

Computer Networks - CS132/EECS148 - Spring 2013 ------------------------------------------------------------------------------

Computer Networks - CS132/EECS148 - Spring 2013 ------------------------------------------------------------------------------ Computer Networks - CS132/EECS148 - Spring 2013 Instructor: Karim El Defrawy Assignment 3 - Solutions Deadline : May 9 th 9:30pm (hard and soft copies required) ------------------------------------------------------------------------------

More information

A packet-reordering solution to wireless losses in transmission control protocol

A packet-reordering solution to wireless losses in transmission control protocol Wireless Netw () 9:577 59 DOI.7/s76--55-6 A packet-reordering solution to wireless losses in transmission control protocol Ka-Cheong Leung Chengdi Lai Victor O. K. Li Daiqin Yang Published online: 6 February

More information

Chapter 5. Transport layer protocols

Chapter 5. Transport layer protocols Chapter 5. Transport layer protocols This chapter provides an overview of the most important and common protocols of the TCP/IP transport layer. These include: User Datagram Protocol (UDP) Transmission

More information

Ring Local Area Network. Ring LANs

Ring Local Area Network. Ring LANs Ring Local Area Network Ring interface (1-bit buffer) Ring interface To station From station Ring LANs The ring is a series of bit repeaters, each connected by a unidirectional transmission link All arriving

More information

CS6956: Wireless and Mobile Networks Lecture Notes: 2/11/2015. IEEE 802.11 Wireless Local Area Networks (WLANs)

CS6956: Wireless and Mobile Networks Lecture Notes: 2/11/2015. IEEE 802.11 Wireless Local Area Networks (WLANs) CS6956: Wireless and Mobile Networks Lecture Notes: //05 IEEE 80. Wireless Local Area Networks (WLANs) CSMA/CD Carrier Sense Multi Access/Collision Detection detects collision and retransmits, no acknowledgement,

More information

CLAMP and Networking Performance Control

CLAMP and Networking Performance Control Active Queue Management For Fair Resource Allocation in Wireless Networks Lachlan L. H. Andrew and Stephen V. Hanly ARC Special Research Centre on Ultra-Broadband Information Networks Department of Electrical

More information

A Survey: High Speed TCP Variants in Wireless Networks

A Survey: High Speed TCP Variants in Wireless Networks ISSN: 2321-7782 (Online) Volume 1, Issue 7, December 2013 International Journal of Advance Research in Computer Science and Management Studies Research Paper Available online at: www.ijarcsms.com A Survey:

More information

Ina Minei Reuven Cohen. The Technion. Haifa 32000, Israel. e-mail: faminei,rcoheng@cs.technion.ac.il. Abstract

Ina Minei Reuven Cohen. The Technion. Haifa 32000, Israel. e-mail: faminei,rcoheng@cs.technion.ac.il. Abstract High Speed Internet Access Through Unidirectional Geostationary Satellite Channels Ina Minei Reuven Cohen Computer Science Department The Technion Haifa 32000, Israel e-mail: faminei,rcoheng@cs.technion.ac.il

More information

The Quality of Internet Service: AT&T s Global IP Network Performance Measurements

The Quality of Internet Service: AT&T s Global IP Network Performance Measurements The Quality of Internet Service: AT&T s Global IP Network Performance Measurements In today's economy, corporations need to make the most of opportunities made possible by the Internet, while managing

More information

TCP Westwood: Congestion Window Control Using Bandwidth Estimation

TCP Westwood: Congestion Window Control Using Bandwidth Estimation TCP Westwood: Congestion Window Control Using Bandwidth Estimation Mario Gerla, M. Y. Sanadidi, Ren Wang, and Andrea Zanella UCLA Computer Science Department Claudio Casetti Politecnico Di Torino Saverio

More information

Computer Networks. Chapter 5 Transport Protocols

Computer Networks. Chapter 5 Transport Protocols Computer Networks Chapter 5 Transport Protocols Transport Protocol Provides end-to-end transport Hides the network details Transport protocol or service (TS) offers: Different types of services QoS Data

More information

How To Make A Multi-User Communication Efficient

How To Make A Multi-User Communication Efficient Multiple Access Techniques PROF. MICHAEL TSAI 2011/12/8 Multiple Access Scheme Allow many users to share simultaneously a finite amount of radio spectrum Need to be done without severe degradation of the

More information

A Survey on Improving TCP Performance over Wireless Networks

A Survey on Improving TCP Performance over Wireless Networks A Survey on Improving TCP Performance over Wireless Networks Xiang Chen, Hongqiang Zhai, Jianfeng Wang and Yuguang Fang Dept. of Electrical and Computer Engineering University of Florida, Gainesville,

More information

APPROACHES, AND CHALLENGES

APPROACHES, AND CHALLENGES 4TH QUARTER 2006, VOLUME 8, NO. 4 IEEE C OMMUNICATIONS SURVEYS T he Electronic Magazine of O riginal Peer-Reviewed Survey Articles www.comsoc.org/pubs/surveys TRANSMISSION CONTROL PROTOCOL (TCP) IN WIRELESS

More information

Wireless Networks. Reading: Sec5on 2.8. COS 461: Computer Networks Spring 2011. Mike Freedman

Wireless Networks. Reading: Sec5on 2.8. COS 461: Computer Networks Spring 2011. Mike Freedman 1 Wireless Networks Reading: Sec5on 2.8 COS 461: Computer Networks Spring 2011 Mike Freedman hep://www.cs.princeton.edu/courses/archive/spring11/cos461/ 2 Widespread Deployment Worldwide cellular subscribers

More information

A Qos SCHEME TO ADDRESS COMMUNICATION LATENCY ISSUES FOR CRITICAL NETWORK FLOWS IN BEST-EFFORT NETWORKS USING MOBILE AGENTS

A Qos SCHEME TO ADDRESS COMMUNICATION LATENCY ISSUES FOR CRITICAL NETWORK FLOWS IN BEST-EFFORT NETWORKS USING MOBILE AGENTS A Qos SCHEME TO ADDRESS COMMUNICATION LATENCY ISSUES FOR CRITICAL NETWORK FLOWS IN BEST-EFFORT NETWORKS USING MOBILE AGENTS Visvasuresh Victor * Gergely Zaruba G. Balasekaran Govindaswamy University of

More information

TCP Behavior across Multihop Wireless Networks and the Wired Internet

TCP Behavior across Multihop Wireless Networks and the Wired Internet TCP Behavior across Multihop Wireless Networks and the Wired Internet Kaixin Xu, Sang Bae, Mario Gerla, Sungwook Lee Computer Science Department University of California, Los Angeles, CA 90095 (xkx, sbae,

More information

Stop And Wait. ACK received; transmit frame 2 CS 455 3

Stop And Wait. ACK received; transmit frame 2 CS 455 3 Data Link Layer, Part 5 Sliding Window Protocols These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable

More information

LAN Switching. 15-441 Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, 802.11, PPP. Interconnecting LANs

LAN Switching. 15-441 Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, 802.11, PPP. Interconnecting LANs LAN Switching 15-441 Computer Networking Bridges/Switches, 802.11, PPP Extend reach of a single shared medium Connect two or more segments by copying data frames between them Switches only copy data when

More information

Challenges of Sending Large Files Over Public Internet

Challenges of Sending Large Files Over Public Internet Challenges of Sending Large Files Over Public Internet CLICK TO EDIT MASTER TITLE STYLE JONATHAN SOLOMON SENIOR SALES & SYSTEM ENGINEER, ASPERA, INC. CLICK TO EDIT MASTER SUBTITLE STYLE OUTLINE Ø Setting

More information

What is Network Latency and Why Does It Matter?

What is Network Latency and Why Does It Matter? What is Network Latency and Why Does It Matter? by O3b Networks This paper is presented by O3b Networks to provide clarity and understanding of a commonly misunderstood facet of data communications known

More information

Per-Flow Queuing Allot's Approach to Bandwidth Management

Per-Flow Queuing Allot's Approach to Bandwidth Management White Paper Per-Flow Queuing Allot's Approach to Bandwidth Management Allot Communications, July 2006. All Rights Reserved. Table of Contents Executive Overview... 3 Understanding TCP/IP... 4 What is Bandwidth

More information