From apertureless near-field optical microscopy to infrared near-field night vision

Size: px
Start display at page:

Download "From apertureless near-field optical microscopy to infrared near-field night vision"

Transcription

1 From apertureless near-field optical microscopy to infrared near-field night vision Yannick DE WILDE ESPCI Laboratoire d Optique Physique UPR A0005-CNRS, PARIS

2 From apertureless near-field optical microscopy to infrared near-field night vision Collaborators : Experimentation : Theory & Modelisation : Samples preparation : F. Formanek P-A. Lemoine J.-J. Greffet R. Carminati K. Joulain (ENSMA) B. Gralak (I. Fresnel) Y. Chen (LPN-Marcoussis) D. Courjon C. Bainier (LOPMD)

3 Apertureless SNOM : Principle ω Lock-in detection Detector Illumination Modulation ω E det = E tip (ω) + E+ spec. E spec. + E+ bkg. E bkg. Piezo ( XY ) Vertical oscillation of the tip - To extract E tip (ω) from the background - Surface topography ( AFM, «tapping» mode )

4 Apertureless SNOM based on a quartz tuning fork Tip : MEB image PZT plate (excitation) 1 µm 0.4mm Vertical oscillation "Tapping mode" Tip (tungsten) A- B+ } Electrode B Electrode A Oscillation amplitude Quartz tuning fork z-feedback Topography

5 Apertureless SNOM based on a quartz tuning fork Y. De Wilde, F. Formanek, L. Aigouy, Rev. Sci. Instrum. 74, 3889 (2003) Scan range (XY) : 34 µm x 34 µm Vertical range (Z) : 17 µm AFM resolution : - vertical ~ 1 nm - lateral ~ nm

6 Apertureless SNOM with visible or infrared laser illumination : experimental set-up

7 Apertureless SNOM with visible or infrared laser illumination : experimental results SUBWAVELENGTH HOLES (φ=200nm) : INFRARED imaging Microscopie électronique (C. Bainier et D. Courjon) Formanek, De Wilde, Aigouy, J. Appl. Phys. 93, 9548 (2003) AFM AFM (topography) GDR Optique de champ proche Appl. Optics 42, 691 (2003) Optique 1.18 µm 1.21 µm AFM (Profile) Optical resolution ~ nm ~ λ/200 SNOM (3µmx3µm) Infrared illumination λ=10,6 µm

8 Near-field optics without external illumination Detector Sub-λ probe External source New concept : A regular SNOM requires 3 basic ingredients : Source-Probe-Detector Screen with subwavelength hole Original idea Synge, Phylos. Mag. 6, 356 (1928) SNOM WITHOUT EXTERNAL SOURCE SUBMITTED FOR PUBLICATION Aperture SNOM Pohl,, Appl. Phys. Lett 44, 651 (1984) Scattering tip (apertureless) SNOM Zenhausern, Appl. Phys. Lett. 65, 1623 (1994)

9 Surface waves in silicon carbide (SiC) SiC + grating T=500 C J.-J. Greffet et al., Nature 416, 61 (2002) SiC SiC = polar material which supports surface waves known as surface phononpolaritons => Evanescent waves thermally stimulated Diffraction SiC Coherent thermal emission

10 Surface waves in silicon carbide (SiC) SiC Enhanced electromagnetic energy density in near-field zone Energy density Energy density Energy density 2πc ω pk = µm Good first candidate! Shchegrov, Joulain, Carminati, Greffet, PRL. 85, 1548 (2000)

11 Probing the local electromagnetic density of states (EM-LDOS) EM -LDOS : ρ(r,ω)dr : Probability to find a photon ħω in r in a small volume dr. Local density of electromagnetic energy : 1 U (r, ω) = ρ(r, ω) hω exp / 1 ( hω kt ) EM-LDOS Energy of 1 photon N. Photons / state Vacuum : ρ(r,ω) = 2 ω π c 2 3 Homogeneous, isotropic But : Spatial variations of ρ(r,ω) are expected near an interface (evanescent modes, plasmons, phonon-polaritons, ) or in photonic structures.

12 Probing the local electromagnetic density of states (EM-LDOS) Laser Fibre étirée Optical fiber Corral structure Echantillon Sample Détection sur 4π Detection (4π) C. Chicanne, T. David, R. Quidant, J. C. Weeber, Y. Lacroute, E. Bourillot, A. Dereux, G. Colas des Francs and C. Girard, Phys. Rev. Lett. 88, (2002)

13 Probing the local electromagnetic density of states (EM-LDOS) Detector Tip At T 0, all available states are occupied, according to Bose-Einstein statistics Sample (T 0) A point-like SNOM probes the EM-LDOS Joulain, Carminati, Mulet, Greffet, PRB 68, (2003)

14 Conclusions : SNOM which operates with visible or infrared laser illumination SNOM without laser : - Detects the infrared near-field thermal radiation «Near-field infrared night-vision camera» - Observation of near-field coherence effects on gold patterns on SiC - Probes the EM-LDOS => Behaves as an «infrared STM» (IRSTM)

Review of NSOM Microscopy for Materials

Review of NSOM Microscopy for Materials Review of NSOM Microscopy for Materials Yannick DE WILDE (dewilde@optique.espci.fr) ESPCI Laboratoire d Optique Physique UPR A0005-CNRS, PARIS, FRANCE Outline : Introduction : concept of near-field scanning

More information

NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES

NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES Vol. 93 (1997) A CTA PHYSICA POLONICA A No. 2 Proceedings of the 1st International Symposium on Scanning Probe Spectroscopy and Related Methods, Poznań 1997 NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY

More information

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy 5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy Resolution of optical microscope is limited by diffraction. Light going through an aperture makes diffraction

More information

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale Outline Background Research Design Detection of Near-Field Signal Submonolayer Chemical Sensitivity Conclusions

More information

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Saulius Marcinkevičius Optics, ICT, KTH 1 Outline Optical near field. Principle of scanning near field optical microscope

More information

DOE Solar Energy Technologies Program Peer Review. Denver, Colorado April 17-19, 2007

DOE Solar Energy Technologies Program Peer Review. Denver, Colorado April 17-19, 2007 DOE Solar Energy Technologies Program Peer Review Evaluation of Nanocrystalline Silicon Thin Film by Near-Field Scanning Optical Microscopy AAT-2-31605-05 Magnus Wagener and George Rozgonyi North Carolina

More information

CREOL, College of Optics & Photonics, University of Central Florida

CREOL, College of Optics & Photonics, University of Central Florida OSE6650 - Optical Properties of Nanostructured Materials Optical Properties of Nanostructured Materials Fall 2013 Class 3 slide 1 Challenge: excite and detect the near field Thus far: Nanostructured materials

More information

Near-field scanning optical microscopy (SNOM)

Near-field scanning optical microscopy (SNOM) Adviser: dr. Maja Remškar Institut Jožef Stefan January 2010 1 2 3 4 5 6 Fluorescence Raman and surface enhanced Raman 7 Conventional optical microscopy-limited resolution Two broad classes of techniques

More information

Near-field optics and plasmonics

Near-field optics and plasmonics Near-field optics and plasmonics Manuel Rodrigues Gonçalves AFM topography 10 Pol. y / (µm) 8 6 4 2 0 0 2 4 6 x / (µm) 8 10 nm 60 80 100 120 140 Physik M. Sc. Master Advanced Materials Winter semester

More information

Axial Sensitivity Of A Cracked Probe Of A Scanning Near- Field Optical Microscope

Axial Sensitivity Of A Cracked Probe Of A Scanning Near- Field Optical Microscope Proceedings of the World Congress on New Technologies (NewTech 05) Barcelona, Spain July 5-7, 05 Paper No. 38 Axial Sensitivity Of A Cracked Probe Of A Scanning Near- Field Optical Microscope Yu-Ching

More information

Apertureless Near-Field Optical Microscopy

Apertureless Near-Field Optical Microscopy VI Apertureless Near-Field Optical Microscopy In recent years, several types of apertureless near-field optical microscopes have been developed 1,2,3,4,5,6,7. In such instruments, light scattered from

More information

SCANNING NEAR-FIELD OPTICAL MICROSCOPY

SCANNING NEAR-FIELD OPTICAL MICROSCOPY & Dušan Vobornik¹, Slavenka Vobornik²* SCANNING NEAR-FIELD OPTICAL MICROSCOPY ¹ NRC-SIMS, 100 Sussex Drive, Rm 2109, Ottawa, Ontario, K1A OR6, Canada 2 Department of Medical Physics and Biophysics, Faculty

More information

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM. Lecture 16: Near-field Scanning Optical Microscopy (NSOM) Background of NSOM; Basic principles and mechanisms of NSOM; Basic components of a NSOM; Different scanning modes and systems of NSOM; General

More information

It has long been a goal to achieve higher spatial resolution in optical imaging and

It has long been a goal to achieve higher spatial resolution in optical imaging and Nano-optical Imaging using Scattering Scanning Near-field Optical Microscopy Fehmi Yasin, Advisor: Dr. Markus Raschke, Post-doc: Dr. Gregory Andreev, Graduate Student: Benjamin Pollard Department of Physics,

More information

Nano Optics: Overview of Research Activities. Sergey I. Bozhevolnyi SENSE, University of Southern Denmark, Odense, DENMARK

Nano Optics: Overview of Research Activities. Sergey I. Bozhevolnyi SENSE, University of Southern Denmark, Odense, DENMARK Nano Optics: Overview of Research Activities SENSE, University of Southern Denmark, Odense, DENMARK Optical characterization techniques: Leakage Radiation Microscopy Scanning Near-Field Optical Microscopy

More information

On the way to a multi-task near field optical microscope: Simultaneous STM/SNOM and PSTM imaging

On the way to a multi-task near field optical microscope: Simultaneous STM/SNOM and PSTM imaging A Microsc. Microanal. Microstruct. 5 (1994) 399 AUGUST/OCTOBER/DECEMBER 1994, PAGE 399 Classification Physics Abstracts 42.30. d On the way to a multitask near field optical microscope: Simultaneous STM/SNOM

More information

Apertureless Scanning Near-field Optical Microscopy Using Heterodyne Detection Method

Apertureless Scanning Near-field Optical Microscopy Using Heterodyne Detection Method Proceedings of the XIth International Congress and Exposition June -5, 8 Orlando, Florida USA 8 Society for Experimental Mechanics Inc Apertureless Scanning Near-field Optical Microscopy Using Heterodyne

More information

UNIVERSITY OF SOUTHAMPTON. Scanning Near-Field Optical Microscope Characterisation of Microstructured Optical Fibre Devices.

UNIVERSITY OF SOUTHAMPTON. Scanning Near-Field Optical Microscope Characterisation of Microstructured Optical Fibre Devices. UNIVERSITY OF SOUTHAMPTON Scanning Near-Field Optical Microscope Characterisation of Microstructured Optical Fibre Devices. Christopher Wyndham John Hillman Submitted for the degree of Doctor of Philosophy

More information

Near-Field Scanning Optical Microscopy: a Brief Overview

Near-Field Scanning Optical Microscopy: a Brief Overview Near-Field Scanning Optical Microscopy: a Brief Overview Serge HUANT Laboratoire de Spectrométrie Physique (SPECTRO) Université Joseph Fourier Grenoble et CNRS Thanks to my former & present collaborators

More information

Near Field Optics. Dieter W. Pohl. Daniel Courjon. Kluwer Academic Publishers. edited by

Near Field Optics. Dieter W. Pohl. Daniel Courjon. Kluwer Academic Publishers. edited by Near Field Optics edited by Dieter W. Pohl IBM Research Division, Zurich Research Laboratory, Rüschlikon, Switzerland and Daniel Courjon Laboratoire d'optique P.M. Duffieux, Universite de Franche-Comte,

More information

How To Perform Raman Spectroscopy

How To Perform Raman Spectroscopy Spettroscopia Raman in campo prossimo Salvatore Patanè (1) and Pietro G. Gucciardi (2) (1) Dip. di Fisica della Materia e Tecnologie Fisiche Avanzate, Università di Messina, Salita Sperone 31, 98166 Messina,

More information

Fast-scanning near-field scanning optical microscopy. using a high-frequency dithering probe

Fast-scanning near-field scanning optical microscopy. using a high-frequency dithering probe Fast-scanning near-field scanning optical microscopy using a high-frequency dithering probe Yongho Seo and Wonho Jhe * Center for Near-field Atom-photon Technology and School of Physics, Seoul National

More information

Optical Microscopy Beyond the Diffraction Limit: Imaging Guided and Propagating Fields

Optical Microscopy Beyond the Diffraction Limit: Imaging Guided and Propagating Fields Optical Microscopy Beyond the Diffraction Limit: Imaging Guided and Propagating Fields M. Selim Ünlü, Bennett B. Goldberg, and Stephen B. Ippolito Boston University Department of Electrical and Computer

More information

Scanning probe microscopy AFM, STM. Near field Scanning Optical Microscopy(NSOM) Scanning probe fabrication

Scanning probe microscopy AFM, STM. Near field Scanning Optical Microscopy(NSOM) Scanning probe fabrication Scanning probe microscopy AFM, STM Near field Scanning Optical Microscopy(NSOM) Scanning probe fabrication Scanning Probe Microscopy 1986 Binning and Rohrer shared Nobel Prize in Physics for invention.stm

More information

Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches

Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches Gomez et al. Vol. 23, No. 5/ May 2006/J. Opt. Soc. Am. B 823 Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches Lewis Gomez Chemistry Division

More information

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. IV Femtosecond Measurements Combined With Near-Field Optical Microscopy - Artyom A.

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. IV Femtosecond Measurements Combined With Near-Field Optical Microscopy - Artyom A. FEMTOSECOND MEASUREMENTS COMBINED WITH NEAR FIELD OPTICAL MICROSCOPY Artyom A. Astafiev, Semyonov Institute of Chemical Physics, Moscow, Russian Federation. Keywords: diffraction limit nearfield scanning

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

Single Defect Center Scanning Near-Field Optical Microscopy on Graphene

Single Defect Center Scanning Near-Field Optical Microscopy on Graphene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Single Defect Center Scanning Near-Field Optical Microscopy on Graphene J. Tisler, T. Oeckinghaus, R. Stöhr, R. Kolesov, F. Reinhard and J. Wrachtrup 3. Institute

More information

Supporting Information for: Optofluidic Near-field Optical Microscopy: Near-field Mapping of a Silicon Nanocavity using. Trapped Microbeads

Supporting Information for: Optofluidic Near-field Optical Microscopy: Near-field Mapping of a Silicon Nanocavity using. Trapped Microbeads Supporting Information for: Optofluidic Near-field Optical Microscopy: Near-field Mapping of a Silicon Nanocavity using Trapped Microbeads Christophe Pin,,,, Benoît Cluzel,*, Claude Renaut,,,, Emmanuel

More information

7/3/2014. Introduction to Atomic Force Microscope. Introduction to Scanning Force Microscope. Invention of Atomic Force Microscope (AFM)

7/3/2014. Introduction to Atomic Force Microscope. Introduction to Scanning Force Microscope. Invention of Atomic Force Microscope (AFM) Introduction to Atomic Force Microscope Introduction to Scanning Force Microscope Not that kind of atomic Tien Ming Chuang ( 莊 天 明 ) Institute of Physics, Academia Sinica Tien Ming Chuang ( 莊 天 明 ) Institute

More information

Nano-Spectroscopy. Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale

Nano-Spectroscopy. Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale Nano-Spectroscopy Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale Since its introduction in the early 80 s, Scanning Probe Microscopy (SPM) has quickly made nanoscale imaging an affordable

More information

Apertureless near-field optical microscopy: Differences between heterodyne interferometric and non-interferometric images.

Apertureless near-field optical microscopy: Differences between heterodyne interferometric and non-interferometric images. Apertureless near-field optical microscopy: Differences between heterodyne interferometric and non-interferometric images Ruben ESTEBAN, 1, 2, 3 Ralf VOGELGESANG, 1 and Klaus KERN 1, 4 1 Max Planck Institut

More information

Scanning near-field optical microscopy: from single-tip to dual-tip operation. Angela E. Klein

Scanning near-field optical microscopy: from single-tip to dual-tip operation. Angela E. Klein Scanning near-field optical microscopy: from single-tip to dual-tip operation Angela E. Klein Jena 2014 Scanning near-field optical microscopy: from single-tip to dual-tip operation Dissertation zur Erlangung

More information

Preface Light Microscopy X-ray Diffraction Methods

Preface Light Microscopy X-ray Diffraction Methods Preface xi 1 Light Microscopy 1 1.1 Optical Principles 1 1.1.1 Image Formation 1 1.1.2 Resolution 3 1.1.3 Depth of Field 5 1.1.4 Aberrations 6 1.2 Instrumentation 8 1.2.1 Illumination System 9 1.2.2 Objective

More information

Theory of probing a photonic crystal with transmission near-field optical microscopy

Theory of probing a photonic crystal with transmission near-field optical microscopy PHYSICAL REVIEW B VOLUME 58, NUMBER 4 15 JULY 1998-II Theory of probing a photonic crystal with transmission near-field optical microscopy Garnett W. Bryant, Eric L. Shirley, and Lori S. Goldner National

More information

Nearfield Glass Slip P probe Pro For Neuroly Imaging

Nearfield Glass Slip P probe Pro For Neuroly Imaging Near-field scanning optical microscopy using a super-resolution cover glass slip Yu-Hsuan Lin 1,2 and Din Ping Tsai 1,3,4,* 1 Instrument Technology Research Center, National Applied Research Laboratories,

More information

Cracks detection by a moving photothermal probe

Cracks detection by a moving photothermal probe Cracks detection by a moving photothermal probe J. Bodnar, M. Egée, C. Menu, R. Besnard, A. Le Blanc, M. Pigeon, J. Sellier To cite this version: J. Bodnar, M. Egée, C. Menu, R. Besnard, A. Le Blanc, et

More information

Nanoscale Resolution Options for Optical Localization Techniques. C. Boit TU Berlin Chair of Semiconductor Devices

Nanoscale Resolution Options for Optical Localization Techniques. C. Boit TU Berlin Chair of Semiconductor Devices berlin Nanoscale Resolution Options for Optical Localization Techniques C. Boit TU Berlin Chair of Semiconductor Devices EUFANET Workshop on Optical Localization Techniques Toulouse, Jan 26, 2009 Jan 26,

More information

SIGNAL ANALYSIS OF APERTURELESS SCANNING NEAR-FIELD OPTICAL MICROSCOPY WITH SUPER- LENS

SIGNAL ANALYSIS OF APERTURELESS SCANNING NEAR-FIELD OPTICAL MICROSCOPY WITH SUPER- LENS Progress In Electromagnetics Research, Vol. 109, 83 106, 2010 SIGNAL ANALYSIS OF APERTURELESS SCANNING NEAR-FIELD OPTICAL MICROSCOPY WITH SUPER- LENS C.-H. Chuang and Y.-L. Lo Department of Mechanical

More information

STM and AFM Tutorial. Katie Mitchell January 20, 2010

STM and AFM Tutorial. Katie Mitchell January 20, 2010 STM and AFM Tutorial Katie Mitchell January 20, 2010 Overview Scanning Probe Microscopes Scanning Tunneling Microscopy (STM) Atomic Force Microscopy (AFM) Contact AFM Non-contact AFM RHK UHV350 AFM/STM

More information

Active Optical Tips For Near-Field Optics

Active Optical Tips For Near-Field Optics CdSe-single-nanoparticle based active tips for near-field optical microscopy N. Chevalier, M. J. Nasse, J.C. Woehl, P. Reiss, J. Bleuse, F. Chandezon and S. Huant * Laboratoire de Spectrométrie Physique

More information

Laser-induced surface phonons and their excitation of nanostructures

Laser-induced surface phonons and their excitation of nanostructures CHINESE JOURNAL OF PHYSICS VOL. 49, NO. 1 FEBRUARY 2011 Laser-induced surface phonons and their excitation of nanostructures Markus Schmotz, 1, Dominik Gollmer, 1 Florian Habel, 1 Stephen Riedel, 1 and

More information

NEAR-FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH POINTED PROBES

NEAR-FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH POINTED PROBES Annu. Rev. Phys. Chem. 2006. 57:303 31 doi: 10.1146/annurev.physchem.56.092503.141236 Copyright c 2006 by Annual Reviews. All rights reserved First published online as a Review in Advance on December 16,

More information

Analysis of Electromagnetic Propulsion on a Two-Electric-Dipole System

Analysis of Electromagnetic Propulsion on a Two-Electric-Dipole System Electronics and Communications in Japan, Part 2, Vol. 83, No. 4, 2000 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J82-C-I, No. 6, June 1999, pp. 310 317 Analysis of Electromagnetic Propulsion

More information

Polarization-modulation near-field optical microscope for quantitative local dichroism mapping

Polarization-modulation near-field optical microscope for quantitative local dichroism mapping REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 73, NUMBER 5 MAY 2002 Polarization-modulation near-field optical microscope for quantitative local dichroism mapping L. Ramoino, a) M. Labardi, N. Maghelli, b) L.

More information

Near-Field Scanning Optical Microscopy, a Siren Call to Biology

Near-Field Scanning Optical Microscopy, a Siren Call to Biology Traffic 2001; 2: 797 803 Copyright C Munksgaard 2001 Munksgaard International Publishers ISSN 1398-9219 Review Near-Field Scanning Optical Microscopy, a Siren Call to Biology Michael Edidin Department

More information

Terahertz transmission properties of an individual slit in a thin metallic plate

Terahertz transmission properties of an individual slit in a thin metallic plate Terahertz transmission properties of an individual slit in a thin metallic plate J. W. Lee, 1 T. H. Park, 2 Peter Nordlander, 2 and Daniel M. Mittleman 1,* 1 Department of Electrical and Computer Engineering,

More information

1 Introduction. 1.1 Historical Perspective

1 Introduction. 1.1 Historical Perspective j1 1 Introduction 1.1 Historical Perspective The invention of scanning probe microscopy is considered one of the major advances in materials science since 1950 [1, 2]. Scanning probe microscopy includes

More information

Surface plasmon nanophotonics: optics below the diffraction limit

Surface plasmon nanophotonics: optics below the diffraction limit Surface plasmon nanophotonics: optics below the diffraction limit Albert Polman Center for nanophotonics FOM-Institute AMOLF, Amsterdam Jeroen Kalkman Hans Mertens Joan Penninkhof Rene de Waele Teun van

More information

bulk 5. Surface Analysis Why surface Analysis? Introduction Methods: XPS, AES, RBS

bulk 5. Surface Analysis Why surface Analysis? Introduction Methods: XPS, AES, RBS 5. Surface Analysis Introduction Methods: XPS, AES, RBS Autumn 2011 Experimental Methods in Physics Marco Cantoni Why surface Analysis? Bulk: structural function Electrical/thermal conduction Volume increases

More information

A Reflection Near-Field Scanning Optical Microscope Technique for Subwavelength Resolution Imaging of Thin Organic Films

A Reflection Near-Field Scanning Optical Microscope Technique for Subwavelength Resolution Imaging of Thin Organic Films 5684 J. Phys. Chem. B 1997, 101, 5684-5691 A Reflection Near-Field Scanning Optical Microscope Technique for Subwavelength Resolution Imaging of Thin Organic Films Kenneth D. Weston and Steven K. Buratto*

More information

3D Raman Imaging Nearfield-Raman TERS. Solutions for High-Resolution Confocal Raman Microscopy. www.witec.de

3D Raman Imaging Nearfield-Raman TERS. Solutions for High-Resolution Confocal Raman Microscopy. www.witec.de 3D Raman Imaging Nearfield-Raman TERS Solutions for High-Resolution Confocal Raman Microscopy www.witec.de 01 3D Confocal Raman Imaging Outstanding performance in speed, sensitivity, and resolution with

More information

Near-field scanning optical microscopy (NSOM) is

Near-field scanning optical microscopy (NSOM) is Extending Near-Field Scanning Optical Microscopy for Biological Studies Olivia L. Mooren, Elizabeth S. Erickson, Nicholas E. Dickenson, and Robert C. Dunn* University of Kansas, Lawrence, KS Keywords:

More information

Raman Spectroscopy Basics

Raman Spectroscopy Basics Raman Spectroscopy Basics Introduction Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light, usually from a laser source. Inelastic scattering means that

More information

Differential Near-Field Scanning Optical Microscopy

Differential Near-Field Scanning Optical Microscopy Differential Near-Field Scanning Optical Microscopy NANO LETTERS 2006 Vol. 6, No. 11 2609-2616 Aydogan Ozcan,*, Ertugrul Cubukcu,, Alberto Bilenca,, Kenneth B. Crozier, Brett E. Bouma, Federico Capasso,

More information

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated

More information

Module 13 : Measurements on Fiber Optic Systems

Module 13 : Measurements on Fiber Optic Systems Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)

More information

Opaque lenses. Allard Mosk Complex Photonic Systems MESA+, Universiteit Twente, The Netherlands

Opaque lenses. Allard Mosk Complex Photonic Systems MESA+, Universiteit Twente, The Netherlands Mesoscopic Physics in Complex Media, 01001 (2010) DOI:10.1051/iesc/2010mpcm01001 Owned by the authors, published by EDP Sciences, 2010 Opaque lenses Allard Mosk Complex Photonic Systems MESA+, Universiteit

More information

Laser Based Micro and Nanoscale Manufacturing and Materials Processing

Laser Based Micro and Nanoscale Manufacturing and Materials Processing Laser Based Micro and Nanoscale Manufacturing and Materials Processing Faculty: Prof. Xianfan Xu Email: xxu@ecn.purdue.edu Phone: (765) 494-5639 http://widget.ecn.purdue.edu/~xxu Research Areas: Development

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998)

Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998) Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998) Geoff Andersen and R. J. Knize Laser and Optics Research Center

More information

Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe.

Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe. Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe. Brief Overview of STM Inventors of STM The Nobel Prize in Physics 1986 Nobel

More information

High Spatial Resolution Imaging with Near-Field Scanning Optical Microscopy in Liquids

High Spatial Resolution Imaging with Near-Field Scanning Optical Microscopy in Liquids Anal. Chem. 2001, 73, 5015-5019 High Spatial Resolution Imaging with Near-Field Scanning Optical Microscopy in Liquids Lynn F. Lee, Richard D. Schaller, Louis H. Haber, and Richard J. Saykally* Department

More information

Spin-flip excitation spectroscopy with STM excitation of allowed transition adds an inelastic contribution (group of Andreas Heinrich, IBM Almaden)

Spin-flip excitation spectroscopy with STM excitation of allowed transition adds an inelastic contribution (group of Andreas Heinrich, IBM Almaden) Magnetism at the atomic scale by Scanning Probe Techniques Kirsten von Bergmann Institute of Applied Physics Magnetism with SPM Spin-polarized scanning tunneling microscopy SP-STM density of states of

More information

3.5.4.2 One example: Michelson interferometer

3.5.4.2 One example: Michelson interferometer 3.5.4.2 One example: Michelson interferometer mirror 1 mirror 2 light source 1 2 3 beam splitter 4 object (n object ) interference pattern we either observe fringes of same thickness (parallel light) or

More information

Microscopie à champs proche: et application

Microscopie à champs proche: et application Microscopie à champs proche: Théorie et application STM, effet tunnel et applications AFM, interactions et applications im2np, Giens 2010 Optical microscopy: resolution limit resolution limit: d min =

More information

PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER

PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER Lufan Zou and Taha Landolsi OZ Optics Limited, 219 Westbrook Road, Ottawa, ON, Canada, K0A 1L0 E-mail:

More information

Blackbody radiation derivation of Planck s radiation low

Blackbody radiation derivation of Planck s radiation low Blackbody radiation derivation of Planck s radiation low 1 Classical theories of Lorentz and Debye: Lorentz (oscillator model): Electrons and ions of matter were treated as a simple harmonic oscillators

More information

Tecniche a scansione di sonda per nanoscopia e nanomanipolazione: SNOM e litografie

Tecniche a scansione di sonda per nanoscopia e nanomanipolazione: SNOM e litografie LS Scienza dei Materiali - a.a. 2007/08 Fisica delle Nanotecnologie part 5.2 Version 6, Nov 2007 Francesco Fuso, tel 0502214305, 0502214293 - fuso@df.unipi.it http://www.df.unipi.it/~fuso/dida Tecniche

More information

Tecniche a scansione di sonda per nanoscopia e nanomanipolazione 3: SNOM e litografie

Tecniche a scansione di sonda per nanoscopia e nanomanipolazione 3: SNOM e litografie LS Scienza dei Materiali - a.a. 2009/10 Fisica delle Nanotecnologie part 5.3 Version 7b, Dec 2009 Francesco Fuso, tel 0502214305, 0502214293 - fuso@df.unipi.it http://www.df.unipi.it/~fuso/dida Tecniche

More information

Using light scattering method to find The surface tension of water

Using light scattering method to find The surface tension of water Experiment (8) Using light scattering method to find The surface tension of water The aim of work: The goals of this experiment are to confirm the relationship between angular frequency and wave vector

More information

RAY TRACING UNIFIED FIELD TRACING

RAY TRACING UNIFIED FIELD TRACING RAY TRACING Start to investigate the performance of your optical system using 3D ray distributions, dot diagrams of ray positions and directions, and optical path length. GEOMETRIC FIELD TRACING Switch

More information

Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM.

Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM. Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM. Some limitations (disadvantages) of NSOM A trade-off

More information

In search of an on-line backup density measurement for ITER

In search of an on-line backup density measurement for ITER In search of an on-line backup density measurement for ITER a, Tsuyoshi Akiyama b, Chris K. Orimoto c, George Vayakis and Christopher Watts ITER Organization Route de Vinon-sur-Verdon, CS 90 046, 13067

More information

Comparative scanning near-field optical microscopy studies of plasmonic nanoparticle concepts

Comparative scanning near-field optical microscopy studies of plasmonic nanoparticle concepts Comparative scanning near-field optical microscopy studies of plasmonic nanoparticle concepts Patrick Andrae* a, Paul Fumagalli b, Martina Schmid a,b a Helmholtz Zentrum Berlin, Nanooptical concepts for

More information

Chapter 4. Microscopy, Staining, and Classification. Lecture prepared by Mindy Miller-Kittrell North Carolina State University

Chapter 4. Microscopy, Staining, and Classification. Lecture prepared by Mindy Miller-Kittrell North Carolina State University Chapter 4 Microscopy, Staining, and Classification 2012 Pearson Education Inc. Lecture prepared by Mindy Miller-Kittrell North Carolina State University Microscopy and Staining 2012 Pearson Education Inc.

More information

Confocal Microscopy and Atomic Force Microscopy (AFM) A very brief primer...

Confocal Microscopy and Atomic Force Microscopy (AFM) A very brief primer... Confocal Microscopy and Atomic Force Microscopy (AFM) of biofilms A very brief primer... Fundamentals of Confocal Microscopy Based on a conventional fluorescence microscope Fluorescent Microscope Confocal

More information

Scanning Probe Microscopy

Scanning Probe Microscopy Ernst Meyer Hans Josef Hug Roland Bennewitz Scanning Probe Microscopy The Lab on a Tip With 117 Figures Mß Springer Contents 1 Introduction to Scanning Probe Microscopy f f.1 Overview 2 f.2 Basic Concepts

More information

ION ENERGY DISTRIBUTION FUNCTION MEASURED BY RETARDING FIELD ENERGY ANALYZERS

ION ENERGY DISTRIBUTION FUNCTION MEASURED BY RETARDING FIELD ENERGY ANALYZERS ION ENERGY DISTRIBUTION FUNCTION MEASURED BY RETARDING FIELD ENERGY ANALYZERS Laboratoire de Physique des Plasmas Ane Aanesland CNRS Ecole Polytechnique France Overview 1. Principle and requirements for

More information

Pump-probe experiments with ultra-short temporal resolution

Pump-probe experiments with ultra-short temporal resolution Pump-probe experiments with ultra-short temporal resolution PhD candidate: Ferrante Carino Advisor:Tullio Scopigno Università di Roma ƒla Sapienza 22 February 2012 1 Pump-probe experiments: generalities

More information

Broadband THz Generation from Photoconductive Antenna

Broadband THz Generation from Photoconductive Antenna Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 331 Broadband THz Generation from Photoconductive Antenna Qing Chang 1, Dongxiao Yang 1,2, and Liang Wang 1 1 Zhejiang

More information

CONCEPT OF DETERMINISTIC ION IMPLANTATION AT THE NANOSCALE

CONCEPT OF DETERMINISTIC ION IMPLANTATION AT THE NANOSCALE CONCEPT OF DETERMINISTIC ION IMPLANTATION AT THE NANOSCALE Daniel Spemann Jan Meijer 1, Jürgen W. Gerlach, Paul Räcke 1, Susann Liedtke, Stephan Rauschenbach 2, Bernd Rauschenbach 1 University of Leipzig,

More information

SCANNING PROBE MICROSCOPY NANOS-E3 SCHOOL 29/09/2015 An introduction to surface microscopy probes

SCANNING PROBE MICROSCOPY NANOS-E3 SCHOOL 29/09/2015 An introduction to surface microscopy probes SCANNING PROBE MICROSCOPY NANOS-E3 SCHOOL 29/09/2015 An introduction to surface microscopy probes SPM is ubiquitous in modern research Physics Nanotechnology/chemistry Nature Nanotechnology 10, 156 160

More information

Applications of confocal fluorescence microscopy in biological sciences

Applications of confocal fluorescence microscopy in biological sciences Applications of confocal fluorescence microscopy in biological sciences B R Boruah Department of Physics IIT Guwahati Email: brboruah@iitg.ac.in Page 1 Contents Introduction Optical resolution Optical

More information

Optical Imaging and Spectroscopy on the Nanometer Scale

Optical Imaging and Spectroscopy on the Nanometer Scale Scanning Near-field Optical Microscopy Optical Imaging and Spectroscopy on the Nanometer Scale SNOM applications in the Optical following areas are presented: fibre 100x high NA objective Laser emission

More information

Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing - 2015

Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing - 2015 Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing - 2015 Program of the talk... What we have now What we know about silicon What

More information

Limiting factors in fiber optic transmissions

Limiting factors in fiber optic transmissions Limiting factors in fiber optic transmissions Sergiusz Patela, Dr Sc Room I/48, Th. 13:00-16:20, Fri. 9:20-10:50 sergiusz.patela@pwr.wroc.pl eportal.pwr.wroc.pl Copying and processing permitted for noncommercial

More information

Apertureless Scanning Near-Field Optical Microscope Probe for Transmission Mode Operation

Apertureless Scanning Near-Field Optical Microscope Probe for Transmission Mode Operation Apertureless Scanning Near-Field Optical Microscope Probe for Transmission Mode Operation Dissertation submitted to the faculty of Sciences of the University of Neuchâtel, in fulfillment of the requirements

More information

Nanoceanal Spectroscopy of Vibrariums and Electariums

Nanoceanal Spectroscopy of Vibrariums and Electariums FEM-Simulationen von Feldverteilungen im elektrischen Rasterkraft-Mikroskop Falk Müller 100 nm 2,93 nm 0 nm Experimental set-up Results Results on gold Application on silicon Numerical umerical simulations

More information

SPATIAL-TIME PATTERN OF ELECTRICAL FIELD OF TERAHERTZ PULSE IN THE FAR FIELD

SPATIAL-TIME PATTERN OF ELECTRICAL FIELD OF TERAHERTZ PULSE IN THE FAR FIELD NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2013, 4 (2), P. 206 213 SPATIAL-TIME PATTERN OF ELECTRICAL FIELD OF TERAHERTZ PULSE IN THE FAR FIELD M. S. Kulya 1, Ya. V. Grachev 1, V. G. Bespalov 1, V.

More information

Microscopy: Principles and Advances

Microscopy: Principles and Advances Microscopy: Principles and Advances Chandrashekhar V. Kulkarni University of Central Lancashire, Preston, United kingdom May, 2014 University of Ljubljana Academic Background 2005-2008: PhD-Chemical Biology

More information

A Guide to Acousto-Optic Modulators

A Guide to Acousto-Optic Modulators A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam

More information

Atomic Force Microscope

Atomic Force Microscope Atomic Force Microscope (Veeco Nanoman) User Manual Basic Operation 4 th Edition Aug 2012 NR System Startup If the system is currently ON To start the NanoScope software, double-click the NanoScope startup

More information

Atomic Force Microscopy Observation and Characterization of a CD Stamper, Lycopodium Spores, and Step-Height Standard Diffraction Grating

Atomic Force Microscopy Observation and Characterization of a CD Stamper, Lycopodium Spores, and Step-Height Standard Diffraction Grating Atomic Force Microscopy Observation and Characterization of a CD Stamper, Lycopodium Spores, and Step-Height Standard Diffraction Grating Michael McMearty and Frit Miot Special Thanks to Brendan Cross

More information

Introduction to Optics

Introduction to Optics Second Edition Introduction to Optics FRANK L. PEDROTTI, S.J. Marquette University Milwaukee, Wisconsin Vatican Radio, Rome LENO S. PEDROTTI Center for Occupational Research and Development Waco, Texas

More information

Multi-mode Atomic Force Microscope (with High Voltage Piezo Force Microscope and +/- 8000 Oe Variable Field module.)

Multi-mode Atomic Force Microscope (with High Voltage Piezo Force Microscope and +/- 8000 Oe Variable Field module.) Multi-mode Atomic Force Microscope (with High Voltage Piezo Force Microscope and +/- 8000 Oe Variable Field module.) Main specifications of the proposed instrument: 1 Instrument Resolution: 1.1 The instrument

More information

An optical readout configuration for advanced massive GW detectors

An optical readout configuration for advanced massive GW detectors An optical readout configuration for advanced massive GW detectors Francesco Marin, Livia Conti, Maurizio De Rosa Dipartimento di Fisica, Università di Firenze,LENS and INFN, Sezione di Firenze Via Sansone,

More information

Non-Contact Vibration Measurement of Micro-Structures

Non-Contact Vibration Measurement of Micro-Structures Non-Contact Vibration Measurement of Micro-Structures Using Laser Doppler Vibrometry (LDV) and Planar Motion Analysis (PMA) to examine and assess the vibration characteristics of micro- and macro-structures.

More information

Facts and artifacts in near-field optical microscopy

Facts and artifacts in near-field optical microscopy Facts and artifacts in near-field optical microscopy B. Hecht, a) H. Bielefeldt, Y. Inouye, b) and D. W. Pohl c) IBM Research Division, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland L. Novotny

More information

7 Plasmonics. 7.1 Introduction

7 Plasmonics. 7.1 Introduction 7 Plasmonics Highlights of this chapter: In this chapter we introduce the concept of surface plasmon polaritons (SPP). We discuss various types of SPP and explain excitation methods. Finally, different

More information