Graphic Algorithms and the Demographic Variations

Size: px
Start display at page:

Download "Graphic Algorithms and the Demographic Variations"

Transcription

1 DDE:AModiedDimensionExchangeMethod forloadbalancingink-aryn-cubes StateUniversityofNewYorkatBualo DepartmentofComputerScience Min-YouWuandWeiShu algorithmforthehypercubestructure.ithasbeengeneralizedtok-aryn-cubes.however,the k-aryn-cubealgorithmmusttakemanyiterationstoconvergetoabalancedstate.inthispaper, Abstract Thedimensionexchangemethod(DEM)wasinitiallyproposedasaload-balancing Bualo,NY14260 weproposeadirectmethodtomodifydem.thenewalgorithm,directdimensionexchange (DDE)method,takesloadaverageineverydimensiontoeliminateunnecessaryloadexchange.It moreaccuratelyandmuchfaster.1.introduction balancestheloaddirectlywithoutiterativelyexchangingtheload.itisabletobalancetheload sweep(logniterations),theloadisbalanced. nodepairsexchangetheirloadinformationandattempttoaveragethenumberoftasks.aftera DEMissuperiortootherschedulingmethods[7].DEMforthehypercubenetworkisasimple rithmforthehypercubestructure[5,1].itbalancestheloadforindependenttasksondistributed memorymachines.theexperimentcarriedbywillebeek-lemairandreevesconformedthat algorithm.loadbalancingisperformediterativelyineachofthelogndimensions,inwhichonly Thedimensionexchangemethod(DEM)wasinitiallyproposedasafullyload-balancingalgo- linearlyproportionaltothenumberofnodesinachain,andhencetothedimensionorderkof isnotabletoreachthebalancedstateinonesweep.thenumberofsweepsforconvergenceis network[10].becauseanodeexchangesworkloadwithonlyoneofitsneighboratatime,gde ittakesmanysweepstoconvergetothebalancedload.hosseinietal.extendeditforarbitrary structuresusingthetechniqueofedge-coloringofgraphs[3].xuandlauproposedthegeneralized dimensionexchange(gde)method[9].thegdemethodwasextendedtothek-aryn-cube Unfortunately,whenDEMappliestootherstructures,suchasthemeshorthek-aryn-cube, thek-aryn-cubestructure. 1

2 n-cube. beappliedtotwoormoredimensionstobalancetheloadforthemesh,thetorus,andthek-ary method.unlikeiterativealgorithms,thisdirectmethodcanbalancetheloadinonesweep.the orunderloadedandsubsequentlyexchangeworkloadwithothernodes.theddemethodcan beeasilyobtainedbyasumreduction.eachnodeinthechainknowswhetheritisoverloaded loadinachainisfullybalancedbyutilizinginformationofthetotalnumberoftasks,whichcan Wepresentadirectmethodforthek-aryn-cube,calledtheDirectDimensionExchange(DDE) methodiscomparedtothegdemethod.section7concludesthepaper. respectively.thealgorithmforthek-aryn-cubeispresentedinsection5.insection6,thedirect Then,thedirectmethodforthechainandtheringstructuresisdescribedinsections3and4, Thispaperisorganizedasfollows.Section2brieyreviewstheDEMandtheGDEalgorithms. Toachievethisgoal,anestimationofthetaskexecutiontimeisneeded,whichcanbedoneeither byaprogrammerorbyacompiler.sometimestheestimationcanbeapplication-specic,and sometimesitisimpossibletoobtainsuchanestimation.duetothesediculties,eachtaskis Thegoalofloadbalancingistoscheduleworkssothateachprocessorhasthesameworkload. 2.TheDEMandGDEAlgorithms presumedtorequiretheequalexecutiontimeandthegoalofthealgorithmistoscheduletasks algorithmistoredistributetaskssothatthenumberoftasksineachnodeisequal.assumethe computingnodesareconnectedbyagiventopology.eachnodeihaswitasks.ascheduling sothateachprocessorhasthesamenumberoftasks. sumofwiofallnodescanbeevenlydividedbyn.theaveragenumberoftaskswavgiscalculated Theschedulingproblemcanbedescribedasfollows.Inaparallelordistributedsystem,N wavg=pn 1 i=0wi addressesdierinonlytheleastsignicantbitbalancetheloadbetweenthemselves.next,all \integerversion"ofdemisdescribedinfigure1.allnodepairsintherstdimensionwhose andthencombinedtoformlargerdomainsuntilultimatelytheentiresystemisbalanced.the Eachnodeshouldhavewavgtasksafterscheduling. DEMwasdesignedforthehypercubestructure.InDEM,smalldomainsarebalancedrst N: nodehasbalanceditsloadwitheachofitsneighbors. nodepairsintheseconddimensionbalancetheloadbetweenthemselves,andsoforth,untileach AfterexecutionoftheDEMalgorithm,theloaddierence D=max(wi) min(wi) 2

3 DEM forl=0ton 1 wi=(d(wi+wj)=2eifwi>wj if(wj wi)>1,receiveb(wj wi)=2ctasksfromnodej if(wi wj)>1,sendb(wi wj)=2ctaskstonodej nodeiexchangeswithnodejthecurrentvaluesofwiandwj,wherej=i2l GDE b(wi+wj)=2cotherwise while(notterminate) forl=1toc foredgecoloredlconnectingnodesiandj Figure1:TheDEMalgorithmforthehypercube. wi=(d(1 )wi+wjeifwi>wj if(wj wi)>1,receiveb(wj wi)ctasksfromnodej if(wi wj)>1,sendb(wi wj)ctaskstonodej nodeiexchangeswithnodejthecurrentvaluesofwiandwj DEMalgorithmis3n[7]. isboundedbyn,thedimensionofthehypercube[3].thenumberofcommunicationstepsofthe Figure2:TheGDEalgorithmforthek-aryn-cube. b(1 )wi+wjcotherwise sweepaftercconsecutiveexchangeoperations,wherecisthenumberofcolors.ink-aryn-cubes, tasksbetweenneighboringnodesislessthanorequaltoone.theconvergenceratedependson c=2nifkisanevennumber.theterminationconditionisthatthedierenceofthenumberof Forthehypercube,theoptimal=12,andGDEisequivalenttotheoriginalDEMalgorithm.For theexchangeparameter.thevaluevariesfordierenttopologiesanddierentnetworksizes. graph.the\integerversion"ofthealgorithmisshowninfigure2.anodenishesacomplete TheGDEalgorithmoperatesoncolorgraphsderivedfromedge-coloringofthegivensystem whenthedimensionorderkincreases.thereisnocommunicationconictinthisalgorithm. topologyby\folding"themeshineachdimensiondlogmetimes[7].thismethodcouldbeapplied othertopologies,istobeoptimizedtomaximizetheconvergencerate.forthek-aryn-cube,the loaddierencebetweenanypairofnodesisboundedbynk=2.theconvergenceratedecreases Willebeek-LeMairandReevessuggestedanotherapproachtoextendDEMtoanMMmesh 3

4 pairswouldnolongerbedirectlylinkedtooneanotherandcommunicationswouldconict. tok-aryn-cubestoo.theloaddierenceisboundedbyndlogke.however,inthisapproach,node method.theworkloadinachaincanbebalanceddirectly.thebasicideaistocalculatethe totalnumberoftasksinthechainandtheaveragenumberoftaskspernode.thus,nodesinthe chaincanexchangetaskstobalancetheload. InsteadofusingtheGDEmethodwhichbalancestheloaditeratively,weproposeadirect 3.TheDDEMethodfortheChain DDE-chain Letwibethenumberoftasksinnodei,wherei=0;1;:::;k 1. 1.GlobalInformationCollection:Performthescanwithsumoperationofwi: 3.QuotaCalculation:Thequotaofeachnodeqiiscomputed: 2.AverageLoadCalculation:T=W0,wavg=bT=kc,andR=Tmodk,whereTisthe totalnumberoftasks. Wi=k 1 Xl=iwl qi=(wavg+1ifi<r 4.FlowCalculation:xi 1;i=Qi Wi,fori=1;2;:::;k 1,wherexi;jistheowon Also,anaccumulationquotaforeachnodeiscomputed: wavgotherwise edge(i;j). Qi=k 1 Figure3:TheDDEalgorithmforthechain. Xl=iql usingthescanwithsumoperationfromnodek 1tonode0,wherekisthelengthofthechain. thenodeweightwi(i=0;1;:::;k 1)andoutputsthecalculatedowxi 1;i(i=1;2;:::;k 1) foreveryedgeinthechain.therststepistoobtainthetotalnumberoftasksinthechainby oftaskspernodeatnode0.ifthenumberoftaskscannotbeevenlydividedbyk,theremaining EachnoderecordsapartialsumWi=Pk 1 TheDDEalgorithmforthechainshowninFigure3isits\integerversion."Ittakesasinput l=iwl.thesecondstepcalculatestheaveragenumber 4

5 RtasksaredistributedtotherstRnodessothattheyhaveonemoretaskthantheothers. ThevaluesofwavgandRarebroadcasttoeverynode.Inthethirdstep,eachnodecalculatesits asitsquota. theowisavailable,theworkloadisexchangedsothateachnodehasthesamenumberoftasks iscalculatedbytakingdierencebetweenqiandwi.nodeicalculatesxi 1;iandxi;i+1.When EachnodekeepsrecordsofQi,Wi,Qj,andWj,wherej=i+1.Inthefourthstep,theow quota.theaccumulationquotaqicanbecalculateddirectlyasfollows: Qi=wavg(k i)+min(0;r i): Example1: shownbelow: Then,eachnodecalculatesthevalueofQiinstep3.Thevaluesofwi,Wi,Qi,andxi 1;iareas andr: readytobescheduled.valuesofwiarecalculatedinstep1.node0calculatesthevalueofwavg AnexampleisshowninFigure4.Atthebeginningofscheduling,eachnodehaswitasks iwiwiqixi 1;i wavg=4;r=5: { i=0 94i=1 76i= i=3 11i=4 42i=5 62i=6 11 Aftertaskexchange,nodes0{4havevetaskseach,andnodes5{7havefourtaskseach. Figure4:ExampleforDDE-chain. i=7 5 toitsquota. Lemma1:AfterexecutionofDDEandtaskexchange,thenumberoftasksineachnodeisequal 5

6 Becausexi 1;i=Qi Wi;xi;i+1=Qi+1 Wi+1;Wi+1=Wi wi;andqi+1=qi qi Proof:AfterexecutionofDDEandtaskexchange,thenumberoftasksinnodeiis w0i=wi+(qi Wi) (Qi+1 Wi+1)=Qi Qi+1=qi w0i=wi+xi 1;i xi;i+1 stepsinstep4isatmostk.therefore,thetotalnumberofcommunicationstepsofthisalgorithm andapplyingthetwaalgorithmin[6].thus,thetotalnumberofcommunicationstepsofthis isnomorethan3k.thisalgorithmcanbefurtherimprovedbyselectingnodek/2astheroot algorithmcanbereducedto2k.whentisevenlydividedbyk,thisalgorithmminimizesthe Inthisalgorithm,steps1and2spend2kcommunicationsteps.Thenumberofcommunication 2 exchangealgorithms.therstone,calledreceive-before-send,isshowninfigure5. Receive-before-send totalnumberoftasktransfersandthetotalnumberofcommunications.thisalgorithmalso maximizeslocality.thatis,itminimizesthenumberoftasksthataremigratedtoothernodes. Fornodei 1.ifi>0andxi 1;i>0,waittoreceivexi 1;itasksfromnodei 1 TheworkloadisexchangedaccordingtotheowgeneratedbyDDE.Therearetwotask- 4.ifi<k 1andxi;i+1>0,sendxi;i+1taskstonodei+1 3.ifi>0andxi 1;i<0,sendjxi 1;ijtaskstonodei 1 2.ifi<k 1andxi;i+1<0,waittoreceivejxi;i+1jtasksfromnodei+1 nicationstepstonish: Usingthereceive-before-sendalgorithm,theloadexchangeinExample1takesfourcommu- (2) (1) node0tonode1,node5tonode6,node7tonode6 node1tonode2 Figure5:Taskexchange:receive-before-send. (3) (4) node2tonode3 node3tonode4 6

7 Send-before-receive Fornodei letai=xi 1;i;bi=xi;i+1 while(ai6=0orbi6=0) 1.ifi>0and(wi> ai>0)sendjaijtaskstonodei 1,andletwi=wi+ai,ai=0 2.ifi<k 1and(wi>bi>0)sendbitaskstonodei+1,andletwi=wi bi,bi=0 beforesendingoutmessages.byrelaxingthisconstraint,asend-before-receivealgorithmisshown 3.ifi>0andai>0andreceivedaitasksfromnodei 1,andletwi=wi+ai,ai=0 4.ifi<k 1andbi<0andreceivedjbijtasksfromnodei+1,andletwi=wi bi,bi=0 incomingmessage.thecommunicationtimeandprocessoridletimecanbereduced.ittakes infigure6.inthisalgorithm,anodecanstartsendingmessagesoutbeforeithasreceivedan onlytwocommunicationstepsforexample1: Inthereceive-before-sendalgorithm,eachnodemustreceiveanincomingmessage,ifany, Figure6:Taskexchange:send-before-receive. 2) 1) node5tonode6,node7tonode6 node0tonode1,node1tonode2,node3tonode4, before-sendorsend-before-receivealgorithmsisatrade-obetweencommunicationtimeand taskstoothernodes.butinthesend-before-receivealgorithm,anodemaysendlocaltasksto othernodesandthenreceivetasksfromothers.therefore,thedecisiononuseofthereceivebefore-sendalgorithm,anodecankeepthemaximumnumberoflocaltasksandsendnon-local Thesend-before-receivealgorithmmayhavesomenegativeimpactinlocality.Inthereceive- node2tonode3 locality. communicationsteps. advantageofthepipelineeectofwormholeroutingwhileavoidingchannelcontention.this oncommunicationtimecanoftenbeignored.therecursivedoublingalgorithm[2]cantake algorithmorganizesthenodesinachaintoatree.anexampleofeightnodesisshownin Figure7.ApplyingtheTWAalgorithmin[6]tothetree,theloadcanbebalancedwithin4logk Mostmassivelyparallelcomputersusewormholeroutingwithwhichtheeectofpathlength 7

8 i=0 i=6 i=4 i=5 i=2 i=3 i=1 4.TheDDEAlgorithmfortheRing Figure7:Thetreeforrecursivedoubling. i=7 tioncouldbereduced.wedescribeanalgorithmtominimizethetotalnumberoftaskstransferred. Thealgorithmisderivedfromtheminimumcostowalgorithm[4]andshowninFigure8.Inthis however,thecommunicationmaynotbeminimal.byutilizingtheend-roundedge,communica- algorithm,aninitialsolutionisobtainedbyusingdde-chainwithoutconsideringtheend-round gorithmcanbeappliedtotheringbyignoringtheend-roundedge.theloadcanbebalanced, Aringcanbeobtainedbyaddinganend-roundconnectiontoachain.TheDDE-chainal- Letnpbethenumberofedgeswithxi;j>0,nnthenumberofedgeswithxi;j<0,andnzthe numberofedgeswithxi;j=0. DDE-ring ApplyDDE-chaintotheringwithoutconsideringtheend-roundedge(k 1;0)toobtain x0;1;x1;2;:::;xk 2;k 1,wherexi;jistheowonedge(i;j).Letxk 1;0be0. Iftheowisclockwise,xi;jispositive;otherwise,itisnegative. 2.Foreachedge,xi;j=xi;j xm. 1.Ifnn+nz np<0,letxmbethemthlargestxi;jfromallxi;j>0;andifnp+nz nn<0, letxmbethemthsmallestxi;jfromallxi;j<0,wherem=dk=2e. Figure8:TheDDEalgorithmforthering. 8

9 ofdde-ring.here,weletx 1;0=xk 1;0. algorithmiso(klogk). edge.then,anaugmentationisappliedtoobtainanoptimalsolution.thecomplexityofthis Wecanuseeitherthereceive-before-sendorsend-before-receivealgorithmfortaskexchange negativecost.therefore,thenetworkowisofminimumcost[4]. numberoftaskstransferred. Lemma2:AfterexecutionofDDE-ring,thetotalnetworkowisofminimumcost. Proof:Ifnp+nz nn0andnn+nz np0,thereisnoowaugmentingcyclewith Thefollowinglemmashowsthatthisalgorithmminimizesthetotalcostofow,thatis,the Notethatn0n+n0z+n0p=k.Becauseofm=dk=2e, Then, Ifnn+nz np<0,aftermodicationofxi;j=xi;j xm,wehave n0z+n0p n0nm n0n=m (k n0z n0p)2m k n0z+n0p n0n2m k0 n0z+n0pm Then,n0n+n0z n0pk m+1 n0p=k m+1 (k n0n n0z)=1 m+n0n+n0z Wealsohave 1 m+k m+1=k 2m+2 n0n+n0zk m+1 Thus,thenetworkowisofminimumcost. costinallcases. Becauseofm=dk=2e, Thecaseofnp+nz nn<0canbeprovedsimilarly.thus,thenetworkowisofminimum n0z+n0p n0nk 2m+20 toconstructaring.applyingthedde-chainalgorithmtotheringwithoutconsideringthe AnexampleisshowninFigure9.Anend-roundedgeisaddedtothechaininFigure4 9 2

10 resultisshowninfigure9(b).thenumberoftaskstransferredisreducedto17. end-roundedge,theowisshowninfigure9(a).thenumberoftaskstransferredis19.the Becausenp+nz nn<0andthe4thsmallestxi;jis 2,everyxi;jissubtractedby 2.The augmentationisappliedtothisow:np=1;nz=2;nn=5 i=0 4i=1 6i=2 5i=3 (a) i=4 i=5 2i=6 1i=7 i=0 92i=1 74i=2 43i=3 112 Figure9:ExampleforDDE-ring. (b) i=4 42i=5 6 i=6 13i=7 5 nodes.thenodesineachringexchangetheirloadandtheneachnodeihaswl+1 n-cube.thealgorithmisshowninfigure10.initerationloftheddealgorithm,subcubeslm isdividedintokpartitionssl+1 WiththeDDE-ringalgorithm,itisnotdiculttocompositeaDDEalgorithmforthek-ary 5.TheDDEMethodforthek-aryn-cube km+bwherem=0;1;:::;kl 1andb=0;1;:::;k 1.Slmhaskn l getamesh.thisalgorithmcanbeappliedtothemeshbyperformingthedde-chainalgorithm nodesindierentdimensions.takingatorusandstripthemofalltheend-roundconnections,we orsend-before-receivealgorithm. DDE,nodeiwillhavewnitasks.Thetaskexchangestepcanuseeitherthereceive-before-send Thisalgorithmcanbeappliedtothen-dimensionaltorus,whichallowsdierentnumberof itasks.executing ofthek-aryn-cube. insteadofdde-ringineachstep. ThefollowingtheoremshowsthattheloaddierenceofDDEisboundedbyn,thedimension 10

11 DDEfork-aryn-cube Assumeak-aryn-cubeS0,thenumberofnodesiskn,andnodeihasw0itasks. forl=0ton 1 applythedde-ringalgorithmtokn 1ringsinthelthdimensionindependently, whereeveryringhasknodes(a0;a1;:::;al;:::;ak 1)andal=0;1;:::;k 1 exchangetasksaccordingtotheow eachnodeupdatesitsweightwl+1 i=wli+xi 1;i xi;i+1 Figure10:TheDDEalgorithmforthek-aryn-cube. Theorem1:AfterexecutionofDDE,theloaddierence D=max(wni) min(wni) isboundedbyn. Proof:InthelthstepofDDE,ak-ary(n l)-cubeispartitionedintokk-ary(n l 1)-cubes. Thedierenceofthenumberoftasksbetweentwopartitionsismaximalwhenineachringevery nodeinrstpartition,saysl+1 km,hasonemoretaskthanthatpossessedbythenodeintheother partitions,sl+1 Xkm+b,whereb=1;2;:::;k 1.Thus j2sl+1 kmwl+1 j=x j2sl+1 km+k 1wl+1 j+jsl+1 kmj=1 k 1(X j2slmwlj X j2sl+1 kmwl+1 j)+kn l 1 wherejsl+1 kmjdenotesthenumberofnodesinsubcubesl+1 kmwhichiskn l 1.Therefore, X j2sl+1 kmwl+1 j=1kx j2slmwlj+(k 1)kn l 2 Similarly,X j2sl+1 km+k 1wl+1 j=x j2sl+1 kmwl+1 j jsl+1 kmj=(x j2slmwlj (k 1)X j2sl+1 km+k 1wl+1 j) kn l 1 Therefore, X j2sl+1 km+k 1wl+1 j=1kx j2slmwlj kn l 2 Let Almax=max 0m<klX j2slmwlj 11

12 and Whenl=0, A0max=A0min=X Almin=min j2s0w0j=x 0m<klX j2slmwlj: Similarly, wheretisthetotalnumberoftasks.thus, Almax=(T1kAl 1 max+(k 1)kn l 1otherwise 0j<knw0j=T Thesolutiontotheaboverecurrenceisgivenby Almin=( 1kAl 1 min kn l 1otherwise T ifl=0 ifl=0 (1) Almax=Tkl+(k 1)lkn l 1 Almin=Tkl lkn l 1 (3) (4) (2) Itclearlysatises(1)and(2)forthebasis,l=0.If(3)satises(1)forl=m,then Therefore,itsatises(1)forl=m+1.Thus,byinductiononlwehaveshownthat(3)satises(1) wheneverl0.similarly,itcanbeshownthat(4)satises(2)wheneverl0. Am+1 max=t km+1+(m+1)(k 1)kn (m+1) 1=1k(T =1kA(m+1) 1 max+(k 1)kn (m+1) 1 km+(k 1)mkn m 1)+(k 1)kn (m+1) 1 BecauseD=Anmax Anmin=(k 1 atmostbyn. Letl=n Anmax=max Anmin=min k+1k)n=n,thenumberoftasksinanytwoprocessorsdiers 0j<knwnj=Tkn+k 1 0j<knwnj=Tkn 1kn; kn isshowninfigure11(c).themaximumloaddierenceis2. thatthedde-ringalgorithmappliestoeachringintherstdimension.then,dde-ringapplies toeachringintheseconddimension,asshowninfigure11(b).theresultantloaddistribution AnexampleisshowninFigure11.Thisisa4-ary2-cube(i.e.,torus44).Figure11(a)shows 2 12

13 (a) (b) Inthissection,wecompareperformanceofGDEandDDE.Weconsideratestsetofload Figure11:ExampleforDDE(4-ary2-cube). 6.ExperimentalResults (c) distributions,inwhichtheloadateachprocessorisrandomlyselectedwiththemeanequaltoa speciedvalue.inthissimulationexperiment,theaveragenumberoftasks(averageweight)per processoris1,000.eachresultistheaverageof100testcases.wetestedan88mesh,a1616 thanthatofdde. showsitsaverageindierentnetworks.here,theloaddierenceofgdeisfourtosixtimeslarger forgdeis0.723[10]. torus,an8883d-mesh,anda d-torus.forthesenetworks,theoptimalvalueof byn,whereasthatofgdeisboundedbyn(k 1)forthemeshandnk=2forthetorus.Figure12 First,wecompareloadimbalanceofGDEandDDE.TheloaddierenceofDDEisbounded 13

14 16 GDE 14 thenumberofsweepssfordierentnetworks.thevalueofsisproportionaltok[10].moreover, 12 sincreaseswiththeaverageweight.tableishowstherelationshipbetweenthenumberofsweeps andtheaveragenumberoftasks,measuredonan88mesh. DDEcompletesloadbalancinginonesweepbutGDEneedsmanysweeps.Figure13shows Figure12:Loaddierence x8 mesh 8x8x8 mesh 16x16 torus 16x16x16 torus 12 GDE 10 sweephasciterations,wherecisthenumberofcolors.forevennumberofk,c=2n.each Next,wecomparethenumberofcommunicationstepsofGDEandDDE.ForGDE,each Figure13:Thenumberofsweeps. DDE reducethenumberofcommunicationstepssignicantly.theanalysishasbeenconrmedbythe mation.loadbalancingneedsatmostk 1andk=2communicationstepsforthemeshandthe torus,respectively.therefore,2knor32kncommunicationstepsintotalarerequired.ddecan iterationhasthreecommunications,twoforexchangingloadinformationandoneforloadbalancing.therefore,thetotalnumberofcommunicationsofssweepsare3sc=6sn.fordde, therearekcommunicationstepsineachdimensionforcollectionandbroadcastingofloadinfor- 0 experiment,asshowninfigure14. 8x8 mesh 8x8x8 mesh 16x16 16x16x16 14

15 TableI:TheRelationshipBetweentheNumberofSweepsandtheAverageWeight AverageNumberofSweeps AverageNumberofTasks ,0003,00010,000 municationcostisdenedasthethetotalnumbersoftaskstransferreddividedbythetotal numberoftasks: Figure15showsthenormalizedcommunicationcostofGDEandDDE.Thenormalizedcom- Figure14:Thenumberofcommunicationsteps isabout50%largerthanthatofdde.itisduetothefactthatgdetransferstasksunnecessarily. Finally,DDEhasbetterlocalitythanGDE.Figure16showsthepercentageoflocaltasksthat whereejisthenumberoftaskstransmittedthroughtheedgej.thecommunicationcostofgde arenotmigratedtoothernodes.ddekeeps20%to50%moretasksinlocal. Piwi; Pjej x8 mesh 8x8x8 mesh 16x16 torus 16x16x16 torus GDE DDE

16 Figure15:Normalizedcommunicationcost. 8x8 mesh 8x8x8 mesh 16x16 torus 16x16x16 torus GDE DDE 60% 50% 40% 30% 20% 10% 0% Figure16:Thepercentageoflocaltasks. 16 8x8 mesh 8x8x8 mesh 16x16 torus 16x16x16 torus GDE DDE

17 n-cube,ddeisfaster,balancestheloadwell,reducescommunications,andkeepsbetterlocality. tothek-aryn-cube.comparedtothegdealgorithm,whichalsoextendeddemtothek-ary Thispaperproposedadirectmethodforloadbalancing.ItextendedtheDEMalgorithm 7.Conclusion themeshwalkingalgorithm[8].however,dderetainsitssimplicityofimplementationandcan deliverasatisedperformanceatthesametime. References DDEcanbefurtherimprovedforamorebalancedloadandlesscommunicationsbyextending [1]G.Cybenko.Dynamicloadbalancingfordistributedmemorymultiprocessors.J.ofParallel [4]E.L.Lawler.CombinatorialOptimization:NetworksandMatroids.Holt,Rinehartand [3]S.H.Hosseini,B.Litow,M.Malkawi,J.McPherson,andK.Vairavan.Analysisofagraph [2]M.Barnettetal.Broadcastingonmesheswithwormholerouting.TechnicalReportTR-93- Computing,10:160{166,1990. coloringbaseddistributedloadbalancingalgorithm.journalofparallelanddistributed 24,Univ.TexasatAustin,1993. Distrib.Comput.,7:279{301,1989. [5]S.Ranka,Y.Won,andS.Sahni.Programmingahypercubemulticomputer.IEEESoftware, [6]W.ShuandM.Y.Wu.Runtimeparallelschedulingfordistributedmemorycomputers.In Winston,1976. pages69{77,september1988. [9]C.Z.XuandF.C.M.Lau.Analysisofthegeneralizeddimensionexchangemethodfor [8]M.Y.WuandW.Shu.High-performanceincrementalschedulingonmassivelyparallelcomputers aglobalapproach.insupercomputing'95,december1995. September1993. onhighlyparallelcomputers.ieeetrans.parallelanddistributedsystem,9(4):979{993, Int'lConf.onParallelProcessing,pagesII.143{150,August1995. [7]MarcWillebeek-LeMairandAnthonyP.Reeves.Strategiesfordynamicloadbalancing [10]C.Z.XuandF.C.M.Lau.Thegeneralizeddimensionexchangemethodforloadbalancing December1992. ink-aryn-cubesandvariants.journalofparallelanddistributedcomputing,24(1):72{85, January1995. dynamicloadbalancing.journalofparallelanddistributedcomputing,16(4):385{393, 17

thek-aryn-cubestructure. 1

thek-aryn-cubestructure. 1 DDE:AModiedDimensionExchangeMethod forloadbalancingink-aryn-cubes StateUniversityofNewYorkatBualo DepartmentofComputerScience Min-YouWuandWeiShu algorithmforthehypercubestructure.ithasbeengeneralizedtok-aryn-cubes.however,the

More information

Ďě Ž ť č ď ť ď ú ď ť ě Ě ň Ě ě ú ň ž ú ú Ú ú ú Ě ň é é ž ú ž Ť Ť Ť ú ň Ď ú ň ď Ě ú É ž ř ú ě ň ý Ě ň ý ň ň Ť ř ď ř ň ú Ť ě ř ě ý Š Ú Ú ň ň ú Ó Ú ň Ň Ů ž ú ň Č ř ř ú É ě ň ú Ž ý ú ú Ú Ú ť ž ž ď ý ž ď ž

More information

Chapter 2. Multiprocessors Interconnection Networks

Chapter 2. Multiprocessors Interconnection Networks Chapter 2 Multiprocessors Interconnection Networks 2.1 Taxonomy Interconnection Network Static Dynamic 1-D 2-D HC Bus-based Switch-based Single Multiple SS MS Crossbar 2.2 Bus-Based Dynamic Single Bus

More information

Mail for OS X Medical School IMAP & Exchange Email Setup Guide

Mail for OS X Medical School IMAP & Exchange Email Setup Guide MailforOSX MedicalSchoolIMAP&ExchangeEmail SetupGuide TherearetwowaystosetupyourMedicalSchoolemailaccountusingMail.One wayisconnectingusingexchangeandtheotherisbyusingimap.thisguidewill showyouhowtosetupmailusingthesetwomethods.forbestresults,we

More information

Topological Properties

Topological Properties Advanced Computer Architecture Topological Properties Routing Distance: Number of links on route Node degree: Number of channels per node Network diameter: Longest minimum routing distance between any

More information

A. Factoring out the Greatest Common Factor.

A. Factoring out the Greatest Common Factor. DETAILED SOLUTIONS AND CONCEPTS - FACTORING POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to [email protected]. Thank you!

More information

EFFICIENTANIMATIONTECHNIQUESBALANCING BOTHUSERCONTROLANDPHYSICALREALISM

EFFICIENTANIMATIONTECHNIQUESBALANCING BOTHUSERCONTROLANDPHYSICALREALISM EFFICIENTANIMATIONTECHNIQUESBALANCING BOTHUSERCONTROLANDPHYSICALREALISM ADISSERTATION ZichengLiu INCANDIDACYFORTHEDEGREE PRESENTEDTOTHEFACULTY OFDOCTOROFPHILOSOPHY OFPRINCETONUNIVERSITY RECOMMENDEDFORACCEPTANCE

More information

Components: Interconnect Page 1 of 18

Components: Interconnect Page 1 of 18 Components: Interconnect Page 1 of 18 PE to PE interconnect: The most expensive supercomputer component Possible implementations: FULL INTERCONNECTION: The ideal Usually not attainable Each PE has a direct

More information

Hyper Node Torus: A New Interconnection Network for High Speed Packet Processors

Hyper Node Torus: A New Interconnection Network for High Speed Packet Processors 2011 International Symposium on Computer Networks and Distributed Systems (CNDS), February 23-24, 2011 Hyper Node Torus: A New Interconnection Network for High Speed Packet Processors Atefeh Khosravi,

More information

ACTS 4301 FORMULA SUMMARY Lesson 1: Probability Review. Name f(x) F (x) E[X] Var(X) Name f(x) E[X] Var(X) p x (1 p) m x mp mp(1 p)

ACTS 4301 FORMULA SUMMARY Lesson 1: Probability Review. Name f(x) F (x) E[X] Var(X) Name f(x) E[X] Var(X) p x (1 p) m x mp mp(1 p) ACTS 431 FORMULA SUMMARY Lesson 1: Probability Review 1. VarX)= E[X 2 ]- E[X] 2 2. V arax + by ) = a 2 V arx) + 2abCovX, Y ) + b 2 V ary ) 3. V ar X) = V arx) n 4. E X [X] = E Y [E X [X Y ]] Double expectation

More information

Load Balancing between Computing Clusters

Load Balancing between Computing Clusters Load Balancing between Computing Clusters Siu-Cheung Chau Dept. of Physics and Computing, Wilfrid Laurier University, Waterloo, Ontario, Canada, NL 3C5 e-mail: [email protected] Ada Wai-Chee Fu Dept. of Computer

More information

Lecture 3: Models of Solutions

Lecture 3: Models of Solutions Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP4, Thermodynamics and Phase Diagrams, H. K. D. H. Bhadeshia Lecture 3: Models of Solutions List of Symbols Symbol G M

More information

Factoring Special Polynomials

Factoring Special Polynomials 6.6 Factoring Special Polynomials 6.6 OBJECTIVES 1. Factor the difference of two squares 2. Factor the sum or difference of two cubes In this section, we will look at several special polynomials. These

More information

Lecture 4: Futures and Options Steven Skiena. http://www.cs.sunysb.edu/ skiena

Lecture 4: Futures and Options Steven Skiena. http://www.cs.sunysb.edu/ skiena Lecture 4: Futures and Options Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Foreign Currency Futures Assume that

More information

Nearestneighboralgorithmsforloadbalancingin ChengzhongXu parallelcomputers DepartmentofElectricalandComputerEngg. WayneStateUniversity,Detroit,MI48202 BurkhardMonien,ReinhardLuling [email protected]

More information

Fast Fourier Transform: Theory and Algorithms

Fast Fourier Transform: Theory and Algorithms Fast Fourier Transform: Theory and Algorithms Lecture Vladimir Stojanović 6.973 Communication System Design Spring 006 Massachusetts Institute of Technology Discrete Fourier Transform A review Definition

More information

Chapter 12: Multiprocessor Architectures. Lesson 04: Interconnect Networks

Chapter 12: Multiprocessor Architectures. Lesson 04: Interconnect Networks Chapter 12: Multiprocessor Architectures Lesson 04: Interconnect Networks Objective To understand different interconnect networks To learn crossbar switch, hypercube, multistage and combining networks

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 5 Life annuities Extract from: Arcones Manual for the SOA Exam MLC Fall 2009 Edition available at http://wwwactexmadrivercom/ 1/70 Due n year deferred annuity Definition 1 A due n year deferred

More information

Chapter 8. Shear Force and Bending Moment Diagrams for Uniformly Distributed Loads.

Chapter 8. Shear Force and Bending Moment Diagrams for Uniformly Distributed Loads. hapter 8 Shear Force and ending Moment Diagrams for Uniformly Distributed Loads. 8.1 Introduction In Unit 4 we saw how to calculate moments for uniformly distributed loads. You might find it worthwhile

More information

Interconnection Network

Interconnection Network Interconnection Network Recap: Generic Parallel Architecture A generic modern multiprocessor Network Mem Communication assist (CA) $ P Node: processor(s), memory system, plus communication assist Network

More information

Return On Investment XpoLog Center

Return On Investment XpoLog Center Return On Investment XpoLog Center ROI Management of XpoLog Center Business white paper May 2015 In This Document: 1. ROI Metrics and Examples 2. Total Summary of ROI and TCO 3. Real Life Use Cases and

More information

Options, Futures, and Other Derivatives 7 th Edition, Copyright John C. Hull 2008 2

Options, Futures, and Other Derivatives 7 th Edition, Copyright John C. Hull 2008 2 Mechanics of Options Markets Chapter 8 Options, Futures, and Other Derivatives, 7th Edition, Copyright John C. Hull 2008 1 Review of Option Types A call is an option to buy A put is an option to sell A

More information

Figure2:Themixtureoffactoranalysisgenerativemodel. j;j z

Figure2:Themixtureoffactoranalysisgenerativemodel. j;j z TheEMAlgorithmforMixturesofFactorAnalyzers DepartmentofComputerScience ZoubinGhahramani GeoreyE.Hinton May21,1996(revisedFeb27,1997) TechnicalReportCRG-TR-96-1 Email:[email protected] Toronto,CanadaM5S1A4

More information

Regression and Correlation

Regression and Correlation Regression and Correlation Topics Covered: Dependent and independent variables. Scatter diagram. Correlation coefficient. Linear Regression line. by Dr.I.Namestnikova 1 Introduction Regression analysis

More information

Introduction: Overview of Kernel Methods

Introduction: Overview of Kernel Methods Introduction: Overview of Kernel Methods Statistical Data Analysis with Positive Definite Kernels Kenji Fukumizu Institute of Statistical Mathematics, ROIS Department of Statistical Science, Graduate University

More information

x 3 x 4 x 2 f -7.0-9.5 4.3-4.2-9.0-8.7-3.5-5.7-8.0 3.4-6.9-8.7 9.8 3.8 5.1-2.7-6.5 0.8-3.5 7.1 6.2 9.9 7.7 0.1-7.4 Site A Site B Site C

x 3 x 4 x 2 f -7.0-9.5 4.3-4.2-9.0-8.7-3.5-5.7-8.0 3.4-6.9-8.7 9.8 3.8 5.1-2.7-6.5 0.8-3.5 7.1 6.2 9.9 7.7 0.1-7.4 Site A Site B Site C DistributedMultivariateRegressionUsing Wavelet-basedCollectiveDataMining SchoolofElectricalEngineeringandComputerScience DarylE.HershbergerandHillolKargupta SchoolofElectricalEngineeringandComputerScienceTechnicalReportEECS99-002

More information

BERNOULLI (BETA) and INTEGER PART SEQUENCES

BERNOULLI (BETA) and INTEGER PART SEQUENCES BERNOULLI (BETA) and INTEGER PART SEQUENCES Rod Nillsen,Keith Tognetti and Graham Winley* School of Mathematics and Applied Statistics, (*Department of Business Systems) University of Wollongong NSW 2522

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 5 Life annuities Extract from: Arcones Manual for the SOA Exam MLC Fall 2009 Edition available at http://wwwactexmadrivercom/ 1/94 Due n year temporary annuity Definition 1 A due n year term annuity

More information

System Interconnect Architectures. Goals and Analysis. Network Properties and Routing. Terminology - 2. Terminology - 1

System Interconnect Architectures. Goals and Analysis. Network Properties and Routing. Terminology - 2. Terminology - 1 System Interconnect Architectures CSCI 8150 Advanced Computer Architecture Hwang, Chapter 2 Program and Network Properties 2.4 System Interconnect Architectures Direct networks for static connections Indirect

More information

call option put option strike price/exercise price expiration date/maturity

call option put option strike price/exercise price expiration date/maturity OPTIONS Objective This chapter introduces the readers to the concept of options which include calls and puts. All basic concepts like option buyer and seller, European and American options, and payoff

More information

Online Degree Ramsey Theory

Online Degree Ramsey Theory UofL Discrete Math Workshop 2008 1 Online Degree Ramsey Theory posed by Illinois REGS (2007) problem 1 presented by Lesley Wiglesworth LATEX byadamjobson For a family of graphs F closed under subgraphs,

More information

RIGHT-OF-WAY ACQUISITION AND BRIDGE CONSTRUCTION BONDS 7/01/12 341150MD9 341150ND8 341150QR4

RIGHT-OF-WAY ACQUISITION AND BRIDGE CONSTRUCTION BONDS 7/01/12 341150MD9 341150ND8 341150QR4 RIGHT-OF-WAY ACQUISITION AND BRIDGE CONSTRUCTION BONDS CUSIP Numbers Maturity Date Series 2002 Dated 1/15/2002 Series 2002A New & Refunding Dated 9/01/2002 Series 2003A Dated 9/15/2003 7/01/12 341150MD9

More information

SCHOOLOFCOMPUTERSTUDIES RESEARCHREPORTSERIES UniversityofLeeds Report95.4

SCHOOLOFCOMPUTERSTUDIES RESEARCHREPORTSERIES UniversityofLeeds Report95.4 SCHOOLOFCOMPUTERSTUDIES RESEARCHREPORTSERIES UniversityofLeeds Report95.4 AcquisitionsandApplications Generic3-DShapeModel: DivisionofArticialIntelligence XShen&DCHogg by February1995 sequencesandrepresentedbythecontrolpointsofab-splinesurface.the

More information

niveau : 1 ere année spécialité : mécatronique & froid et climatisation AU : 2014-2015 Programmation C Travaux pratiques

niveau : 1 ere année spécialité : mécatronique & froid et climatisation AU : 2014-2015 Programmation C Travaux pratiques École Supérieure Privée d Ingénieurs de Monastir niveau : 1 ere année spécialité : mécatronique & froid et climatisation AU : 2014-2015 Programmation C Travaux pratiques Correction Exercice 1 TP3 long

More information

Parallel Programming

Parallel Programming Parallel Programming Parallel Architectures Diego Fabregat-Traver and Prof. Paolo Bientinesi HPAC, RWTH Aachen [email protected] WS15/16 Parallel Architectures Acknowledgements Prof. Felix

More information

Transient Voltage Suppressor SMBJ5.0 - SMBJ440CA

Transient Voltage Suppressor SMBJ5.0 - SMBJ440CA Features: Glass passivated junction Low incremental surge resistance, excellent clamping capability 600W peak pulse power capability with a 10/1,000μs waveform, repetition rate (duty cycle): 0.01% Very

More information

Certification of Discontinuous Composite Material Forms for Aircraft Structures

Certification of Discontinuous Composite Material Forms for Aircraft Structures Certification of Discontinuous Composite Material Forms for Aircraft Structures Paolo Feraboli (UWAA), Mark Tuttle (UW), Larry Ilcewicz (FAA), Bill Avery (Boeing), Bruno Boursier, Dave Barr (Hexcel) JAMS

More information

Factoring - Factoring Special Products

Factoring - Factoring Special Products 6.5 Factoring - Factoring Special Products Objective: Identify and factor special products including a difference of squares, perfect squares, and sum and difference of cubes. When factoring there are

More information

... Schema Integration

... Schema Integration DataIntegrationTechniquesbasedon MichaelGertz DataQualityAspects DepartmentofComputerScience UniversityofCalifornia,Davis IngoSchmitt [email protected] Davis,CA95616,USA OneShieldsAvenue Otto-von-Guericke-UniversitatMagdeburg

More information

Actuarial mathematics 2

Actuarial mathematics 2 Actuarial mathematics 2 Life insurance contracts Edward Furman Department of Mathematics and Statistics York University January 3, 212 Edward Furman Actuarial mathematics MATH 328 1 / 45 Definition.1 (Life

More information

Factoring Guidelines. Greatest Common Factor Two Terms Three Terms Four Terms. 2008 Shirley Radai

Factoring Guidelines. Greatest Common Factor Two Terms Three Terms Four Terms. 2008 Shirley Radai Factoring Guidelines Greatest Common Factor Two Terms Three Terms Four Terms 008 Shirley Radai Greatest Common Factor 008 Shirley Radai Factoring by Finding the Greatest Common Factor Always check for

More information

The Algorithms of Speech Recognition, Programming and Simulating in MATLAB

The Algorithms of Speech Recognition, Programming and Simulating in MATLAB FACULTY OF ENGINEERING AND SUSTAINABLE DEVELOPMENT. The Algorithms of Speech Recognition, Programming and Simulating in MATLAB Tingxiao Yang January 2012 Bachelor s Thesis in Electronics Bachelor s Program

More information

Performance Comparison of Dynamic Load-Balancing Strategies for Distributed Computing

Performance Comparison of Dynamic Load-Balancing Strategies for Distributed Computing Performance Comparison of Dynamic Load-Balancing Strategies for Distributed Computing A. Cortés, A. Ripoll, M.A. Senar and E. Luque Computer Architecture and Operating Systems Group Universitat Autònoma

More information

Tutorial on Exploratory Data Analysis

Tutorial on Exploratory Data Analysis Tutorial on Exploratory Data Analysis Julie Josse, François Husson, Sébastien Lê julie.josse at agrocampus-ouest.fr francois.husson at agrocampus-ouest.fr Applied Mathematics Department, Agrocampus Ouest

More information

Review of Statistical Mechanics

Review of Statistical Mechanics Review of Statistical Mechanics 3. Microcanonical, Canonical, Grand Canonical Ensembles In statistical mechanics, we deal with a situation in which even the quantum state of the system is unknown. The

More information

Lecture 21. The Multivariate Normal Distribution

Lecture 21. The Multivariate Normal Distribution Lecture. The Multivariate Normal Distribution. Definitions and Comments The joint moment-generating function of X,...,X n [also called the moment-generating function of the random vector (X,...,X n )]

More information

(1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed.

(1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed. Gas Laws and Kinetic Molecular Theory The Gas Laws are based on experiments, and they describe how a gas behaves under certain conditions. However, Gas Laws do not attempt to explain the behavior of gases.

More information

Factoring. Factoring Polynomial Equations. Special Factoring Patterns. Factoring. Special Factoring Patterns. Special Factoring Patterns

Factoring. Factoring Polynomial Equations. Special Factoring Patterns. Factoring. Special Factoring Patterns. Special Factoring Patterns Factoring Factoring Polynomial Equations Ms. Laster Earlier, you learned to factor several types of quadratic expressions: General trinomial - 2x 2-5x-12 = (2x + 3)(x - 4) Perfect Square Trinomial - x

More information

Interconnection Networks

Interconnection Networks CMPT765/408 08-1 Interconnection Networks Qianping Gu 1 Interconnection Networks The note is mainly based on Chapters 1, 2, and 4 of Interconnection Networks, An Engineering Approach by J. Duato, S. Yalamanchili,

More information

Chapter 7. BANDIT PROBLEMS.

Chapter 7. BANDIT PROBLEMS. Chapter 7. BANDIT PROBLEMS. Bandit problems are problems in the area of sequential selection of experiments, and they are related to stopping rule problems through the theorem of Gittins and Jones (974).

More information

Section 6.1 Factoring Expressions

Section 6.1 Factoring Expressions Section 6.1 Factoring Expressions The first method we will discuss, in solving polynomial equations, is the method of FACTORING. Before we jump into this process, you need to have some concept of what

More information

Factors and Products

Factors and Products CHAPTER 3 Factors and Products What You ll Learn use different strategies to find factors and multiples of whole numbers identify prime factors and write the prime factorization of a number find square

More information

Earthquake Hazard Zones: The relative risk of damage to Canadian buildings

Earthquake Hazard Zones: The relative risk of damage to Canadian buildings Earthquake Hazard Zones: The relative risk of damage to Canadian buildings by Paul Kovacs Executive Director, Institute for Catastrophic Loss Reduction Adjunct Research Professor, Economics, Univ. of Western

More information

London South Bank University - United Kingdom. www.lsbu.ac.uk. Business Management

London South Bank University - United Kingdom. www.lsbu.ac.uk. Business Management London South Bank University - United Kingdom www.lsbu.ac.uk Business Management Level 4 Diploma in Business Management holders with at least 3 subjects passed at B or above may be eligible for entry onto

More information

Actuarial Science with

Actuarial Science with Actuarial Science with 1. life insurance & actuarial notations Arthur Charpentier joint work with Christophe Dutang & Vincent Goulet and Giorgio Alfredo Spedicato s lifecontingencies package Meielisalp

More information

Unit 10 Geometry Circles. NAME Period

Unit 10 Geometry Circles. NAME Period Unit 10 Geometry Circles NAME Period 1 Geometry Chapter 10 Circles ***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK. *** 1. (10-1) Circles and Circumference

More information

Repairing storm damaged roofs

Repairing storm damaged roofs Repairing storm damaged roofs Tie-down designs for tile and sheet roofs Conforms to wind classifications of up to category N3 (previously W41N) designed to withstand a maximum gust wind speeds of 50 metres

More information

StaticFrequencyAssignmentinCellular LataNarayanan Networks August,998 SunilM.Shendey tice.inthestaticfrequencyassignmentproblem,eachvertexofthegraphisa Acellularnetworkisgenerallymodeledasasubgraphofthetriangularlat-

More information

Sleeve Yokes / Kayıcı Çatallar

Sleeve Yokes / Kayıcı Çatallar Sleeve Yokes / Kayıcı Çatallar 19,00 126,00 49,70 Spline / Kanal SE 1 1/16 x 16 ngle / çı 25 0 Serie 0400 MS NO SY 01 23,80 149,00 64,20 Spline / Kanal SE 1 x 10 ngle / çı 20 0 Serie 1140 MS NO SY 02 23,80

More information

Issues in Information Systems Volume 14, Issue 2, pp.353-358, 2013

Issues in Information Systems Volume 14, Issue 2, pp.353-358, 2013 A MODEL FOR SIMULTANEOUS DECISIONS ON MASTER PRODUCTION SCHEDULING, LOT SIZING, AND CAPACITY REQUIREMENTS PLANNING Harish C. Bahl, California State University-Chico, [email protected] Neelam Bahl, California

More information

timeout StoR!msg0 RtoS?ack0

timeout StoR!msg0 RtoS?ack0 c1997kluweracademicpublishers,boston.manufacturedinthenetherlands. FormalMethodsinSystemDesign,,?{??(1997) SymbolicVericationofCommunication ProtocolswithInniteStateSpacesusingQDDs queues.itiswell-knownthatmostinterestingvericationproblems,suchasdeadlockdetection,

More information

Lesson 9: Radicals and Conjugates

Lesson 9: Radicals and Conjugates Student Outcomes Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or cube root) of their sum. Students convert expressions to simplest radical form.

More information

Lecture 18: Interconnection Networks. CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

Lecture 18: Interconnection Networks. CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012) Lecture 18: Interconnection Networks CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012) Announcements Project deadlines: - Mon, April 2: project proposal: 1-2 page writeup - Fri,

More information

{apolin},{mcampos}@ieee.org

{apolin},{mcampos}@ieee.org {apolin},{mcampos}@ieee.org x( ) 2 x( ) x( ) = ( ) x = [ ( ) x ı x + ( ) y ( ) y ( ) z ı y + ( ) z ] T ı z 2 x ( ) = 2 ( ) x + 2 ( ) 2 y + 2 ( ) 2 z 2 2 E = 1 2 E c 2 t 2 s(x,t) 2 s x + 2 s 2 y + 2

More information

Flexible Distributed Capacity Allocation and Load Redirect Algorithms for Cloud Systems

Flexible Distributed Capacity Allocation and Load Redirect Algorithms for Cloud Systems Flexible Distributed Capacity Allocation and Load Redirect Algorithms for Cloud Systems Danilo Ardagna 1, Sara Casolari 2, Barbara Panicucci 1 1 Politecnico di Milano,, Italy 2 Universita` di Modena e

More information

THOSE WHO WAIT As recorded by Tommy Emmanuel

THOSE WHO WAIT As recorded by Tommy Emmanuel ransribd by iorio Mali OSE O s rordd by ommy Emmanl (From h lbm OLY) Msi by ommy Emmanl rrand by ommy Emmanl nro r-rs = nin: DDE Dadd Fadd add Dadd rs,.. [] [] [] [] [] [] [] [] [] [] () () Fadd () add

More information

Topology Optimization of Engine Mount Brackets Dr. Dirk Sprengel Ford Werke GmbH

Topology Optimization of Engine Mount Brackets Dr. Dirk Sprengel Ford Werke GmbH Topology Optimization of Engine Mount Brackets Dr. Dirk Sprengel Ford Werke GmbH Dr. D. Sprengel 6/2007 Topology Optimization of EMS Bracket 1 ( 21 ) EMS Bracket Funktion EMS: Engine Mount System Link

More information

Tool 1. Greatest Common Factor (GCF)

Tool 1. Greatest Common Factor (GCF) Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

More information

Home Software Hardware Benchmarks Services Store Support Forums About Us

Home Software Hardware Benchmarks Services Store Support Forums About Us Pass - CPU Benchmarks - List of Benchmarked CPUs Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» CPU List CPU Benchmarks Video Card Benchmarks

More information

Design MEMO 60 Reinforcement design for TSS 102

Design MEMO 60 Reinforcement design for TSS 102 Date: 04.0.0 sss Page of 5 CONTENTS PART BASIC ASSUMTIONS... GENERAL... STANDARDS... QUALITIES... 3 DIMENSIONS... 3 LOADS... 3 PART REINFORCEMENT... 4 EQUILIBRIUM... 4 Date: 04.0.0 sss Page of 5 PART BASIC

More information

Asal Siviçler Basic Switches

Asal Siviçler Basic Switches Asal Siviçler Asal Siviçler Asal Siviçler MN1 Serisi Mini Siviçler 03 MN2 Serisi Mini Siviçler 09 MN3 Serisi Mini Siviçler 15 MK1 Serisi Mikro Siviçler 19 BS1 Serisi Buton Siviçler 25 MA1 Serisi Mandall

More information

Themethodofmovingcurvesandmovingsurfacesisanew,eectivetoolfor Abstract

Themethodofmovingcurvesandmovingsurfacesisanew,eectivetoolfor Abstract OnaRelationshipbetweentheMovingLineand MovingConicCoecientMatrices DepartmentofComputerScience Houston,Texas77005 [email protected] RiceUniversity MingZhang DepartmentofInformationSystemsandComputerScience

More information

OR topics in MRP-II. Mads Jepsens. OR topics in MRP-II p.1/25

OR topics in MRP-II. Mads Jepsens. OR topics in MRP-II p.1/25 OR topics in MRP-II Mads Jepsens OR topics in MRP-II p.1/25 Overview Why bother? OR topics in MRP-II p.2/25 Why bother? Push and Pull systems Overview OR topics in MRP-II p.2/25 Overview Why bother? Push

More information

Development of backup power systems at Wuhan Troowin Power System

Development of backup power systems at Wuhan Troowin Power System Development of backup power systems at Wuhan Troowin Power System Zhigang Qi Workshop on Fuel Cell Backup Power for Telecommunication Base Stations Wuhan University of Technology, Wuhan, China, May 29,

More information

CE 366 SETTLEMENT (Problems & Solutions)

CE 366 SETTLEMENT (Problems & Solutions) CE 366 SETTLEMENT (Problems & Solutions) P. 1) LOAD UNDER A RECTANGULAR AREA (1) Question: The footing shown in the figure below exerts a uniform pressure of 300 kn/m 2 to the soil. Determine vertical

More information

Mark Scheme (Results) November 2009

Mark Scheme (Results) November 2009 Mark Scheme (Results) November 2009 GCSE GCSE Mathematics (Linear) - 1380 Paper: Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range

More information

"#$%&'((&)!*+,-./ 0+1$23!4-+5#.-)!!

#$%&'((&)!*+,-./ 0+1$23!4-+5#.-)!! "#$%&'((&)*+,-./ 0+1$234-+5#.-) 6(75()+1-,+,-.+289(2-:7$5;"#$%&'((&) JoeWoodard,President CreativeFinancialSoftware,Inc. AdvancedCertifiedQuickBooksProAdvisor Member"IntuitSolutionProviderProgram Intuit

More information

Design MEMO 54a Reinforcement design for RVK 41

Design MEMO 54a Reinforcement design for RVK 41 Page of 5 CONTENTS PART BASIC ASSUMTIONS... 2 GENERAL... 2 STANDARDS... 2 QUALITIES... 3 DIMENSIONS... 3 LOADS... 3 PART 2 REINFORCEMENT... 4 EQUILIBRIUM... 4 Page 2 of 5 PART BASIC ASSUMTIONS GENERAL

More information

Beat the Mean Bandit

Beat the Mean Bandit Yisong Yue H. John Heinz III College, Carnegie Mellon University, Pittsburgh, PA, USA Thorsten Joachims Department of Computer Science, Cornell University, Ithaca, NY, USA [email protected] [email protected]

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: [email protected] Proof: For any element x of the empty set, x is also an element of every set since

More information

Factoring (pp. 1 of 4)

Factoring (pp. 1 of 4) Factoring (pp. 1 of 4) Algebra Review Try these items from middle school math. A) What numbers are the factors of 4? B) Write down the prime factorization of 7. C) 6 Simplify 48 using the greatest common

More information