Preserving Hyperpolarization of 129 Xe for Transport Submitted by: Zach Zytner Project Supervisor: Dr. Giles Santyr Medical Biophysics 3970 Date:

Size: px
Start display at page:

Download "Preserving Hyperpolarization of 129 Xe for Transport Submitted by: Zach Zytner Project Supervisor: Dr. Giles Santyr Medical Biophysics 3970 Date:"

Transcription

1 Preserving Hyperpolarization of 129 Xe for Transport Submitted by: Zach Zytner Project Supervisor: Dr. Giles Santyr Medical Biophysics 3970 Date: April 1, 2011

2 Introduction and Theory The effective use of lung imaging techniques is essential to diagnoses of disorders such as chronic obstructive pulmonary disease (COPD). Two prominent methods include x-ray computed tomography (x-ray CT) and magnetic resonance imaging (MRI). 1 Though both techniques have potential to provide adequate information, each has an inherent drawback. X- ray CT exposes patients to radiation; negative connotations associated with radiation may make patients apprehensive of the procedure. Typical MRI involves the magnetic spin of hydrogen nuclei and the atom s interaction with an external magnetic field. 2 Hydrogen nuclei align with the applied magnetic field, and an additional radiofrequency field perpendicular to it causes net magnetization tipping, creating a signal in a receiver coil. The signal is then used to construct an image of the region containing the protons. The disadvantage of lung MRI is that it often does not provide high-quality images. The lung is significantly devoid of water and therefore hydrogen atoms. 1 The lack of protons available to interact with external and radiofrequency fields translates to a decrease in signal. It is therefore beneficial to introduce hyperpolarized noble gases (HNG) as contrast agents when taking MR images of the lungs. Gases typically used include 3 He and 129 Xe, helium-3 and xenon-129. Hyperpolarization describes the high spin polarization attained by the nuclei outside of the MR system. 3 The gases are introduced into the lungs through ventilation, and the high spin nuclei allow for signal acquisition at comparable levels to orthodox proton MRI. Magnetic resonance imaging of the lung with HNG overcomes negative aspects of x-ray CT and proton MRI. However, maximum resolution of images is limited by the longitudinal relaxation time, T 1, of the hyperpolarized gas. 4 Simply put, the gases undergo decay of hyperpolarization over time. A large distance between the site of hyperpolarization and the MRI

3 system poses the problem that the HNG would no longer be effective for imaging once it is delivered. Hence, preserving hyperpolarization is essential and can be accomplished by applying a magnetic field to the HNG. 4 The main focus of this project is to examine the properties, including the T 1 value, of a transportation box for hyperpolarized gas. The outcome of the study will determine the viability of the box to preserve hyperpolarization specifically in 129 Xe, which was used throughout the project. Hyperpolarization of xenon is achieved through spin-exchange optical pumping. 5 This process involves the use of laser light and rubidium (Rb) vapour. The light is circularly polarized by quarter-wave plate, and it then excites the valence electrons of Rb atoms. The polarized rubidium electrons collide with xenon nuclei, and this interaction results in hyperpolarization of xenon. Figure 1 The transfer of energy from circularly polarized light to Rb electrons to Xe nuclei in an optical pumping cell. 5 Extraction of the hyperpolarized 129 Xe typically involves cooling of the gas mixture so that the Rb vapour condenses. 4 The xenon gas can then be collected, though its hyperpolarization will rapidly decay if an external magnetic field is not immediately applied. A transportation box

4 for HNG preserves the hyperpolarization; it is more effective if the gas is placed inside directly following the spin-exchange process. Figure 2 The transportation box for maintenance of hyperpolarization contains a battery supplying current to a solenoid coil. The model of HNG transportation box used in the project includes a 12V nickel metal hydride (NiMH) battery as a power source, found at the bottom of the box. The battery applies a current to a solenoid coil located on the left side of the box, in terms of the orientation shown by Figure 2. The current results in a vertical magnetic field through the middle of the coil, as described by Ampere s Law (Equation 1). 6 [1] Ampere s Law shows that the magnetic field through the coil (B) is directly proportional to the applied current (I enc ). The maximum current that can be applied by the battery is approximately 1650 milliamperes (ma), which corresponds to a maximum magnetic field of

5 36.5 Gauss (G) or 3.65 millitesla (mt). The magnitude of the current applied by the battery to the coil can be controlled by an adjustment knob located on the right side of the box s face. The current display is directly above the knob. The purpose of this project was to examine the transportation box s absolute potential for maintaining hyperpolarization of xenon. Therefore, the maximum current possible was always applied to the coil. However, the current of the box decreases as it loses its charge, so the maxima of 1650 ma and 36.5 G decrease as the power supply is constantly maintained. The longitudinal relaxation time of the box (T 1 ) describes its ultimate utility in transporting hyperpolarized 129 Xe. Signal data from the HNG can be used to calculate T 1 by Equation 2. [2] The variable S 0 describes the signal acquired from the hyperpolarized 129 Xe gas immediately after it was extracted from the spin-exchange system. The variable S is the signal acquired from the xenon after a time interval t that the gas has been mounted within the magnetic field of the box s solenoid coil. Equation 2 shows that large T 1 values are the result of a high degree of hyperpolarization maintenance. Additionally, Equation 2 shows that the attainment of signal data is essential to the calculation of T 1. A polarimetry station can be used to obtain that data from a sample of hyperpolarized xenon. The station includes a large Helmholtz coil, which applies a magnetic field of G to a xenon sample placed inside. 7 The sample is placed on a radiofrequency coil on the station s surface, and it is through this coil that signal data is acquired. Signal magnitude describes the amount of hyperpolarization present in a sample at an instant.

6 Figure 3 The polarimetry station includes arching Helmholtz coils providing a magnetic field and a radiofrequency coil located underneath the sample stage on its bottom surface. A pulse frequency is sent from the radiofrequency coil to the nuclei of the hyperpolarized xenon gas sample, and a response frequency is sent back. In order for the polarimetry software to display accurate signal data, these frequencies must be within proper resonance. A difference in the frequencies greater than 50 Hz results in erroneous signals yielded by the software, skewing T 1 values. 7 Figure 4 A screenshot of the Polarimetry v.4.1 software shows a frequency difference of 40 Hz, resulting in accurate output signal data. In all, the processes of spin-exchange optical pumping, polarimetry and the

7 understanding of longitudinal relaxation time provide knowledge to determine the viability of the transportation box for hyperpolarized noble gases. Methods Before working with any 129 Xe gas, the properties of the transportation box were explored. The relationship between the box s magnetic field, current and time provided necessary information such as the battery s required charging time to apply maximum current. A Gaussmeter was used to measure the magnetic field through the solenoid coil. Figure 5 The box s magnetic field in G versus its current in ma. The linear relationship shown is predicted by Ampere s Law. Figure 5 shows that the maximum current of 1650mA approximately corresponds to the maximum magnetic field in the box s coil of 36.5G by a trend line. The magnetic field through the coil over time was also observed for different charging periods. Figure 6 shows those observations, which were necessary to ensure the box could maintain a strong enough field to

8 maintain 129 Xe hyperpolarization. Figure 6 The box s magnetic field versus time after two different charging periods. A charge of 120 hours was adequate to maintain proper magnetic field, but an 18-hour charge was not. Figure 6 shows that the NiMH battery required significant amount of charging time in order for the box to operate at its maximum utility. Once the box s properties were determined, hyperpolarized 129 Xe was obtained in a 90mL bag via spin-exchange optical pumping, as described earlier. Initial signal data for the 90mL sample was acquired at the polarimetry station, and the bag was placed into the magnetic field of the transportation box for two hours. The sample was removed every 30 minutes to obtain further signal data at the polarimetry station as hyperpolarization decayed. Polarimetry v.4.1 software was used to obtain signal data. Approximately 8000 signal data points over duration of 20 milliseconds were acquired at each time interval. Three methods of determining the signal value at each time interval were then used. Firstly, the software provided a trend line on the graph of signal data acquired over each 20ms time frame. Signal

9 values at the beginning of each time frame (0ms) as per the software trend lines were used to calculate T 1 values. Another method included applying a trend line against each set of signal data in Excel. Those trend lines yielded slightly different signal values from the polarimetry software at the beginning of each time frame. The final method involved simply using the maximum signal value over the entire 20ms time frame as the data point for that 30-minute interval. The three methods yielded three different T 1 values for the transportation box. Results Figure 7 shows the signal of the 129 Xe sample at 2 minutes after the gas was collected (2 minutes were needed to take the sample from the 129 Xe polarizer to the polarimetry station). The trend line applied by the software is shown in yellow; it corresponds to a signal value of 42mV. Figure 7 Response signal in millivolts vs. time at the 2 minute interval from polarimetry software

10 Figure 8 shows the same signal data as Figure 7, except that the negative signal values have been filtered out to apply a trend line. The Excel trend line corresponds to a signal value of mV (the line s intercept) at the 2 minute interval. Figure 8 Excel graph of response signal vs. time at the 2 minute interval Figure 9 shows the signal of the hyperpolarized xenon sample at the 122-minute interval. The yellow trend line shows a signal value of 2mV at the beginning of the 20ms time frame. 122 mins Figure 9 Signal vs. time at the 122 minute interval from polarimetry software

11 Figure 10 shows the same signal data as Figure 9, but the negative signal data has once again been filtered out in order to apply a trend line. The trend line corresponds to a signal of mV at the beginning of the signal acquisition time frame. Figure 10 Excel graph of signal versus time at the 122 minute interval Table 1 shows a complete summary of the signal data acquired at each time interval for the three different methods. The data was also extrapolated back to time at 0 minutes in order to account for initial slight decay, and to receive the most accurate S 0 values. The signal data at the time interval t of 122 minutes were used as the S values for all methods. All T 1 values were then calculated using Equation 2.

12 Table 1 The complete summary of signal values for each method of T 1 measurement at each time interval. The maximum signals of 57.9mV at t = 2 and 22.4mV at t = 122 can also be seen in Figures 7-10 as the uppermost points on each graph. Discussion Before commenting on the transportation box s absolute capability to preserve hyperpolarization in 129 Xe, the accuracy of the T 1 values must be considered. There is a 218% increase in T 1 from the lowest result to the highest, indicating that one of the methods is not entirely reliable. The purpose of applying and using trend lines to obtain data is to observe the overall trend of signal acquisition over 20ms. The ideal signal used to calculate T 1 from Equation 2 is at the start of that short time frame; Figure 9 in particular shows variation in the signal data over 20ms due to the polarimetry station s inherent frequency. The use of absolute signal maxima to calculate T 1 is not an accurate practice because this method includes noise in signal data. Subtracting the noise from the signal is not a simple exercise and requires complicated processing. Using trend lines to estimate the signal is a much easier way to obtain approximate

13 T 1 values. It is clear that the T 1 value of 127 minutes is a large overestimate because it does not consider the noise included in the signal data at all. Therefore, the T 1 value for the transportation box is between 40 and 75 minutes. The box could likely maintain hyperpolarization of 129 Xe if it is used to transport the gas for less than an hour. Longitudinal relaxation times increase when a magnetic field of greater magnitude is applied to the HNG. For example, a T 1 of up to 3 hours is exhibited when a 1.5 T magnetic field is applied to hyperpolarized 129 Xe. 4 The maximum magnetic field of 3.65 mt through the box s solenoid coil is considerably less than that value. Therefore, a T 1 value for the box of less than an hour is intuitive. The power source of the transportation box is questionable. The battery needed a charge of more than a day to exhibit a useful magnetic field for a long period of time. In a situation where a portable power source is available, the battery s charging time is irrelevant to the box s ability to preserve hyperpolarization. However, when considering the box as stand-alone technology, a proper battery with decreased charging time would increase its effectiveness. Conclusions and Future Work The transportation box for HNG is capable of maintaining hyperpolarization of 129 Xe for travel times less than an hour. Signal noise at the polarimetry station must be considered when calculating the longitudinal relaxation time T 1. Relevant future work includes the exploration of alternate power sources for the box. A battery with shorter charging time is recommended. Additionally, the exploration of power sources that supply stronger current to the solenoid coil is a relevant area of study. An increase

14 in current results in increased magnetic field; the effect on the box s T 1 could be explored. The effects of alternate solenoid coil size on T 1 could also be examined. Acknowledgements Thanks go to Dr. Giles Santyr, Adam Farag and the rest of the Santyr research group for their support and feedback throughout my project.

15 References 1. Hoffman EA, Clough AV, Christensen GE, Lin C. The Comprehensive Imaging-Based Analysis of the Lung. Acad Radiol. 2004; 11: Faulkner, Wm. Basic Principles of MRI. Outsource Inc Kraayvanger, R. Measurements of Alveolar Oxygen Partial Pressure and Apparent Diffusion Coefficient of Hyperpolarized Gas in Rat Lung at 74 mt. The University of Western Ontario Zhao L, Mulkern R, Tseng CH, Williamson D, Patz S. Gradient-Echo Imaging Considerations for Hyperpolarized 129 Xe MR. J Magn Reson B. 1996; 113: Whiting N, Nikolaou P, Eschmann NA, Goodson BM, Barlow MJ. Interdependence of in-cell xenon density and temperature during Rb/ 129 Xe spin-exchange optical pumping using VHG-narrowed laser diode arrays. J Magn Reson. 2011; 208: Lowther DA, Freeman EM. The application of the research work of James Clerk Maxwell in electromagnetics to industrial frequency problems. Philos Transact A Math Phys Eng Sci. 2008; 366(1871): Farag A. Preliminary tests and results for basement polarimetry station. Robarts Research Institute

4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a

4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a BASIC PRINCIPLES INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE (NMR) 1. The nuclei of certain atoms with odd atomic number, and/or odd mass behave as spinning charges. The nucleus is the center of positive

More information

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE References for Nuclear Magnetic Resonance 1. Slichter, Principles of Magnetic Resonance, Harper and Row, 1963. chapter

More information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007 PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow

More information

13C NMR Spectroscopy

13C NMR Spectroscopy 13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

More information

Basic Principles of Magnetic Resonance

Basic Principles of Magnetic Resonance Basic Principles of Magnetic Resonance Contents: Jorge Jovicich jovicich@mit.edu I) Historical Background II) An MR experiment - Overview - Can we scan the subject? - The subject goes into the magnet -

More information

GE Medical Systems Training in Partnership. Module 8: IQ: Acquisition Time

GE Medical Systems Training in Partnership. Module 8: IQ: Acquisition Time Module 8: IQ: Acquisition Time IQ : Acquisition Time Objectives...Describe types of data acquisition modes....compute acquisition times for 2D and 3D scans. 2D Acquisitions The 2D mode acquires and reconstructs

More information

Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance NMR is probably the most useful and powerful technique for identifying and characterizing organic compounds. Felix Bloch and Edward Mills Purcell were awarded the 1952 Nobel

More information

E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

More information

Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading:

Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading: Applied Spectroscopy Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading: Banwell and McCash Chapter 7 Skoog, Holler Nieman Chapter 19 Atkins, Chapter 18 Relaxation processes We need

More information

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.

More information

Magnetic Resonance Imaging

Magnetic Resonance Imaging Magnetic Resonance Imaging What are the uses of MRI? To begin, not only are there a variety of scanning methodologies available, but there are also a variety of MRI methodologies available which provide

More information

Sound Power Measurement

Sound Power Measurement Sound Power Measurement A sound source will radiate different sound powers in different environments, especially at low frequencies when the wavelength is comparable to the size of the room 1. Fortunately

More information

A Practical Guide to Free Energy Devices

A Practical Guide to Free Energy Devices A Practical Guide to Free Energy Devices Electrolysis Patents No 14: Last updated: 28th January 2006 Author: Patrick J. Kelly Please note that this is a re-worded excerpt from this patent. If the content

More information

Polarization of Light

Polarization of Light Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights

More information

A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS

A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS Joseph J. Stupak Jr, Oersted Technology Tualatin, Oregon (reprinted from IMCSD 24th Annual Proceedings 1995) ABSTRACT The

More information

Diffusione e perfusione in risonanza magnetica. E. Pagani, M. Filippi

Diffusione e perfusione in risonanza magnetica. E. Pagani, M. Filippi Diffusione e perfusione in risonanza magnetica E. Pagani, M. Filippi DW-MRI DIFFUSION-WEIGHTED MRI Principles Diffusion results from a microspic random motion known as Brownian motion THE RANDOM WALK How

More information

Lecture 22. Inductance. Magnetic Field Energy. Outline:

Lecture 22. Inductance. Magnetic Field Energy. Outline: Lecture 22. Inductance. Magnetic Field Energy. Outline: Self-induction and self-inductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.

More information

Functional neuroimaging. Imaging brain function in real time (not just the structure of the brain).

Functional neuroimaging. Imaging brain function in real time (not just the structure of the brain). Functional neuroimaging Imaging brain function in real time (not just the structure of the brain). The brain is bloody & electric Blood increase in neuronal activity increase in metabolic demand for glucose

More information

ELECTRON SPIN RESONANCE Last Revised: July 2007

ELECTRON SPIN RESONANCE Last Revised: July 2007 QUESTION TO BE INVESTIGATED ELECTRON SPIN RESONANCE Last Revised: July 2007 How can we measure the Landé g factor for the free electron in DPPH as predicted by quantum mechanics? INTRODUCTION Electron

More information

Optiffuser. High-performance, high bandwidth lightweight 1D diffuser.

Optiffuser. High-performance, high bandwidth lightweight 1D diffuser. Optiffuser High-performance, high bandwidth lightweight 1D diffuser. General product information The Optiffuser comes in packs of four panels. Two positives and two negatives (see page 5) per package.

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of

More information

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise. Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

More information

How To Understand The Measurement Process

How To Understand The Measurement Process April 24, 2015 Exam #3: Solution Key online now! Graded exams by Monday! Final Exam Monday, May 4 th, 10:30 a.m. Room: Perkins 107 1 A Classical Perspective A classical view will help us understand the

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Introduction NMR is the most powerful tool available for organic structure determination. It is used to study a wide variety of nuclei: 1 H 13 C 15 N 19 F 31 P 2

More information

Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide)

Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide) Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide) OVERVIEW Students will measure a sound wave by placing the Ward s DataHub microphone near one tuning fork A440 (f=440hz). Then

More information

Robot Perception Continued

Robot Perception Continued Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart

More information

CHEM 1411 Chapter 5 Homework Answers

CHEM 1411 Chapter 5 Homework Answers 1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of

More information

PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR)

PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR) PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR) WHAT IS H-NMR SPECTROSCOPY? References: Bruice 14.1, 14.2 Introduction NMR or nuclear magnetic resonance spectroscopy is a technique used to determine

More information

Objectives 404 CHAPTER 9 RADIATION

Objectives 404 CHAPTER 9 RADIATION Objectives Explain the difference between isotopes of the same element. Describe the force that holds nucleons together. Explain the relationship between mass and energy according to Einstein s theory

More information

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb: Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6 Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions 24 multiple choice questions. You may need to do some calculation.

More information

Trace Gas Exchange Measurements with Standard Infrared Analyzers

Trace Gas Exchange Measurements with Standard Infrared Analyzers Practical Environmental Measurement Methods Trace Gas Exchange Measurements with Standard Infrared Analyzers Last change of document: February 23, 2007 Supervisor: Charles Robert Room no: S 4381 ph: 4352

More information

Particle Surface Area

Particle Surface Area Particle Surface Area TM Introducing the Acorn Area TM The Acorn Area TM is a revolutionary instrument designed to measure the surface area of nanoparticles dispersed in a liquid. This patented nuclear

More information

Iron Powder Cores for Switchmode Power Supply Inductors. by: Jim Cox

Iron Powder Cores for Switchmode Power Supply Inductors. by: Jim Cox HOME APPLICATION NOTES Iron Powder Cores for Switchmode Power Supply Inductors by: Jim Cox Purpose: The purpose of this application note is to cover the properties of iron powder as a magnetic core material

More information

Projects at the Danish Research Centre for Magnetic Resonance

Projects at the Danish Research Centre for Magnetic Resonance Projects at the Danish Research Centre for Magnetic Resonance Five projects involving Magnetic Resonance Imaging (MRI) Hvidovre Hospital Example: [1-13C]Pyruvate signal enhanced by ~50,000x! Magnetic Resonance

More information

Chapter 8 Basic Concepts of the Chemical Bonding

Chapter 8 Basic Concepts of the Chemical Bonding Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question

More information

6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields.

6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. 6/016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. APPARATUS: Electron beam tube, stand with coils, power supply,

More information

Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72

Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72 Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72 Problem 25.7) A light beam traveling in the negative z direction has a magnetic field B = (2.32 10 9 T )ˆx + ( 4.02 10 9 T )ŷ

More information

Structure and Properties of Atoms

Structure and Properties of Atoms PS-2.1 Compare the subatomic particles (protons, neutrons, electrons) of an atom with regard to mass, location, and charge, and explain how these particles affect the properties of an atom (including identity,

More information

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated

More information

Anatech Electronics, Inc.

Anatech Electronics, Inc. Like all types of RF and microwave filters, ceramic filters have unique characteristics that differentiate them from their counterparts and make them useful for specific applications. Ceramic filters are

More information

A Comparison of the Measured Magnetic Field Strength Using Ampere-Turns (AT) and millitesla (mt)

A Comparison of the Measured Magnetic Field Strength Using Ampere-Turns (AT) and millitesla (mt) MEDER electronic AT vs. mt A Comparison of the Measured Magnetic Field Strength Using Ampere-Turns (AT) and millitesla (mt) With the advent of the Reed Switch, developed by Bell Labs in the 1940s, it was

More information

Experiment 5. Lasers and laser mode structure

Experiment 5. Lasers and laser mode structure Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

More information

Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged

More information

Subminiature Load Cell Model 8417

Subminiature Load Cell Model 8417 w Technical Product Information Subminiature Load Cell 1. Introduction... 2 2. Preparing for use... 2 2.1 Unpacking... 2 2.2 Using the instrument for the first time... 2 2.3 Grounding and potential connection...

More information

Atomic Force Microscope and Magnetic Force Microscope Background Information

Atomic Force Microscope and Magnetic Force Microscope Background Information Atomic Force Microscope and Magnetic Force Microscope Background Information Lego Building Instructions There are several places to find the building instructions for building the Lego models of atomic

More information

Use the following image to answer the next question. 1. Which of the following rows identifies the electrical charge on A and B shown above?

Use the following image to answer the next question. 1. Which of the following rows identifies the electrical charge on A and B shown above? Old Science 30 Physics Practice Test A on Fields and EMR Test Solutions on the Portal Site Use the following image to answer the next question 1. Which of the following rows identifies the electrical charge

More information

Laser diffuse reflection light scanner with background suppression. Dimensioned drawing

Laser diffuse reflection light scanner with background suppression. Dimensioned drawing Specifications and description HRTL 3B Laser diffuse reflection light scanner with background suppression Dimensioned drawing We reserve the right to make changes DS_HRTL3B_en.fm en 01-2010/12 50114049

More information

Metastability Exchange Optical Pumping of Helium-3 at High Pressures and 1.5 T: Comparison of two Optical Pumping Transitions

Metastability Exchange Optical Pumping of Helium-3 at High Pressures and 1.5 T: Comparison of two Optical Pumping Transitions Metastability Exchange Optical Pumping of Helium-3 at High Pressures and 1.5 T: Comparison of two Optical Pumping Transitions Marie Abboud, Alice Sinatra, Geneviève Tastevin, Pierre-Jean Nacher, Xavier

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

NUCLEAR MAGNETIC RESONANCE. Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706

NUCLEAR MAGNETIC RESONANCE. Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706 (revised 4/21/03) NUCLEAR MAGNETIC RESONANCE Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706 Abstract This experiment studies the Nuclear Magnetic Resonance of protons

More information

The Control of ph and Oxidation Reduction Potential (ORP) in Cooling Tower Applications By Charles T. Johnson, Walchem Corporation

The Control of ph and Oxidation Reduction Potential (ORP) in Cooling Tower Applications By Charles T. Johnson, Walchem Corporation The Control of ph and Oxidation Reduction Potential (ORP) in Cooling Tower Applications By Charles T. Johnson, Walchem Corporation Introduction The importance of keeping cooling tower water in proper chemical

More information

Physics 221 Experiment 5: Magnetic Fields

Physics 221 Experiment 5: Magnetic Fields Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found

More information

Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

More information

World-first Proton Pencil Beam Scanning System with FDA Clearance

World-first Proton Pencil Beam Scanning System with FDA Clearance Hitachi Review Vol. 58 (29), No.5 225 World-first Proton Pencil Beam Scanning System with FDA Clearance Completion of Proton Therapy System for MDACC Koji Matsuda Hiroyuki Itami Daishun Chiba Kazuyoshi

More information

Charger Output AC Ripple Voltage and the affect on VRLA batteries

Charger Output AC Ripple Voltage and the affect on VRLA batteries TECHNICAL BULLETIN 41-2131 Charger Output AC Ripple Voltage and the affect on VRLA batteries Please Note: The information in this technical bulletin was developed for C&D Dynasty 12 Volt VRLA products.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Practice Questions - Chapter 7 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which one of the following represents an impossible set of

More information

RULES AND REGULATIONS RELATING TO QUALITY ASSURANCE STANDARDS FOR MAGNETIC RESONANCE IMAGING (R-23-17-MRI)

RULES AND REGULATIONS RELATING TO QUALITY ASSURANCE STANDARDS FOR MAGNETIC RESONANCE IMAGING (R-23-17-MRI) RULES AND REGULATIONS RELATING TO QUALITY ASSURANCE STANDARDS FOR MAGNETIC RESONANCE IMAGING (R-23-17-MRI) STATE OF RHODE ISLAND AND PROVIDENCE PLANTATIONS DEPARTMENT OF HEALTH January 2000 As Amended:

More information

Renewable Energy. Solar Power. Courseware Sample 86352-F0

Renewable Energy. Solar Power. Courseware Sample 86352-F0 Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this

More information

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER

More information

The accurate calibration of all detectors is crucial for the subsequent data

The accurate calibration of all detectors is crucial for the subsequent data Chapter 4 Calibration The accurate calibration of all detectors is crucial for the subsequent data analysis. The stability of the gain and offset for energy and time calibration of all detectors involved

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the

More information

Introduction to the Ideal Gas Law

Introduction to the Ideal Gas Law Course PHYSICS260 Assignment 5 Consider ten grams of nitrogen gas at an initial pressure of 6.0 atm and at room temperature. It undergoes an isobaric expansion resulting in a quadrupling of its volume.

More information

E190Q Lecture 5 Autonomous Robot Navigation

E190Q Lecture 5 Autonomous Robot Navigation E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

More information

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate.

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate. Series ONS SET-1 Roll No. Candiates must write code on the title page of the answer book Please check that this question paper contains 16 printed pages. Code number given on the right hand side of the

More information

Application Note 58 Crystal Considerations with Dallas Real Time Clocks

Application Note 58 Crystal Considerations with Dallas Real Time Clocks www.dalsemi.com Application Note 58 Crystal Considerations with Dallas Real Time Clocks Dallas Semiconductor offers a variety of real time clocks (RTCs). The majority of these are available either as integrated

More information

MCQ - ENERGY and CLIMATE

MCQ - ENERGY and CLIMATE 1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated

More information

Blackbody Radiation References INTRODUCTION

Blackbody Radiation References INTRODUCTION Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt

More information

IDEAL AND NON-IDEAL GASES

IDEAL AND NON-IDEAL GASES 2/2016 ideal gas 1/8 IDEAL AND NON-IDEAL GASES PURPOSE: To measure how the pressure of a low-density gas varies with temperature, to determine the absolute zero of temperature by making a linear fit to

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Author: James Dragan Lab Partner: Stefan Evans Physics Department, Stony Brook University, Stony Brook, NY 794. (Dated: December 5, 23) We study the principles behind Nuclear

More information

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across? PHYS Practice Problems hapters 8- hapter 8. 45. The peak value of an alternating current in a 5-W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,

More information

Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0 1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral

More information

Effects of Cell Phone Radiation on the Head. BEE 4530 Computer-Aided Engineering: Applications to Biomedical Processes

Effects of Cell Phone Radiation on the Head. BEE 4530 Computer-Aided Engineering: Applications to Biomedical Processes Effects of Cell Phone Radiation on the Head BEE 4530 Computer-Aided Engineering: Applications to Biomedical Processes Group 3 Angela Cai Youjin Cho Mytien Nguyen Praveen Polamraju Table of Contents I.

More information

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region

More information

Objectives. Electric Current

Objectives. Electric Current Objectives Define electrical current as a rate. Describe what is measured by ammeters and voltmeters. Explain how to connect an ammeter and a voltmeter in an electrical circuit. Explain why electrons travel

More information

STUDY GUIDE: ELECTRICITY AND MAGNETISM

STUDY GUIDE: ELECTRICITY AND MAGNETISM 319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: info@questionsgalore.net Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three

More information

Advances in scmos Camera Technology Benefit Bio Research

Advances in scmos Camera Technology Benefit Bio Research Advances in scmos Camera Technology Benefit Bio Research scmos camera technology is gaining in popularity - Why? In recent years, cell biology has emphasized live cell dynamics, mechanisms and electrochemical

More information

SECTION 13. Multipliers. Outline of Multiplier Design Process:

SECTION 13. Multipliers. Outline of Multiplier Design Process: SECTION 13 Multipliers VMI manufactures many high voltage multipliers, most of which are custom designed for specific requirements. The following information provides general information and basic guidance

More information

Magnetic Field and Magnetic Forces

Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 Magnets

More information

Nondestructive Testing and Evaluation of Steel Bridges

Nondestructive Testing and Evaluation of Steel Bridges Abstract Nondestructive Testing and Evaluation of Steel Bridges James Bader ENCE 710 Spring 2008 Nondestructive evaluation (NDE) is a means of evaluating structural components without damaging them. It

More information

Introduction to Nuclear Magnetic Resonance Spectroscopy

Introduction to Nuclear Magnetic Resonance Spectroscopy Introduction to Nuclear Magnetic Resonance Spectroscopy Dr. Dean L. Olson, NMR Lab Director School of Chemical Sciences University of Illinois Called figures, equations, and tables are from Principles

More information

Pulsed Fourier Transform NMR The rotating frame of reference. The NMR Experiment. The Rotating Frame of Reference.

Pulsed Fourier Transform NMR The rotating frame of reference. The NMR Experiment. The Rotating Frame of Reference. Pulsed Fourier Transform NR The rotating frame of reference The NR Eperiment. The Rotating Frame of Reference. When we perform a NR eperiment we disturb the equilibrium state of the sstem and then monitor

More information

Spin Tracking with COSY INFINITY and its Benchmarking

Spin Tracking with COSY INFINITY and its Benchmarking Spin Tracking with COSY INFINITY and its Benchmarking 2015-05-05 Marcel Rosenthal for the JEDI collaboration Outline Methods Simulation toolbox New extension: Transfer maps for time-varying fields Application

More information

EASIDEW PORTABLE HYGROMETER INSTALLATION, OPERATION AND MAINTENANCE MANUAL

EASIDEW PORTABLE HYGROMETER INSTALLATION, OPERATION AND MAINTENANCE MANUAL EASIDEW PORTABLE HYGROMETER INSTALLATION, OPERATION AND MAINTENANCE MANUAL Issue February 2004 2 TABLE OF CONTENTS SECTION PAGE 1. INTRODUCTION 3 1.1 General 3 1.2 Ceramic Sensing Element 3 1.3 Calibration

More information

Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy CHEM 334L Organic Chemistry Laboratory Revision 2.0 Proton Nuclear Magnetic Resonance Spectroscopy In this laboratory exercise we will learn how to use the Chemistry Department's Nuclear Magnetic Resonance

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

More information

Continuous flow direct water heating for potable hot water

Continuous flow direct water heating for potable hot water Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial

More information

Electromechanical Relays - Frequently Asked Questions

Electromechanical Relays - Frequently Asked Questions Electromechanical Relays - Frequently Asked Questions Q: What is the contact carry rating? A: Our EMR are capable of hot switching 28W load plus 100 cycles of overload condition at 56W. Therefore at a

More information

6.5 Periodic Variations in Element Properties

6.5 Periodic Variations in Element Properties 324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Practical Course M I. Physikalisches Institut Universität zu Köln May 15, 2014 Abstract Nuclear magnetic resonance (NMR) techniques are widely used in physics, chemistry, and

More information

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states. Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

More information

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue

More information

Calibration and Use of a Strain-Gage-Instrumented Beam: Density Determination and Weight-Flow-Rate Measurement

Calibration and Use of a Strain-Gage-Instrumented Beam: Density Determination and Weight-Flow-Rate Measurement Chapter 2 Calibration and Use of a Strain-Gage-Instrumented Beam: Density Determination and Weight-Flow-Rate Measurement 2.1 Introduction and Objectives This laboratory exercise involves the static calibration

More information

WJP, PHY381 (2015) Wabash Journal of Physics v4.3, p.1. Cloud Chamber. R.C. Dennis, Tuan Le, M.J. Madsen, and J. Brown

WJP, PHY381 (2015) Wabash Journal of Physics v4.3, p.1. Cloud Chamber. R.C. Dennis, Tuan Le, M.J. Madsen, and J. Brown WJP, PHY381 (2015) Wabash Journal of Physics v4.3, p.1 Cloud Chamber R.C. Dennis, Tuan Le, M.J. Madsen, and J. Brown Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated: May 7, 2015)

More information

KNOWLEDGE BASE ARTICLE Zero Voltage Transmission (ZVT) Technology. Basics of the GPZ 7000 Technology: Zero Voltage Transmission (ZVT)

KNOWLEDGE BASE ARTICLE Zero Voltage Transmission (ZVT) Technology. Basics of the GPZ 7000 Technology: Zero Voltage Transmission (ZVT) KNOWLEDGE BASE ARTICLE Zero Voltage Transmission (ZVT) Technology Basics of the GPZ 7000 Technology: Zero Voltage Transmission (ZVT) By Bruce Candy Basic Metal Detection Principles 1 2 3 4 Simplified representation

More information