The CHROMacademy Essential Guide Understanding GC-MS Analysis Part 1

Size: px
Start display at page:

Download "The CHROMacademy Essential Guide Understanding GC-MS Analysis Part 1"

Transcription

1 The CHROMacademy Essential Guide Understanding GC-MS Analysis Part 1

2 Speakers John Hinshaw GC Dept. Dean CHROMacademy Tony Taylor Technical Director Crawford Scientific Moderator M ( g ) e M ( g ) 2e Peter Houston Editorial Director LCGC Magazine

3

4 Aims & Objectives When to use GC-MS Overview of a typical GC-MS System GC Considerations Interfacing the GC and MS Components Ionisation Electron Impact Ionisation Chemical Ionisation Introduction to Mass Analysers Ion Detection Systems Vacuum Systems Introduction to GC-MS data analysis

5 When to Use GC-MS GC-MS combines the separating power of Gas Chromatography (GC), with the detection power of mass spectrometry (MS) GC-MS is primarily used for: - Identification or characterisation of analytes within the sample - Increased analytical sensitivity in the absence of a compound or element specific detector such as ECD, NPD, FPD or chemiluminesence Typical Electron Impact Ionisation Spectrum of the Cocaine molecule GC-MS Total Ion Chromatogram used to quantify an environmental pollutant

6 A Typical GC-MS System 1. Pneumatic controls 2. Injector 3. Oven 4. Column 5. Interface 6. Ion Source 7. Mass Analyser 8. Detector 9. Vacuum System 10. Control Electronics

7 The GC-MS Process 1. Sample Introduction 2. Sample components separation 3. Transfer from the GC Column into the high vacuum of the mass analyser 4. Ionisation of sample components 5. Separation and detection of gas phase ions

8 GC Carrier Gas Considerations Gas Purity of % recommended Oxygen, Moisture and Hydrocarbons should be scrubbed from the gas supply Carrier gas flow rates limited to <2ml/min. due to detector vacuum system which limits column choice to some extent Typical Column Flow Rates for a number of Carrier Gas / Column Geometry Combinations

9 GC Ferrules & Septa Ferrules form a seal between the column and the inlet and detector connections GC-MS has a special requirement for ferrules to be impermeable to air / oxygen (reduces air background signal in the mass spectrometer) Preferred ferrule materials for GC-MS are graphite / vespel composites or special metal ferrules Septum bleed products must also be reduced Septa Material & GC-MS Compatibility

10 Stationary Phase Selection for GC-MS Due to the nature of the detector low bleed phases are preferred for GC-MS This reduces the background signal and contributes spurious ions to the spectra of compounds of interest Column Bleed increases with Temperature Column Length, Film Thickness & Polarity Special low bleed phases exist with Silphenylene chemistry and many manufacturers offer MS designated phases Specially immobilised PLOT columns should be used to prevent evolution of particulate material into the ion-source Silphenylene low-bleed Phenyl phase chemistry Traditional Phenyl phase chemistry

11 Common Contaminant Ions in GC-MS

12 Interfacing GC with MS Detection The column outlet needs to be connected to the ion source of the mass spectrometer and fulfill the following conditions: - Analyte must not condense in the interface - Analyte must not decompose before entering the mass spectrometer ion source - The gas load (dictated by the mobile phase gas flow rate) entering the ion source must be within the pumping capacity of the mass spectrometer Most capillary GC-MS interfaces directly couple the column exit with MS ion source. The advent of capillary columns brought about a significant reduction in the volumetric gas flow exiting the column (typically 1ml/min or below for columns of 0.32mm id and less), and the need to split the analyte away from the carrier gas to reduce gas load into the ion source was eliminated.

13 Direct GC-MS Interfaces Column is inserted directly into the mass spectrometer ionisation chamber This interface gives the highest sensitivity Changing the GC column may be a time consuming process unless curtain gas devices are fitted Usually heated >10 o C above the final oven temperature program and at a lower temperature than the ion source Analyte degradation should be avoided Temperature Zones: Column Oven > Interface > Ion Source > Quadrupole

14 mov1

15 GC Interface Connection The connection must be gas tight Traditional nut and ferrule couplings into the transfer device are common Several devices are available to facilitate vent-free columnchange including: - Curtain gas connectors - Couplings with restrictors - Couplings using deactivated silica tubing pig-tails

16 Analyte Ionisation Electron Impact (EI) 1. Sample introduced directly into the ion source 2. Electrons are emitted from a heated filament 3. Accelerated using an appropriate potential (5-100V) to achieve the required electron energy 4. The industry standard for the electron energy is 70ev (electron volts) which 5. Resulting ions are accelerated out of the source using an electrostatic potential 6. Ion beam is focused using electrostatic lenses

17 mov2

18 Electron Impact Ionisation Process M ( e M 2e g ) ( g ) 1. The bombarding electron at 70eV abstracts an electron from the analyte molecule (M) 2. All 70eV is transferred to the analyte molecule which becomes a Radical Cation 3. Depending upon the magnitude of the analyte 1 st Ionisation Potential (energy required to remove 1 electron from an atom within the molecule) there may be excess energy remaining 4. This remaining energy may cause the analyte to fragment through further bond cleavage 5. The molecule may also undergo simple intermolecular rearrangement reactions 6. Any charged fragments and re-arrangement products will appear as signals within the mass spectrum

19 Typical EI Spectra 1. EI is a relatively harsh technique inducing fragmentation in many cases 2. The intensity of the molecular ion varies depending on analyte radical cation stability 3. The fragmentation pattern can be used to identify the analyte molecule and acts as a fingerprint of the molecule 4. Commercial (70eV) or in-house libraries may be searched by the instrument data system to provide a tentative match for the unknown spectrum 5. Experienced users may undertake ab. initio. interpretation to elucidate the molecular structure from the mass spectrum

20 Analyte Ionisation Chemical Ionisation (CI) 1. Chemical ionisation involves the ionisation of a reagent gas, such as methane or ammonia at relatively high pressure (~1 mbar) in an electron impact source 2. Once produced, the reagent gas ions collide with the analyte molecules producing ions through gas phase reaction processes such as proton transfer and adduction 3. Reagent gas, gas pressure and stability of gas pressure are critical

21 mov3

22 Chemical Ionisation Process NH4 e NH4 2e NH 4 M NH3 [ M H] NH [ ] 4 M M NH4 (Production of the reagent gas ion) (Analyte ionised by Proton Transfer) (Analyte ionised by Adduct Formation) 1. CI is a soft ionisation technique compared to EI 2. All 70eV is transferred to the analyte molecule which becomes a Radical Cation 3. Appearance of the spectra heavily influence buy the choice of reagent gas methane / isobutane / ammonia / combinations 4. Tuning the mass spectrometer to calibrate the mass axis / resolution and relative response across the mass range is more difficult in CI

23 Typical CI Spectra 1. Energy of reagent gas rarely exceeds 5eV 2. Softer ionisation technique gives rise to more intense molecular ions and fewer fragments (library searching more difficult) Afalatoxin B1 3. Useful for obtaining the molecular weight of the analyte 4. Operates in two modes negative ion and positive mode 5. Negative ion mode is highly sensitive used for ultra-trace analysis of halogenated compounds (capable of electron capture) 6. Positive ion mode less sensitive as reagent gas is also detected

24 Mass Analysers The Quadrupole 1. Ions are separated according to their mass-to-charge ratio (m/z) as they pass along the central axis of four parallel equidistant rods (or poles) 2. Ion separation is performed using controlled voltages applied to the mass analyser rods which impart an electrostatic field inside the analysing device. 3. As long as x and y, which determine the position of an ion from the centre of the rods, remains less than r 0, the ion will be able to pass through the quadrupole without touching the rods. This is known as a non-collisional or stable trajectory.

25 Mass Analysers The Quadrupole (II) 4. Where the ion is caused to oscillate with a trajectory whose amplitude exceeds r0 it will collide with a rod, and become discharged and subsequently pumped to waste 5. This is known as an unstable or collisional trajectory.

26 Quadrupole Advantages & Limitations Advantages Disadvantages Reproducibility Low cost Low resolution Mass discrimination. (Peak height vs. mass response must be 'tuned ) Limited scanning speeds compared to other analyser types (Not suiable for very fast GC analysis with very narrow peaks)

27 Mass Analysers - Time of Flight (ToF) 1. Ions are extracted (or produced) in short bursts or packets within the ion source and subjected to an accelerating voltage. 2. The ions then drift or fly down an evacuated tube of a set length ( d ). Once free from the region of accelerating voltage the speed at which the ions travel down the tube is dependant upon their mass (m) and charge (z). 3. All ions are detected (almost) simultaneously. 4. Scanning the mass range of all ions is very rapid and as such the inherent sensitivity of the instrument is increased.

28 Mass Analysers - Time of Flight (ToF) (II) 5. Most modern ToF instruments use orthogonal acceleration ( oa ) pusher for improved instrument performance 6. Increasing the length of the flight tube using an ion mirror or reflectron leads to an increase in the resolution of the instrument

29 mov4

30 ToF Advantages and Limitations Advantages High ion transmission Highest practical mass range of all MS analyzers Very Low Detection limits Disadvantages Fast digitizers used in TOF can have limited dynamic range Cost (but this is becoming less of a barrier) High mass accuracy and resolution (Will give elemental composition possibilities)

31 Mass Analysers Ion Traps 1. Ion trap mass spectrometers work on the basis of storing ions in a trap, and manipulating the ions by using applied DC and RF fields. 2. The amplitude of the applied voltages enables the analyser to trap ions of specified mass to charge ratio within the analysing device. 3. Non-selected ions are given a trajectory by the electrostatic field that causes them to exit the trap.

32 Mass Analysers Ion Traps (II) 4. By filling the trap with an inert gas fragmentation of selected ions is possible - useful when structural information is required. 5. Can perform multiple product ion scans with very good sensitivity (MS n ) 6. Spectra acquired with an ion trap mass analyser may be significantly different to those acquired from a triple quadrupole system due to the different collision regimes within the systems (collision energy/gas).

33 mov5

34 Ion Traps Advantages & Limitations Advantages Disadvantages High sensitivity Multiple Product Ion scan capability (MS) n High resolution Good specificity and capable of data dependant scanning (i.e. Automated MS/MS) Produces very unusual spectra if the ions are stored in the trap too long. Easily saturated Poor for low mass work (below 100 Da) Poor dynamic range (except the most modern devices) and hence may have limited quantitative use

35 GC-MS Detectors Once the ions have passed the mass analyser they have to be detected and transformed into a usable signal. The detector is an important element of the mass spectrometer that generates a signal from incident ions by either generating secondary electrons, which are further amplified, or by inducing a current (generated by moving charges)

36 GC-MS Detectors Point detectors: ions are not spatially resolved and sequentially impinge upon a detector situated at a single point within the spectrometer geometry. Array detectors: ions are spatially resolved and all ions arrive simultaneously (or near simultaneously) and are recorded along a plane using a bank of detectors.

37 GC-MS Vacuum Systems The entire MS process must be carried out at very low pressures (~10-8 atm) A high level of vacuum within the instrument assists the processes of ion movement and separation in the following ways: By providing an adequate mean free path for the analyte ions By providing collision free ion trajectories By reducing ion-molecular reactions By reducing background interference Vacuum systems consist of a differentially pumped arrangement: a foreline pump establishing a rough vacuum and a high vacuum pump or pumps situated on the analyser body to establish the high levels of vacuum required for effective mass to charge ratio measurement.

38 GC-MS Vacuum Systems High Vacuum Turbomolecular Pump: 10-6 to 10-8 Torr Oil Filled Rotary Foreline (Rough) Pump: 10-2 Torr

39 GC-MS Data Quadrupole GC-MS systems operate in two distinct modes Scanning and Selected Ion Recording In SCAN mode, the quadrupole settings are ramped through a range of values which allow successively lower mass to charge ratio ions to pass through the analyser scaning the mass range of ions emerging from the quadrupole device The scanning operation takes a finite time to complete (although scan rates of 5-20Hz are typical) and each individual m/z value is measured for only a fraction of the time that they elute into the mass analyser The Total Ion Chromtogram (Current) (TIC) is constructed by summing the abundance of all ions within a spectrum at a particular time point and plotting total abundance against the time at which the spectrum was acquired

40 mov6

41 GC-MS Data By choosing to set the quadrupole to certain voltage values, we are able to choose only certain masses for transmission through the mass analyser This type of spectral experiment, called selected or specific ion monitoring (SIM), or selected ion recording (SIR), has certain advantages over scanning wide mass ranges The advantage here is gained because the analyser concentrates on useful ion signals from the analyte of interest and not on noise gaining significantly on signal to noise ratio Because not all m/z values are recorded the mass analyser can carry out a SIM experiment very rapidly ( increase over scanning experiment speeds) therefore acquiring more data points to accurately model the peak shape

42 GC-MS Data

43 CHROMacademy & CHROMmunity Today's Webcast was brought to you by CHROMacademy: Join CHROMacademy for $295 per year includes all CHROMacademy classes, labs, library and webcasts All questions will be answered within CHROMmunity:

Pesticide Analysis by Mass Spectrometry

Pesticide Analysis by Mass Spectrometry Pesticide Analysis by Mass Spectrometry Purpose: The purpose of this assignment is to introduce concepts of mass spectrometry (MS) as they pertain to the qualitative and quantitative analysis of organochlorine

More information

Background Information

Background Information 1 Gas Chromatography/Mass Spectroscopy (GC/MS/MS) Background Information Instructions for the Operation of the Varian CP-3800 Gas Chromatograph/ Varian Saturn 2200 GC/MS/MS See the Cary Eclipse Software

More information

13C NMR Spectroscopy

13C NMR Spectroscopy 13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

More information

Split / Splitless Injection for Capillary GC

Split / Splitless Injection for Capillary GC Split / Splitless Injection for Capillary GC Speakers John V Hinshaw CHROMacademy GC Dean GC Connections editor Moderator Tony Taylor CHROMacademy Trainer Technical Director, Crawford Scientific Dave Walsh

More information

Tuning & Mass Calibration

Tuning & Mass Calibration Tuning & Mass Calibration 1 1 The Sample List Sample List Name Project Name 2 The sample list is the top level screen in the TurboMass Gold Software. Data storage is set up in PROJECT files and within

More information

Analyzing Small Molecules by EI and GC-MS. July 2014

Analyzing Small Molecules by EI and GC-MS. July 2014 Analyzing Small Molecules by EI and GC-MS July 2014 Samples Appropriate for GC-MS Volatile and semi-volatile organic compounds Rule of thumb,

More information

Chapter 20 Molecular Mass Spectrometry

Chapter 20 Molecular Mass Spectrometry Problems: 1,, 4, 7, 10, 11, 15, 16 Chapter 0 Molecular Mass Spectrometry Note may have to go over sections of Chapter 11, Atomic Mass Spectrometry 0A Molecular Mass Spectra Figure 0-1 Typical Mass Spectrum

More information

Mass Spectrometry for Chemists and Biochemists

Mass Spectrometry for Chemists and Biochemists Erasmus Intensive Program SYNAPS Univ. of Crete - Summer 2007 Mass Spectrometry for Chemists and Biochemists Spiros A. Pergantis Assistant Professor of Analytical Chemistry Department of Chemistry University

More information

Teaching notes: Time of flight mass spectrometry

Teaching notes: Time of flight mass spectrometry Teaching notes: Time of flight mass spectrometry These teaching notes relate to section 3.1.1.2 Mass numbers and isotopes of our AS and A-level Chemistry specifications (7404, 7405). This resource aims

More information

Overview. Triple quadrupole (MS/MS) systems provide in comparison to single quadrupole (MS) systems: Introduction

Overview. Triple quadrupole (MS/MS) systems provide in comparison to single quadrupole (MS) systems: Introduction Advantages of Using Triple Quadrupole over Single Quadrupole Mass Spectrometry to Quantify and Identify the Presence of Pesticides in Water and Soil Samples André Schreiber AB SCIEX Concord, Ontario (Canada)

More information

Mass Spectrometry. Overview

Mass Spectrometry. Overview Mass Spectrometry Overview Mass Spectrometry is an analytic technique that utilizes the degree of deflection of charged particles by a magnetic field to find the relative masses of molecular ions and fragments.2

More information

Chemistry Instrumental Analysis Lecture 28. Chem 4631

Chemistry Instrumental Analysis Lecture 28. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 28 Gas Chromatography Detectors Gas Chromatography Monitors the column effluent and produces an electrical signal that is proportional to the amount of analyte

More information

Thermo Scientific GC-MS Data Acquisition Instructions for Cerno Bioscience MassWorks Software

Thermo Scientific GC-MS Data Acquisition Instructions for Cerno Bioscience MassWorks Software Thermo Scientific GC-MS Data Acquisition Instructions for Cerno Bioscience MassWorks Software Mark Belmont and Alexander N. Semyonov, Thermo Fisher Scientific, Austin, TX, USA Ming Gu, Cerno Bioscience,

More information

Enhancing GCMS analysis of trace compounds using a new dynamic baseline compensation algorithm to reduce background interference

Enhancing GCMS analysis of trace compounds using a new dynamic baseline compensation algorithm to reduce background interference Enhancing GCMS analysis of trace compounds using a new dynamic baseline compensation algorithm to reduce background interference Abstract The advantages of mass spectrometry (MS) in combination with gas

More information

Electrospray Ion Trap Mass Spectrometry. Introduction

Electrospray Ion Trap Mass Spectrometry. Introduction Electrospray Ion Source Electrospray Ion Trap Mass Spectrometry Introduction The key to using MS for solutions is the ability to transfer your analytes into the vacuum of the mass spectrometer as ionic

More information

Top five list for Mass Spectrometry. 1. Molecular weight 2. Fragmentation pattern 3. Isotope ratio 4. Nitrogen rule 5. Exact mass

Top five list for Mass Spectrometry. 1. Molecular weight 2. Fragmentation pattern 3. Isotope ratio 4. Nitrogen rule 5. Exact mass Mass Spectrometry Top five list for Mass Spectrometry 1. Molecular weight 2. Fragmentation pattern 3. Isotope ratio 4. Nitrogen rule 5. Exact mass A Mass Spectrometer A mass spectrometer is designed to

More information

1.1 This test method covers the qualitative and quantitative determination of the content of benzene and toluene in hydrocarbon wax.

1.1 This test method covers the qualitative and quantitative determination of the content of benzene and toluene in hydrocarbon wax. Standard Method for Analysis of Benzene and Toluene Content in Hydrocarbon Waxes by Headspace Gas Chromatography EWF METHOD 002/03 (Version 1 Reviewed 2015) 1 Scope 1.1 This test method covers the qualitative

More information

SCION SQ Series GC-MS

SCION SQ Series GC-MS SCION SQ Series GC-MS The Gas Chromatographers Detector SCION SQ TM GC-MS The SCION SQ series GC-MS systems combine innovative engineering with detailed cutomer requirements to produce a truly innovative

More information

Expectations for GC-MS Lab

Expectations for GC-MS Lab Expectations for GC-MS Lab Since this is the first year for GC-MS to be used in Dr. Lamp s CHEM 322, the lab experiment is somewhat unstructured. As you move through the two weeks, I expect that you will

More information

AMD Analysis & Technology AG

AMD Analysis & Technology AG AMD Analysis & Technology AG Application Note 120419 Author: Karl-Heinz Maurer APCI-MS Trace Analysis of volatile organic compounds in ambient air A) Introduction Trace analysis of volatile organic compounds

More information

Analysis of Blood Alcohol by Headspace with Simultaneous GC-FID and MS Detection. No. GCMS No. SSI-GCMS-1403

Analysis of Blood Alcohol by Headspace with Simultaneous GC-FID and MS Detection. No. GCMS No. SSI-GCMS-1403 Gas Chromatograph Mass Spectrometer No. GCMS-1403 Analysis of Blood Alcohol by Headspace with Simultaneous GC-FID and MS Detection Introduction Determination of Blood Alcohol Content (BAC) has been a standard

More information

Agilent 5977 Series MSD System

Agilent 5977 Series MSD System Agilent 5977 Series MSD System Concepts Guide Agilent Technologies Notices Agilent Technologies, Inc. 2013 No part of this manual may be reproduced in any form or by any means (including electronic storage

More information

PosterREPRINT AN LC/MS ORTHOGONAL TOF (TIME OF FLIGHT) MASS SPECTROMETER WITH INCREASED TRANSMISSION, RESOLUTION, AND DYNAMIC RANGE OVERVIEW

PosterREPRINT AN LC/MS ORTHOGONAL TOF (TIME OF FLIGHT) MASS SPECTROMETER WITH INCREASED TRANSMISSION, RESOLUTION, AND DYNAMIC RANGE OVERVIEW OVERVIEW Exact mass LC/MS analysis using an orthogonal acceleration time of flight (oa-tof) mass spectrometer is a well-established technique with a broad range of applications. These include elemental

More information

GENERAL UNKNOWN SCREENING FOR DRUGS IN BIOLOGICAL SAMPLES BY LC/MS Luc Humbert1, Michel Lhermitte 1, Frederic Grisel 2 1

GENERAL UNKNOWN SCREENING FOR DRUGS IN BIOLOGICAL SAMPLES BY LC/MS Luc Humbert1, Michel Lhermitte 1, Frederic Grisel 2 1 GENERAL UNKNOWN SCREENING FOR DRUGS IN BIOLOGICAL SAMPLES BY LC/MS Luc Humbert, Michel Lhermitte, Frederic Grisel Laboratoire de Toxicologie & Génopathologie, CHRU Lille, France Waters Corporation, Guyancourt,

More information

Simultaneous qualitative and quantitative analysis using the Agilent 6540 Accurate-Mass Q-TOF

Simultaneous qualitative and quantitative analysis using the Agilent 6540 Accurate-Mass Q-TOF Simultaneous qualitative and quantitative analysis using the Agilent 654 Accurate-Mass Q-TOF Technical Overview Authors Pat Perkins Anabel Fandino Lester Taylor Agilent Technologies, Inc. Santa Clara,

More information

INTEGRATED TECHNOLOGY TO SEE THE WHOLE PICTURE. AxION iqt GC/MS/MS

INTEGRATED TECHNOLOGY TO SEE THE WHOLE PICTURE. AxION iqt GC/MS/MS AxION iqt GC/MS/MS INTEGRATED TECHNOLOGY TO SEE THE WHOLE PICTURE IDENTIFY WHAT YOU RE LOOKING FOR (AND EVEN WHAT YOU RE NOT) The GC/MS/MS Solution for the Work You Do The ideal solution for industrial,

More information

The Determination of Low Levels of Benzene, Toluene, Ethylbenzene, Xylenes and Styrene in Olive Oil Using a Turbomatrix HS and a Clarus SQ 8 GC/MS

The Determination of Low Levels of Benzene, Toluene, Ethylbenzene, Xylenes and Styrene in Olive Oil Using a Turbomatrix HS and a Clarus SQ 8 GC/MS application Note Gas Chromatography/ Mass Spectrometry Author A. Tipler, Senior Scientist PerkinElmer, Inc. Shelton, CT 06484 USA The Determination of Low Levels of Benzene, Toluene, Ethylbenzene, Xylenes

More information

QGA Quantitative Gas Analyser

QGA Quantitative Gas Analyser QGA Quantitative Gas Analyser A compact bench-top system for real-time gas and vapour analysis Detailed product information / introduction catalysis studies environmental gas analysis fermentation off-gas

More information

Analytical Testing Methods

Analytical Testing Methods Analytical Testing Methods Updated: February 2005 Background The Mandatory Guidelines for Federal Workplace Drug Testing Programs require a laboratory to conduct two analytical tests before a urine specimen

More information

Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography

Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography INTRODUCTION The analysis of soft drinks for caffeine was able to be performed using UV-Vis. The complex sample

More information

Time-of-Flight Mass Spectrometry

Time-of-Flight Mass Spectrometry Time-of-Flight Mass Spectrometry Technical Overview Introduction Time-of-flight mass spectrometry (TOF MS) was developed in the late 1940 s, but until the 1990 s its popularity was limited. Recent improvements

More information

GC Column Installation, Conditioning, Storage, and Maintenance

GC Column Installation, Conditioning, Storage, and Maintenance GC Column Installation, Conditioning, Storage, and Maintenance Peter Morgan, Thermo Fisher Scientific, Runcorn, Cheshire, UK Technical Note 20684 Key Words Column, installation, conditioning, storage,

More information

Mass Analyzers 1: Time-of-flight

Mass Analyzers 1: Time-of-flight Mass Analyzers 1: Timeofflight CU Boulder CHEM5181 Mass Spectrometry & Chromatography Prof. JoseLuis Jimenez MS Interpretation Lectures High Vacuum Sample Inlet Ion Source Mass Analyzer Detector Recorder

More information

The Characterization of Perfume Fragrances Using GC/MS, Headspace Trap and Olfactory Port

The Characterization of Perfume Fragrances Using GC/MS, Headspace Trap and Olfactory Port APPLICATION NOTE Gas Chromatography/ Mass Spectrometry Authors: Andrew Tipler Sheila Eletto PerkinElmer, Inc. Shelton, CT The Characterization of Perfume Fragrances Using GC/MS, Headspace Trap and Olfactory

More information

An Introduction to Mass Spectrometry

An Introduction to Mass Spectrometry An Introduction to Mass Spectrometry by Scott E. Van Bramer Widener University Department of Chemistry One University Place Chester, PA 19013 svanbram@science.widener.edu http://science.widener.edu/~svanbram

More information

MS Instrumentation. Ionisation 5/8/2008

MS Instrumentation. Ionisation 5/8/2008 Relative abundance Relative Intensity 5/8/2008 In a mass spectrometer -The chemical substance undergo ionization to produce charged particles (ions in the gas phase) -Then the mass of the charged ions

More information

Classical and special AMD Magnetic Sector mass spectrometers (extracted from power point presentations) High Resolution Mass Spectromter

Classical and special AMD Magnetic Sector mass spectrometers (extracted from power point presentations) High Resolution Mass Spectromter Classical and special AMD Magnetic Sector mass spectrometers (extracted from power point presentations) High Resolution Mass Spectromter AMD 402/403 S 6 High Resolution Mass Spectrometer AMD 604 S 8 Version

More information

What is ICP-MS? and more importantly, what can it do?

What is ICP-MS? and more importantly, what can it do? What is ICP-MS? and more importantly, what can it do? Inductively Coupled Plasma Mass Spectrometry or ICP-MS is an analytical technique used for elemental determinations. The technique was commercially

More information

RAPID MARKER IDENTIFICATION AND CHARACTERISATION OF ESSENTIAL OILS USING A CHEMOMETRIC APROACH

RAPID MARKER IDENTIFICATION AND CHARACTERISATION OF ESSENTIAL OILS USING A CHEMOMETRIC APROACH RAPID MARKER IDENTIFICATION AND CHARACTERISATION OF ESSENTIAL OILS USING A CHEMOMETRIC APROACH Cristiana C. Leandro 1, Peter Hancock 1, Christian Soulier 2, Françoise Aime 2 1 Waters Corporation, Manchester,

More information

Lecture Chromo-3: Gas Chromatography. CHEM 5181 Fall 2004 Mass Spectrometry & Chromatography. Jessica Gilman and Prof. Jose-Luis Jimenez CU-Boulder

Lecture Chromo-3: Gas Chromatography. CHEM 5181 Fall 2004 Mass Spectrometry & Chromatography. Jessica Gilman and Prof. Jose-Luis Jimenez CU-Boulder Lecture Chromo-3: Gas Chromatography CHEM 5181 Fall 2004 Mass Spectrometry & Chromatography Jessica Gilman and Prof. Jose-Luis Jimenez CU-Boulder Outline Introduction Instrument overview Carrier gas Sample

More information

CHE334 Identification of an Unknown Compound By NMR/IR/MS

CHE334 Identification of an Unknown Compound By NMR/IR/MS CHE334 Identification of an Unknown Compound By NMR/IR/MS Purpose The object of this experiment is to determine the structure of an unknown compound using IR, 1 H-NMR, 13 C-NMR and Mass spectroscopy. Infrared

More information

Detailed simulation of mass spectra for quadrupole mass spectrometer systems

Detailed simulation of mass spectra for quadrupole mass spectrometer systems Detailed simulation of mass spectra for quadrupole mass spectrometer systems J. R. Gibson, a) S. Taylor, and J. H. Leck Department of Electrical Engineering and Electronics, The University of Liverpool,

More information

Mass Spectrometry. Fundamental GC-MS. GC Considerations

Mass Spectrometry. Fundamental GC-MS. GC Considerations Mass Spectrometry Fundamental GC-MS GC Considerations i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this reference

More information

Gas Chromatography Time of Flight Mass Spectrometry (GC-TOF MS) Northwestern University IMSERC Facilities Manual Version 1.0, A.

Gas Chromatography Time of Flight Mass Spectrometry (GC-TOF MS) Northwestern University IMSERC Facilities Manual Version 1.0, A. Gas Chromatography Time of Flight Mass Spectrometry (GC-TOF MS) Northwestern University IMSERC Facilities Manual Version 1.0, Gas Chromatography Time of Flight Mass Spectrometry (GC-TOF MS) is an electron

More information

UHPLC/MS: An Efficient Tool for Determination of Illicit Drugs

UHPLC/MS: An Efficient Tool for Determination of Illicit Drugs Application Note: 439 UHPLC/MS: An Efficient Tool for Determination of Illicit Drugs Guifeng Jiang, Thermo Fisher Scientific, San Jose, CA, USA Key Words Accela UHPLC System MSQ Plus MS Detector Drugs

More information

Application of Structure-Based LC/MS Database Management for Forensic Analysis

Application of Structure-Based LC/MS Database Management for Forensic Analysis Cozette M. Cuppett and Michael P. Balogh Waters Corporation, Milford, MA USA Antony Williams, Vitaly Lashin and Ilya Troisky Advanced Chemistry Development, Toronto, ntario, Canada verview Application

More information

Cathode Ray Tube. Introduction. Functional principle

Cathode Ray Tube. Introduction. Functional principle Introduction The Cathode Ray Tube or Braun s Tube was invented by the German physicist Karl Ferdinand Braun in 897 and is today used in computer monitors, TV sets and oscilloscope tubes. The path of the

More information

The First Quantitative Analysis of Alkylated PAH and PASH by GCxGC/MS and its Implications on Weathering Studies

The First Quantitative Analysis of Alkylated PAH and PASH by GCxGC/MS and its Implications on Weathering Studies The First Quantitative Analysis of Alkylated PAH and PASH by GCxGC/MS and its Implications on Weathering Studies INEF Penn State Conference 2013 Albert Robbat, Jr. and Patrick Antle Tufts University, Chemistry

More information

Setting up a Quantitative Analysis MS ChemStation

Setting up a Quantitative Analysis MS ChemStation Setting up a Quantitative Analysis MS ChemStation Getting Ready 1. Use the tutorial section "Quant Reports" on the MSD Reference Collection CD-ROM that came with your ChemStation software. 2. Know what

More information

The Use of Hydrogen Carrier Gas for GC/MS

The Use of Hydrogen Carrier Gas for GC/MS Technical Note The Use of Hydrogen Carrier Gas for GC/MS Gas Chromatography/ Mass Spectrometry Highlights Guidelines that can mitigate dangers and leverage benefits of using hydrogen Key safety factors

More information

Strategies for Developing Optimal Synchronous SIM-Scan Acquisition Methods AutoSIM/Scan Setup and Rapid SIM. Technical Overview.

Strategies for Developing Optimal Synchronous SIM-Scan Acquisition Methods AutoSIM/Scan Setup and Rapid SIM. Technical Overview. Strategies for Developing Optimal Synchronous SIM-Scan Acquisition Methods AutoSIM/Scan Setup and Rapid SIM Technical Overview Introduction The 5975A and B series mass selective detectors (MSDs) provide

More information

Chapter 13 Mass Spectrometry and Infrared Spectroscopy

Chapter 13 Mass Spectrometry and Infrared Spectroscopy Chapter 13 Mass Spectrometry and Infrared Spectroscopy Copyright 2011 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Overview of Mass Spectrometry Mass spectrometry

More information

Standard Test Method for Analysis of Hydrocarbon Waxes by Gas Chromatography EWF METHOD 001/03

Standard Test Method for Analysis of Hydrocarbon Waxes by Gas Chromatography EWF METHOD 001/03 1. Scope Standard Test Method for Analysis of Hydrocarbon Waxes by Gas Chromatography EWF METHOD 001/03 (Version 1 Reviewed 2015) 1. 1 This test method provides for the determination of the carbon number

More information

In-Depth Qualitative Analysis of Complex Proteomic Samples Using High Quality MS/MS at Fast Acquisition Rates

In-Depth Qualitative Analysis of Complex Proteomic Samples Using High Quality MS/MS at Fast Acquisition Rates In-Depth Qualitative Analysis of Complex Proteomic Samples Using High Quality MS/MS at Fast Acquisition Rates Using the Explore Workflow on the AB SCIEX TripleTOF 5600 System A major challenge in proteomics

More information

Secondary Ion Mass Spectrometry

Secondary Ion Mass Spectrometry Secondary Ion Mass Spectrometry A PRACTICAL HANDBOOK FOR DEPTH PROFILING AND BULK IMPURITY ANALYSIS R. G. Wilson Hughes Research Laboratories Malibu, California F. A. Stevie AT&T Bell Laboratories Allentown,

More information

Interpretation A molecular mass spectrum

Interpretation A molecular mass spectrum Interpretation Mass spectral interpretation is not a trivial process. Presented below are some basic terms and examples designed to provide a background on which to build further knowledge through additional

More information

Accurate Mass Screening Workflows for the Analysis of Novel Psychoactive Substances

Accurate Mass Screening Workflows for the Analysis of Novel Psychoactive Substances Accurate Mass Screening Workflows for the Analysis of Novel Psychoactive Substances TripleTOF 5600 + LC/MS/MS System with MasterView Software Adrian M. Taylor AB Sciex Concord, Ontario (Canada) Overview

More information

Clinical Chemistry (CHE221) Professor Hicks Lecture 12. Chromatography. chromatography. normal phase chromatography like a tug of war

Clinical Chemistry (CHE221) Professor Hicks Lecture 12. Chromatography. chromatography. normal phase chromatography like a tug of war Clinical Chemistry (CHE221) Professor Hicks Lecture 12 Chromatography chromatography technique to separate mixtures each peak a different substance stationery phase = material mixtures comes in contact

More information

Increasing Quality While Maintaining Efficiency in Drug Chemistry with DART-TOF MS Screening

Increasing Quality While Maintaining Efficiency in Drug Chemistry with DART-TOF MS Screening Increasing Quality While Maintaining Efficiency in Drug Chemistry with DART-TOF MS Screening Application Note Forensics Author Erin Shonsey Director of Research Alabama Department of Forensic Science Abstract

More information

Hydrogen Carrier Gas for Total Petroleum Hydrocarbon. By Ed Connor, GC Product Specialist, Peak Scientific Instruments Ltd

Hydrogen Carrier Gas for Total Petroleum Hydrocarbon. By Ed Connor, GC Product Specialist, Peak Scientific Instruments Ltd Hydrogen Carrier Gas for Total Petroleum Hydrocarbon By Ed Connor, GC Product Specialist, Peak Scientific Instruments Ltd Many labs are facing helium supply difficulties and rapid price increases as a

More information

Mass Spectrometry. 1. Calculation of Molecular Ion or Fragment Composition

Mass Spectrometry. 1. Calculation of Molecular Ion or Fragment Composition Mass Spectrometry 1 alculation of Molecular Ion or Fragment omposition a ommon Isotopes Nominal Abundance, Isotope Mass % Exact Mass 1 1 99985 10078 (or D) 0015 0141 1 1 989 10000 13 13 11 130034 14 N

More information

Mass spectrometry. What are the principles behind MS? What do all MS instruments have in common?

Mass spectrometry. What are the principles behind MS? What do all MS instruments have in common? Mass spectrometry What are the principles behind MS? What do all MS instruments have in common? What are the different types of MS? Lecture outline: 1) Introduction to mass spectrometry 2) sample introduction

More information

Ion/Molecule Reactions for Detecting Ammonia Using Miniature

Ion/Molecule Reactions for Detecting Ammonia Using Miniature Ion/Molecule Reactions for Detecting Ammonia Using Miniature Cylindrical Ion Trap Mass Spectrometers Jonell N. Smith, a Adam D. Keil, b Robert J. Noll,* a and R. Graham Cooks a a Department of Chemistry,

More information

Analysis of Liquid Samples on the Agilent GC-MS

Analysis of Liquid Samples on the Agilent GC-MS Analysis of Liquid Samples on the Agilent GC-MS I. Sample Preparation A. Solvent selection. 1. Boiling point. Low boiling solvents (i.e. b.p. < 30 o C) may be problematic. High boiling solvents (b.p. >

More information

Increasing the Multiplexing of High Resolution Targeted Peptide Quantification Assays

Increasing the Multiplexing of High Resolution Targeted Peptide Quantification Assays Increasing the Multiplexing of High Resolution Targeted Peptide Quantification Assays Scheduled MRM HR Workflow on the TripleTOF Systems Jenny Albanese, Christie Hunter AB SCIEX, USA Targeted quantitative

More information

Appendix 5 Overview of requirements in English

Appendix 5 Overview of requirements in English Appendix 5 Overview of requirements in English This document is a translation of Appendix 4 (Bilag 4) section 2. This translation is meant as a service for the bidder and in case of any differences between

More information

Analytical chemistry year 12

Analytical chemistry year 12 Analytical chemistry year 12 1) Consider the molecule on the right. a) How many sets of peaks are present in the 1 H NMR spectrum? 3 b) How many sets of peaks are present in the 13 C NMR spectrum? 4 c)

More information

Comparison of BTEXS in Olive Oils by Static and Dynamic HT3 Headspace

Comparison of BTEXS in Olive Oils by Static and Dynamic HT3 Headspace Comparison of BTEXS in Olive Oils by Static and Dynamic HT3 Headspace Application Note Abstract The health benefits of consumption of olive oils as part of a healthy diet reaches back to the mid 1950 s.

More information

Isotopes and Mass Spectrometry

Isotopes and Mass Spectrometry PSI AP Chemistry Activity Isotopes and Mass Spectrometry Why? In this activity we will address the questions: Are all atoms of an element identical and how do we know? How can data from mass spectrometry

More information

Application of TargetView software within the food industry - the identi cation of pyrazine compounds in potato crisps

Application of TargetView software within the food industry - the identi cation of pyrazine compounds in potato crisps Application Note: ANTV10 Application of TargetView software within the food industry - the identi cation of pyrazine compounds in potato crisps Abstract In order to regulate product safety and quality

More information

Quantitative & Qualitative HPLC

Quantitative & Qualitative HPLC Quantitative & Qualitative HPLC i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this reference manual. Contents

More information

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons, neutrons and electrons Nuclear Structure particle relative charge relative mass proton 1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons and neutrons make up

More information

TOF FUNDAMENTALS TUTORIAL

TOF FUNDAMENTALS TUTORIAL TOF FUNDAMENTALS TUTORIAL Presented By: JORDAN TOF PRODUCTS, INC. 990 Golden Gate Terrace Grass Valley, CA 95945 530-272-4580 / 530-272-2955 [fax] www.rmjordan.com [web] info@rmjordan.com [e-mail] This

More information

GenTech, Inc.

GenTech, Inc. GenTech Master GC offers a new approach to the world of gas chromatography by dramatically decreasing sample run times in a wide range of GC Applications. This GC is truly customizable to meet each user

More information

Request for Quotes Goods/Trade Services RFQ for Gas Chromatograph Mass Spectrometer (GCMS) (PCS# 600000-1621-RFQ)

Request for Quotes Goods/Trade Services RFQ for Gas Chromatograph Mass Spectrometer (GCMS) (PCS# 600000-1621-RFQ) Request for Quotes Goods/Trade Services RFQ for Gas Chromatograph Mass Spectrometer (GCMS) Closing Date and Time: Wednesday, April 13, 2016 at 5:00 p.m. (Pacific Time) Contact: Aaron Galloway Fax: 541-888-3250

More information

Automated Solid Phase Extraction (SPE) of EPA Method 1694 for Pharmaceuticals and Personal Care Products in Large Volume Water Samples

Automated Solid Phase Extraction (SPE) of EPA Method 1694 for Pharmaceuticals and Personal Care Products in Large Volume Water Samples Automated Solid Phase Extraction (SPE) of EPA Method 1694 for Pharmaceuticals and Personal Care Products in Large Volume Water Samples Keywords Application Note ENV0212 This collaboration study was performed

More information

Mass Spectrometry Based Proteomics

Mass Spectrometry Based Proteomics Mass Spectrometry Based Proteomics Proteomics Shared Research Oregon Health & Science University Portland, Oregon This document is designed to give a brief overview of Mass Spectrometry Based Proteomics

More information

Chemistry 201. Quantitative Analysis

Chemistry 201. Quantitative Analysis Chemistry 201 Lecture 4 Quantitative Analysis NC State University Focus on energy The work done in the internal combustion engine is called pressure volume work. For a simple irreversible stroke the work

More information

Chapter 21 Principles of Chromatography and Mass Spectrometry Problems 1,2,3,4,8,9,11,13

Chapter 21 Principles of Chromatography and Mass Spectrometry Problems 1,2,3,4,8,9,11,13 Chapter 21 Principles of Chromatography and Mass Spectrometry Problems 1,2,3,4,8,9,11,13 21-1 What is Chromatography Process to separate and purify compounds in a mixture by passing them trough a material

More information

CM4106 Separation Methods Gas Chromatography: Applications. Hyphenated Techniques

CM4106 Separation Methods Gas Chromatography: Applications. Hyphenated Techniques CM4106 Separation Methods Gas Chromatography: Applications. Hyphenated Techniques Dr. Amalia Muñoz Fundación CEAM. Euphore Laboratories amalia@ceam.es Gas Chromatography Qualitative Analysis The characteristic

More information

Sputtering (cont.) and Other Plasma Processes

Sputtering (cont.) and Other Plasma Processes Sputtering (cont.) and Other Plasma Processes Sputtering Summary Create an ionic plasma by applying a high voltage to a glow tube. Ions bombard the target material at the cathode. Target atoms are ejected

More information

Accurate calibration of on-line Time of Flight Mass Spectrometer (TOF-MS) for high molecular weight combustion product analysis

Accurate calibration of on-line Time of Flight Mass Spectrometer (TOF-MS) for high molecular weight combustion product analysis Accurate calibration of on-line Time of Flight Mass Spectrometer (TOF-MS) for high molecular weight combustion product analysis B. Apicella*, M. Passaro**, X. Wang***, N. Spinelli**** mariadellarcopassaro@gmail.com

More information

Transmission through the quadrupole mass spectrometer mass filter: The effect of aperture and harmonics

Transmission through the quadrupole mass spectrometer mass filter: The effect of aperture and harmonics Transmission through the quadrupole mass spectrometer mass filter: The effect of aperture and harmonics A. C. C. Voo, R. Ng, a) J. J. Tunstall, b) and S. Taylor Department of Electrical and Electronic

More information

Mass Spec - Fragmentation

Mass Spec - Fragmentation Mass Spec - Fragmentation An extremely useful result of EI ionization in particular is a phenomenon known as fragmentation. The radical cation that is produced when an electron is knocked out of a neutral

More information

Chapter 1: Moles and equations. Learning outcomes. you should be able to:

Chapter 1: Moles and equations. Learning outcomes. you should be able to: Chapter 1: Moles and equations 1 Learning outcomes you should be able to: define and use the terms: relative atomic mass, isotopic mass and formula mass based on the 12 C scale perform calculations, including

More information

Overview. Introduction. AB SCIEX MPX -2 High Throughput TripleTOF 4600 LC/MS/MS System

Overview. Introduction. AB SCIEX MPX -2 High Throughput TripleTOF 4600 LC/MS/MS System Investigating the use of the AB SCIEX TripleTOF 4600 LC/MS/MS System for High Throughput Screening of Synthetic Cannabinoids/Metabolites in Human Urine AB SCIEX MPX -2 High Throughput TripleTOF 4600 LC/MS/MS

More information

Amount of Substance. http://www.avogadro.co.uk/definitions/elemcompmix.htm

Amount of Substance. http://www.avogadro.co.uk/definitions/elemcompmix.htm Page 1 of 14 Amount of Substance Key terms in this chapter are: Element Compound Mixture Atom Molecule Ion Relative Atomic Mass Avogadro constant Mole Isotope Relative Isotopic Mass Relative Molecular

More information

Determination of challenging elements in ultrapure semiconductor grade sulfuric acid by Triple Quadrupole ICP-MS

Determination of challenging elements in ultrapure semiconductor grade sulfuric acid by Triple Quadrupole ICP-MS Determination of challenging elements in ultrapure semiconductor grade sulfuric acid by Triple Quadrupole ICP-MS Application note Semiconductor Authors Junichi Takahashi Agilent Technologies, Japan Introduction

More information

Using NIST Search with Agilent MassHunter Qualitative Analysis Software James Little, Eastman Chemical Company Sept 20, 2012.

Using NIST Search with Agilent MassHunter Qualitative Analysis Software James Little, Eastman Chemical Company Sept 20, 2012. Using NIST Search with Agilent MassHunter Qualitative Analysis Software James Little, Eastman Chemical Company Sept 20, 2012 Introduction Screen captures in this document were taken from MassHunter B.05.00

More information

GCxGC COUPLED TO FAST SCANNING QUADRUPOLE MS FOR TRACE ANALYSIS OF POPs

GCxGC COUPLED TO FAST SCANNING QUADRUPOLE MS FOR TRACE ANALYSIS OF POPs GCxGC COUPLED TO FAST SCANNING QUADRUPOLE MS FOR TRACE ANALYSIS OF POPs Kinet C, De Pauw E, Focant JF CART, Mass Spectrometry Laboratory, Chemistry Department, University of Liège, Allée de la Chimie 3,

More information

Analysis of the Vitamin B Complex in Infant Formula Samples by LC-MS/MS

Analysis of the Vitamin B Complex in Infant Formula Samples by LC-MS/MS Analysis of the Vitamin B Complex in Infant Formula Samples by LC-MS/MS Stephen Lock 1 and Matthew Noestheden 2 1 AB SCIEX Warrington, Cheshire (UK), 2 AB SCIEX Concord, Ontario (Canada) Overview A rapid,

More information

H A + B u x. Contributions to Band Broadening as described in Van Deemter Equation

H A + B u x. Contributions to Band Broadening as described in Van Deemter Equation Chem 2001 Summer 2004 Why Do Bands Spread? A band of solute invariably spreads as it travels through the column and emerges at the detector with a standard deviation, σ. Plate height (H) is proportional

More information

CATALYSIS & THERMAL ANALYSIS

CATALYSIS & THERMAL ANALYSIS CATALYSIS & THERMAL ANALYSIS MASS SPECTROMETERS FOR CATALYSIS & THERMAL ANALYSIS HIDEN MS MASS SPECTROMETERS for Catalysis and Thermal Applications Hiden Analytical have been designing and developing the

More information

Highly Selective Analysis of Steroid Biomarkers using SelexION Ion Mobility Technology

Highly Selective Analysis of Steroid Biomarkers using SelexION Ion Mobility Technology Highly Selective Analysis of Steroid Biomarkers using SelexION Ion Mobility Technology Hua-Fen Liu, Witold Woroniecki, Doina Caraiman, and Yves LeBlanc AB SCIEX, Foster City, USA One of the most challenging

More information

The 30-Minute Guide to ICP-MS

The 30-Minute Guide to ICP-MS Technical Note The 30-Minute Guide to ICP-MS ICP-Mass Spectrometry A Worthy Member of the Inorganic Analysis Team For nearly 30 years, inductively coupled plasma mass spectrometry (ICP-MS) has been gaining

More information

Introduction to Fourier Transform Infrared Spectrometry

Introduction to Fourier Transform Infrared Spectrometry Introduction to Fourier Transform Infrared Spectrometry What is FT-IR? I N T R O D U C T I O N FT-IR stands for Fourier Transform InfraRed, the preferred method of infrared spectroscopy. In infrared spectroscopy,

More information

# LCMS-35 esquire series. Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water

# LCMS-35 esquire series. Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water Application Notes # LCMS-35 esquire series Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water An LC-APCI-MS/MS method using an ion trap system

More information

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Main points of the chapter 1. Hydrogen Nuclear Magnetic Resonance a. Splitting or coupling (what s next to what) b. Chemical shifts (what type is it) c. Integration

More information

Analysis of Organophosphorus Pesticides in Milk Using SPME and GC-MS/MS. No. GCMS-1603. No. SSI-GCMS-1603. Shilpi Chopra, Ph.D.

Analysis of Organophosphorus Pesticides in Milk Using SPME and GC-MS/MS. No. GCMS-1603. No. SSI-GCMS-1603. Shilpi Chopra, Ph.D. Gas Chromatograph Mass Spectrometer No. GCMS-1603 Analysis of Organophosphorus Pesticides in Milk Using SPME and GC-MS/MS Shilpi Chopra, Ph.D. Introduction Organophosphorus (OP) pesticides are a class

More information