guishablefromthatofanaccretingschwarzschildblackhole,accretionows onthedilatonicbackgroundexhibitsnoveleectsparticularlyastheextreme

Size: px
Start display at page:

Download "guishablefromthatofanaccretingschwarzschildblackhole,accretionows onthedilatonicbackgroundexhibitsnoveleectsparticularlyastheextreme"

Transcription

1 Chapter8 Adetailedanalysisofsphericalsteadystateadiabatichydrodynamicalaccretion ontoafourdimensionaldilatonicblackholeispresented.becausetheeventhorizonofadilatonicblackholepossessanareamuchsmallerthanaschwarzschild oneofthesamemass,andatthesametimeitsaccretionradiusisindistin- itisshownthatforanyequationofstateobeyingthecausalityconstraintand anysubsonicatinnityow,therealwaysexistatransonic,regularoverthe limitisapproached.byacombinationofnumericalandanalyticaltechniques, Accretionondilatonicblack guishablefromthatofanaccretingschwarzschildblackhole,accretionows onthedilatonicbackgroundexhibitsnoveleectsparticularlyastheextreme notanylongerjustied,theneedforincorporatingradiativetransporteects eventhorizonow.forbackgroundcorrespondingtoadilatonicblackhole ispointedout.itisarguedthatifsuchblackholesexistintheuniverse,they shouldhaveadistinctobservationalsignatureassociatedwiththem. approachingtheextremelimit,theasymptoticbehaviorofthetransonicow Furthermoreitisheatedenormously,sothattheprotoncomponentbecomes relativistic.asaconsequencewehavefoundthattheadiabaticassumptionis nearthehorizon,diersconsiderablyfromowsoccurringnearthehorizonofa Schwarzschildblackhole.Fortheformercasetheaccretingplasmaeventhough 8.1Introduction crossesthehorizonsupersonicaly,itisnotanylongerinthestateoffreefall. classconstitutesacounterexampletothepopularbelievethatisolatedblack Thediscoveryofanewclassofasymptoticallyatsphericalblackholesolutions oftheeinsteinnonvacuumeldequations[gib82,gm88,ghs91]caughtmany researchersbysurprise.thenewclassestablishesbeyondanydoubtsthatin generalnon-linearitiesineldcongurationsmayresistthepullofgravityand thuspeacefullycoexistwitharegulareventhorizon.furthermorethenew 209

2 210 holeshavealwaystheirexterioremptyapartfromanelectromagneticeld.the \hair"consistsofadilatoncoupledtoau(1)eld.inthedomainofouter communicationthegeometryofadilatonicblackhole(nicknameforthenew class)canbewritteninthefollowingmanner: ds2= (1 2Mr)dt2+(1 2Mr) 1dr2+g(r)d2; Accretionondilatonicblackhole recovered.introducinganewdimensionlessparameter=r blackholesectorcharacterizedbypositivemandvaluesofaintheinterval combinationoftheelectricormagneticchargeqandthevalueofthedilatonic whereg(r)=r2(1 QMr),M>0isthemassoftheholewhileQstandsfora [0,2].Morespecicallya=2characterizetheextremedilatonicsolution,a>2 coversthespaceofnakedsingularitieswhilefora=0theschwarzschildblackis eldatinnitynamelyq=q2e2o.weshalldenotehereafterbya=qm2.the (8.1) thescalarcurvaturerandproperareaaoofr=constantspheresonends R=a32(Mmpllpl) 24( 1) (2 a)2 3; 2Mandcomputing impliesfora>2thespacetimesingularity\liesoutsidetheeventhorizon". FurthermoreEqs.(8.1)-(8.3)showthatthedilatonicblackholepossessesafew wheremplandlplarerespectivelytheplanckmassandlength.expression(8.3) Ao() 4=12(Mmpllpl)2[(2 a)]; (8.2) distinctpropertiesworthmentioning.atrsttheextremecaseandinsharpcontrasttotheextremereissner-nordstromsolution,ischaracterizedbyapointlike singulareventhorizon.furthermorethermodynamicallyitpossessesnonzero Hawkingtemperatureandvanishingentropy,incontradistinctiontothethermodynamicalpropertiesofanextremeReissner-Nordstromsolution(zeroHawking temperature,nonvanishingentropy).awayfromtheextremelimit,arstlook correspondingareaforaschwarzschildblackhole.inadditioneq.(8.3)shows tremelyned-tunedvaluea 2=10 5thenforasolarmassblackholethe thatasoneapproachestheextremelimit,forinstanceevenassuminganex- twometrics"dieratonepoint".thedilatonicmetricendowstheproperarea oftheso(3)orbitswithlessareathanthecorrespondingschwarzschild.infact Eq.(8.3)showsthatadilatonicstateclosetotheextremelimitcouldpossess aneventhorizonwhoseproperarealiesmanyordersofmagnitudebellowthe holeshouldnotdierverymuchfromthewellknownschwarzschildone.the atthelineelementsineq.(8.1)suggests,thatthegeometryofadilatonicblack arearadius,liesmanyordersofmagnitudebelowtheplanckianvalues.thereforequantumgravitationaleectsontheblackholeexteriorcanbeignored.in factsuchnearlyextremestatesareratherbizzare.extremelycompactinsize, butatthesametimeexertingthesamegravitationalinuenceasasolarmass Schwarzschildblackholedoes.Besidesthispurelygeometricaldierence,asalreadystatedearlier,thedilatonicstatesareaccompaniedbyclassicalhair.From

3 tonicblackhole,residingsomewhereintheuniverse,likelytogetneutralizedvia preferentialaccretionofchargeoftheoppositesign.suchprocesspresumably astrophysicalprocesstakeplace.ontheotherhandthebackgroundmonopole electricormagneticeldmaybeofimportance.anelectricallychargeddila- 8.1Introduction theobservationalpointofview,thebackgrounddilatoneldisnotexpectedto playanysignicantrole,atleastfortherangeofenergyscaleswherevarious 211 willdriveatowardszero.itwouldbethenofsomeindependentinteresttond outwhatwillhappentothedilatoneld.forthemagneticallychargedhole, thebackgroundmonopoleeldcannotbetransformedaway.dependingonits strengthitisexpectedtoplaysignicantroleinastrophysicalprocessinvolving angularmomentumandchargedparticles.notehoweverforpurelyradialinfall theexertedlorentzforceisvanishingandthusitsroleisinsignicant. thepresentchapter,istoprobepossibleeectsuponhydrodynamicalows, thebackgroundmonopolemagneticeldisunimportant.sothemainfocusof spondingschwarzschildone.sinceaccretionofambientmatteristhedominant interactionmodeofblackholeswiththeexternalworld,itisnaturaltoexamine accretionphenomenaonamagneticallychargeddilatonicbackground.asapreliminarystep,inthepresentchapteradetailedexaminationofbondiadiabatic accretion[bon52],willbediscussed.recall,suchaccretionisradial,therefore withtherestoftheuniverseinanentirelydierentfashionthanthecorre- Inviewoftheabovedierencesonewonderswhetherthenewclassinteracts apossibility.inadditionpresenceofmultiplecriticalpointsisnotexcluded.in particularlythesecondpossibilityisenhancedinviewofthecloseconnection crosssectionalareaofthe\tube"wheretheowtakesplace[hol77,ht83]. betweenmultiplecriticalpointsandtherapidconvergence-divergenceinthe ForcomparisonpurposeswemayrecallthatBondiaccretiononaSchwarzschild backgroundisratherwellbehaved.ithasbeenestablishedthataslongasadiabaticityismaintainedandtheowissubsonicatinnity,therealwaysexist horizonisapproached.aprioriitisnotclearwhethersmoothaccretionows duetothetherapidreductionintheareaoftheso(3)spheresastheevent auniquetransonicowregularovertheeventhorizon.becauseofthewaya existforallvaluesofain[0,2].forinstance,developmentofstandingshocksis thingsbecomeunclearasadeviatesawayfromthezerovalueandinparticularly entersthemetric,itisexpectedthatbondiaccretiononadilatonicbackground tosharethesamepropertiesaswellprovidedaremainsclosetozero.however forthenearlyextremedilatonicbackgrounds. a,evenfortheextremalones.inthesamesectionanequivalentformulationof remindingthereaderoftherelevantequationsgoverningspherical,steadystate owsonadilatonicbackground.insection(8.4)wediscussthedelicateissue criticalpointofthesadletype,whichislocatedoutsidetheeventhorizon.the extremeone,admitsanadditionalcriticalpointresidingonthepointlikesingular eventhorizon.itisfoundthattheaccretionrateisinsensitivetoallvaluesof ofthecriticalpointsadmittedbytheowequations.itisshownthatforany dilatonicblackhole,therelevanthydrodynamicalequations,alwaysadmita Primarilymotivatedbytheabovequestions,webegintheChapterbyrst theowequationsarepresentedwhichshowsthatthecriticalpointisactually

4 behavioraswellasitsregularnaturenearthehorizonisdiscussedindetails.we foundthatthetransonicownearthehorizonmaydiersignicantlyfromthat occurringonaschwarzschildbackground.specicallywhileforthelatterthe uniquetransonicsolutionsubsonicatinnity,passingthroughthecriticalpoint andreachingsupersonicalytheeventhorizonisestablished.itsasymptotic 212 asonichorizon.withthehelpofnumericalintegrationtheexistenceofa Accretionondilatonicblackhole owisretardedsignicantly,resultingintoextremedenseplasma.consequences ofthisretardationisdiscussed.inparticularlytheadiabaticityassumptionis owisinafreefallstate,foranearlyextremedilatonicbackgroundthatisany longerso.becausetheevenhorizonscrosssectionisreducedconsiderablythe limit.thephysicalreasonsleadingtothisbehaviorispresentedindetails. putunderscrutiny.wepresentargumentsindicatingadiabaticityisnotany WenishtheChapterbycommentingonsomeopenproblemsanddiscussing longercompatiblewithowstakingplaceonholesapproachingtheextreme possibleobservationalsignaturesassociatedwithdilatonicblackholes. andaconservedbaryoncurrentj=nui.e.: WebeginbyconsideringaperfectuidmovingonthebackgroundofEq.(8.1). Theuidisconsideredtobeatestone,thuscausingnegligibledistortionon thebackgroundgeometry.itisdescribedbyaconservedstresstensor 8.2Bondiaccretiononadilatonicblackhole T=(+P)uu+Pg rt=0and r(nu)=0: (8.5) (8.4) andtemperaturerespectivelyasmeasuredinthelocalrestframeoftheuid Inabove;n;P;arethetotalmass-energydensity,baryonnumberdensityand pressurerespectivelyasmeasuredbyanobservercomovingwiththeuid.as anyheati.e.themotionisadiabatic.thusifs,taretheentropyperbaryon longasthereisnoexternalsupplyofenergyandirrespectivelyoftheequation ofstate,therstlawofthermodynamicscombinedwiththeconservationeqs. (8.5),(8.6)impliesthattheuidevolveswithoutitsconstituentsexchanging (8.6) then, Thecovariantconservationofthestresstensorisequivalentto: ur(n)+pur(1n)=turs=0: (+P)uru= rp uurp: ur+(+p)ru=0; (8.7) (8.8) (8.9)

5 8.2Bondiaccretiononadilatonicblackhole MakinguseofEq.(8.1),sphericalsymmetryandthesteadystatecharacterof theow,thecontinuityeq.(8.6)andeulereq.(8.9)yield: ddr(nug)=0; (8.10) 213 intoaccounttheadiabaticityassumptionthefollowingconservationlawscan obtainedfromeqs.(8.10)-(8.12): ustandsfortheradialcomponentoftheowi.e.uranduo=gttuo.taking Eq.(8.8)isautomaticallysatised,providedEqs.(8.9)-(8.12)hold.Inabove udu dr= 1 (+P)(duo (+P)dP dr)+uodp dr(1 2Mr+u2) Mr2: dr=0; (8.11) 4mnug=_M; (8.13) (8.12) energydowntothehorizonwhiletherighthandsideofeqs.(8.14),(8.15)are computedatinnity.conservationlawseqs.(8.14),(8.15)areactuallynot Theparametermstandsforamassscaleassociatedwiththebaryons._Mis aspacetimeindependentconstantrepresentingtheaccretionrateofrestmass (+P n)2(1 2Mr+u2)=(+P nuo= +P nj1: n)2j1; independentofeachother.theyaredierentwaysofexpressingthecovariant versionofbernoulliequationi.e.: (8.15) berecastas: introducingtheadiabaticspeedofsoundaviaa2=dp validforanygeometryadmittingakillingeldandanyowinvariantunder theactionoftheisometry.assuminganequationofstatep=p(n;s)and uara[+p n(gbcubc)]=0; u0=d1 djseqs.(8.10)-(8.12)can D=u2 a2(1 2Mr+u2) u0o= uoa2 n0= D2 nd2 D;where un ; (8.17) (8.18) (8.19) (8.16) D1= 1n[Mr2 Aa2(1 2Mr+u2)]; (8.20)

6 214 andaisdenedbyaddrlnjg(r)j=4 a D2=1u[ Mr2+Au2]; Accretionondilatonicblackhole hereaftereq.(8.18)asredundantandconcentrateoneqs.(8.16),(8.17).an Eqs.(8.16)-(8.21)arethebasicequationsdescribingtheow.Weshallignore 2M(2 a): (8.21) inspectionofthemshowsthattheyreducetothecorrespondingowequations ofstatedescribingtheaccretingplasma.theparameterkisaconstantand thesituationisreversedfortheclassofdilatonicblackholesapproachingthe extremelimit.infactattheextremelimitthesecondtermdiverges.following Bondiandothers,anytypeofradiationlosseswillbeinitialyignoredandthus adoptthepolytropicequationofstatep=p(n)=kn astherelevantequation rsttermwithinthesquarebracketineqs.(8.20),(8.21)dominatestherest, D1,D2showswhereasfortheSchwarzschildcaseandneartheeventhorizon,the nontrivialmannertheparameteraenterstheowequations.acloselookat forschwartzcildbackgroundprovidedg(r)=r2.itisworthhowevertonotethe thepolytropicindexwillsatisfy <5=3.Suchequationofstateactuallymakes thespeedofsoundandenergydensity: theowtobeisentropicandtherstlawimpliesthefollowingexpressionfor a2=dp dn d=n dnn +P= +Kn,=mn+P m+ Kn 1=( 1); 1: (8.22) disconnectedfromtheinterioroftheow.putitdierently:thesoundcone draggedinwards.thereforeanyobserverintheasymptoticregionissoundly manner,amannerwhichalsorevealsthatifcriticalpointexists,thennecessary aresonichorizons.namelyhorizonsdenedbythepropertythatoutgoingsound wavesemittedbythebackgroundowinteriortocriticalsphereareactually itisconvenienttoreformulatetheaboveowequationsinaslightlydierent Thusa2andarefunctionsofthebaryondensityalone.Fornumericalpurposes (8.23) istiltedinwardsforallpointslocatedinteriortothecriticalsphere.thisat asymptoticquantities.eliminatingthebaryondensityninfavorofthesound leastforthesteadyowsoccurs,wheneveralocalorthonormalobserverat owpassesviathecriticalpoint,allowsthedeterminationof_mintermsofthe beingidenticaltothatofsound.theimportanceofsonichorizonstoaccretion problemsiswellknown.asweshallpresentlyverifytherequirementthatthe restrelativetothecoordinatesystemeq.(8.1)ndthespeedoftheow orthonormalobserver,relatedtouvia speeda2andintroducingtheordinarythreevelocityv=dr u2=v21 (1 v2)(1 2Mr); dtmeasuredbyalocal (8.24)

7 8.3Thedeterminationofthecriticalpoints Eqs.(8.16),(8.17)transformedintothefollowingequivalentsystem: y(1 y)(v2 a2) v2(1 v2)2dv2 (1 v2)a2( 1 a2)da2 2y(1 y)(v2 a2) dy=y 2a2 1 v24 ya dy= y+24 ya 2 ya(1 y)+y(v2 a2) 2 yav2(1 y) 1 v2;(8.25) 215 whiledividingtherstonebya2,thesecondonebyv2andaddthemyield: wherey=1.addingthemtogetheroneobtains: [a2 1 a2]2 1v2 1 v2(1 y)(2 ay)2 y4 (1 v2);(8.26) wheretherighthandsidesofeqs.(8.27)-(8.28)areconstants.imposingv=0 (1 v2)( 1 a2)2 1 y =1 =2 (8.27) aty=0onegets1= 1 a212while2isingeneralafreeparameter. Itsrelationwiththeaccretionrateis 2=K m( 1)2 8mM2!2: _M (8.28) Inordertogetabetterfeelingabouttheglobalbehavioroftheow,weshould knowwhetherthedynamicalequations(8.16)-(8.18)admitcriticalpoints,andif TheaboveintegralsofmotionarejusttheconservationlawsshowninEqs. sotheircharacteri.e.whethertheyaresaddles,nodesetc.ongeneralgrounds, regulartransonicowwillbediscusseslateron. 8.3Thedeterminationofthecriticalpoints (8.13)-(8.14).Theirusefulnessinestablishingnumericallytheuniquenessofa smoothowsthataresubsonicatinnityandregularoverthehorizon(aconditionthatasweshallseeinthenextsectionrequiresu6=0)areexpectedtopass atradialinnityd<0whileforanyequationofstatesatisfyingthecausality constrainti.e.a2<1,itfollowsagainfromeq.(8.19)thatd>0atthehorizon.thereforetherewillbeatleastonepointattheblackholeexteriorwhere D(r)=0.Eqs.(8.16),(8.17)showsthatowsreachingsuchpointscharacterizedbyinnitygradientsinthevelocityandbaryondensity.Physicallytheow turnsoveranditscontinuationisconsideredasbeingunphysical.physically viacriticalpoints.thiscanbeinferredbynotingthateq.(8.19)indicatesthat importantowsreaching"turningoverpoints"mustsimultaneouslysatisfy: D=D1=D2=0: (8.29)

8 horizon,singlesauniquesolutiondeterminedsolelybytheboundaryconditions factdemandingtheowtopassvia,aswellasbeingregularovertheevent 216 Extendingtheowthroughthecriticalpointmaybeadelicateissue.Whether anunambiguousextensionispossibledependsuponthecharacterofthecritical points.however,asweshallseeinmoredetailsinthenextsectionthecritical pointsaresaddlesandforsuchcasestheextensionisfreeofambiguities.in Accretionondilatonicblackhole (8.17)fortheirdetermination.StartingfromEq.(8.29),oneinfersthatus;as atthepotentiallocationofthecriticalpointsrssatisfy: sonichorizons.inthesubsequentanalysisweshallemployequations(8.16), equaltothelocalspeedofsound.thusthecriticalhypersurfacesareactually ticationisofprimeimportance.bydenitionpotentialcriticalpointsofthe owequationssatisfyconstraints(8.29).notethatifinsteadof(8.16),(8.17) atinnity.inviewofthesignicanceofthecriticalpoints,theirproperiden- thealternativesetofequations(8.25),(8.26)isemployed,onendsthatatany criticalpoint,anorthonormalobservermeasuresthespeedoftheowbeing CombiningEqs.(8.30),(8.31)togetherwithBernoulliEq.(8.14)andinview of(8.22)thecoordinatesofthecriticalpointsrsandthecorrespondingbaryon density,nssatisfythefollowingalgebraicsystemofequations: a2s=u2s1 2Mrs+MAr2s 1: u2s=1amr2s; (8.31) (+P n)2(1 2Mr+M r2a)js=dp r2a)js=(+p dnn +Pjs; n)2j1: (8.32) theycanberewritteninthefollowingmanner; Intermsofthevariable=r 2(4 a)=(1 1+2 a 2 ah=+p 2Mdenedearlierand n=m( 1) 2(4 a))(dp 1 a2; dn)(n (8.33) Introducingthefunction a2jsh2j1 h2s=a2s[ 1 a2s 2(4 a)=h2j1 1 a21]2; h2js: +P)js; (8.36) (8.35) (8.34)

9 wheneq.(8.34)gives 8.3Thedeterminationofthecriticalpoints fromthelastequationwehave 2(4 a)=a2 1+1; 2 a 217 theeventhorizon.substitutingtheaboveexpressionsfor;ineq.(8.34) afterlongalgebraiccomputations,wegetthefollowingequationdetermining thesoundspeedatthecriticalpoints: Fromthislastequationweseethat>1,thusthecriticalpointliesoutside 8a4 2(1+a)a2a2 1 a2+aa2 1 a22=0:(8.38) = a2 (1 a2): (8.37) boundedaboveby 1seeEq.(8.22).Atthecriticalpoint,using Thisequationhasbeenstudiednumerically.Wehavefoundthatforvarious [0; 1).Noteforanypolytropicequationofstatethespeedofsoundis valuesofa21and =4=3therealwaysexistasolutionlyingintheinterval wegeth2=m2 1 1 a22=m2(1+2a2 a2s=2a211 1)+O(a4); =a2(1+2a O(a41;a4a); 1)+O(a4)and (8.40) (8.39) Furthermorethenumericalcomputationsconrmtheexpressions(8.41),(8.42). Insummarythereforetherealwaysexistonecriticalpointwhosecoordinate thatexpressions(8.41),(8.42)areidenticaltothoseoccurringforaccretion locationandspeedofsoundaregivenbyequations(8.41),(8.42).noticealso = a21+O(a41;a4a): (8.42) takingplaceonaschwarzschildbackground.utilizingtheinformationofthe owatthecriticalpointoneeasilycomputestheaccretionrateintermsof ofaappearsascorrectiontermoftheordera41a. i.e.thesamerateasifthebackgroundwouldhavebeenaschwarzschildblack holewiththesamemassm.theparameteriscombinationofthevariousnumericalfactors,isoforderunityandindependentupona,whileanycontribution asymptoticquantitiesatinnity: M=42 _ ( 1)M2n1a 3 1; (8.43)

10 218 Accretionondilatonicblackhole 8.4Thenatureofthecriticalpoints Havingestablishedtheexistenceofacriticalpoint,weshallnowexamineits topologicalnature.thisentailsanunderstandingofthewayvarioussolutions curvesofeqs.(8.16),(8.17)behaveintheneighborhoodofthecriticalpoint. Ultimatelyoneliketoshowthatforaowthatisstationaryatinnityaunique regularsolutionexistsreachingtheeventhorizon.forthatisnecessarythatthe criticalpointexhibitsaddlelikecharacter,whichbydenitionimpliesthatonly twoatleastc1solutionpassthroughthecriticalpoint.onedescribingaccretion andtheothera\stellarwind".howeveroutowsonablackholebackground areconsiderasunphysicalsinceasweshalldiscussfurtherlateron,theyare singularoveranonsingularhorizon.inorderunravelthenatureofthecritical point,itisconvenienttoturneqs.(8.16),(8.17)intoathreedimensional dynamicalsystem.introducingaparameterlalongthesolutioncurvesofthe system(8.16),(8.17)anddeningasonecolumnvector:~x=[r(l);u(l);n(l)] onegetstheequivalentthreedimensionalsystem (_~x)t=(d;d1;d2)t; (8.44) whereoverdotsigniesdierentiationwithrespecttol,whiletsigniestranspositionofthetherowvectors.inthisformulationthecriticalpointsappear asequilibriumpointsi.e.pointswheretherighthand-sideofeq.(8.44)isvanishing.accordingtohartmann-grobmanntheorem[per91],inthevicinityof acriticalpoint(equilibriumpoint)thesolutioncurvesof(8.44)arehomeomorphicallyequivalenttoitslinearizedversioni.e. _~x=f~x; (8.45) wherefstandsforthedierentialmatrixofthevectorvaluedfunctiondened bytherighthandsideof(8.44)andcomputedatthecriticalpoint.denoting byai;bi;ciwithi=1;2:3thepartialderivativesofd;d1;d2withrespectto r;u;nrespectivelyandtakingintoaccounteq.(8.29)onendsthefollowing expressionsvalidatthecriticalpoint: A1= 2Aa2u n;a2=2(1 a2) n;a3= 2A;C3=0:(8.46) Furthermoreintermsofthepartialderivatives,thecharacteristicequationde- nedbyfhasthefollowingform; [(A1 )(B2 )]+[B3C2+A2B1+A3C1] +[ A1B3C2+A2B3C1+A3B1C2 A3B2C1]=0 (8.47)

11 notingthata1= B1theremainingtwononzeroeigenvaluesaregivenby: 8.5Asymptoticanalysis Astraightforwardcomputationthenshowsthatthelastterminthecharacteristicequationisvanishing.Thereforeoneoftheeigenvaluesiszerowhileby =[ (A21+B3C2+A2B1+A3C1)]12: (8.48) 219 Expandingoutthequantitywithinthesquarerootonendsthatatthecritical pointtheeigenvaluesarerealandofoppositesign.diagonalizingthedierential matrixfandfollowingthestandardprocedure[per91],onemayshowexplicitly solutioncurvesexhibitasaddletypebehavior,implyingfurthertheexistence thatonlytwosolutionspassthroughthecriticalpoint.thereforelocallythe oftwodistinctsolutionspassingthroughthecriticalpoint.thusthecritical pointisofthesamenatureastheoneadmittedbythecorrespondingow equationsonaschwarzschildbackground.1wehaveestablishedtheexistence auniquetransonicow,subsonicatinnity,passingtroughthecriticalpoint foundmoreconvenienttoemployequations(8.27),(8.28).theyhavebeen plottedforvaluesof1appropriatetotypicalinterstellarmediumandvarious 1thereaexistacriticalvalueof2(andthusa\critical"accretionrate_ valuesoftheparameter2.numericallywehavefoundthatforanychoiceof andreachingthehorizon,byresortingtonumericaltechniques.forthatwe Ifforthemomentweignorethenumericalresultsdiscussedinlastparagraph, suchthataowsubsonicatinnity,passesthroughacriticalpointandreaches theeventhorizon.thevarioussolutioncurvesforv;aareshowinginfigures 8.1, Asymptoticanalysis M) theanalysisoftheaccretionowpresentedsofarisentirelyindependentupon placeastheowcrossestheeventhorizon.inparticularlyatthecrossing naturallyinferasetofconditionsobeyedbytheowatthehorizon.according tothestandardblackholephysics,onedemandsthatnothingpeculiartakes forallvaluesofaandirrespectivewhetheralieswithin[0,2].2however,its onablackholebackgroundoranakedsingularity.thecrucialelementthat dierentiatesbetweenthetwoisthesetofboundaryconditionsobeyedbythe owonthehorizonandsingularityrespectively.fortherstcase,onecan continuationfromthecriticalpointinwarddependswhetheritispropagating theparticularvalueofa.theowuptothecriticalpointisuniquelydetermined havebeenintroducedanddiscussedatsomelengthbythorne[tho81]and validfortheothercriticalpoint.theanalysisutilizeonlyrelations(8.29)andtheseareindependentofthelocationofthecriticalpoint. nophysicalscalarsareallowedtodiverge.thiskindofregularityconditions ofsingular\sphere". Thorneetal[TFZ81].Howeverforowsrunningonnakedsingularitiesthings areratherumbigious.itnotclearwhatconditionsaretobeimposedonthe 2Forthecaseofnakedsingularities,amustconstrainedsothatthecriticalpointliesoutside 1Althoughattentionhasbeenrestrictedtotheexteriorcriticalpoint,thesameconclusion

12 220 Accretionondilatonicblackhole obtainedfromplottingeqs.(8.27),(8.28).inorderexhibitclearlythesaddle Figure8.1:Figureshowsthetopologyofthevarioussolutioncurvesforthev2 a=1:8,a21=0:133andv1=0. characterofthecriticalpointandthetransonicsolutionwehavetaken =4=3, thepreviousgure. obtainedfromplottingeqs.(8.27),(8.28).theparametersarethesameasin Figure8.2:Figureshowsthetopologyofthevarioussolutioncurvesforthea2

13 8.5Asymptoticanalysis 221 a21=0:133andv1=0.notethatforrealisticboundaryconditionsa211, thecriticalpointliespracticallyonthehorizontalaxis. Figure8.3:Criticalsolutionsinthey v2plane,foraschwarzschildblackhole a=0andforanextremedilatoniconea=1:99.theotherparameters =4=3, Figure8.4:Thesameasinthepreviousgurebutinthey a2plane.

14 222 Accretionondilatonicblackhole singularity.noteinparticularlythatfora=2thesaddlecharacterofthe criticalpoint,atthespacetimesingularity,impliesthatoutowsarenotapriori excluded.thispointmayinterpretedasimplyingthatspacetimesingularities aretotallyunpredictable.hereafterweshallconcentrateonowsonblackhole backgrounds.forourproblem,itissucienttodemandthatthemagnitudeof thefour-accelerationoftheowaswellasthebaryondensitynareboundedat thehorizon.therstconditionimpliesthatthenongravitationalforcesacting upontheowarenitewhileaconsequenceofthesecondconditionsisthatall otherowparametersremainboundedaswell.astraightforwardcalculation showsthatthenonvanishingcomponentsofthefouraccelerationvectoraare @r+mr21 1 2Mr+2Mr2urur 1 2Mr#r: Intermsoftheordinaryvelocityvelocityvandtheparameteryintroduced earlier,onendsthefollowingexpressionforthemagnitudeaa: aa=1 4My2 (1 y)121 (1 v2)12 y2 2M(1 y)12v (1 v2)32dv dy: Acloselookattherighthandsideoftheaboveexpressionindicatesthatthe magnitudeofthefouraccelerationisunboundedonthehorizon,unlessv(y) exhibitsthefollowingbehavior; v(y)=1+dv dyjy=1(1 y)+o((y 1)2): Inthatcasewendthat aa(y=1)(dv dy)12y=1+o(y 1)2: HoweverfromEq.(8.25)onecaneasilyinferdv dyjy=1isnonzeroandboundedat thehorizon.inturnequation(8.24)showsthataregularowmusthaveradial velocityu=urnonvanishingonthehorizon.inthefollowingtheasymptotic behavioroftheownearthehorizoncompatiblewithu6=0andboundednwill bedeterminedforvariousvaluesoftheparameterabelongingto[0;2).from Eqs.(8.16),(8.17)onendsthefollowingequationsdescribingtheownear thehorizon1+:1udu d 1 22 u2a2d dlnjgj u2(1 a2); (8.49) 1ndn d1 22 u2d dlnjgj u2(1 a2): (8.50) Weshalllookforasymptoticsolutionsdescribingregularowsovertheevent horizon.itisclearthatthenatureoftheasymptoticsolutionsdependsuponthe

15 terminthenumeratorofeq.(8.49)maybeignored.inthatcasedemanding thatuisnonvanishingonthehorizon,onearrivesat 8.6Breakdownoftheadiabaticityassumption particularvalueofa.weshallexplicitlywritedowntheclosedformsolutionsfor thetwoextremecasesofthea,namelyforaclosetozeroandthediametrically oppositecasei.e.aextremelyclosetovalue2.fortheformercasethesecond 223 Howeveraswehavearguedearlierforanearlyextremedilatonicblackhole,the secondtermcannotanylongerbeignored.infactdominatestherstterm.in suchcaseonendsu()=a1g()a2 i.e.thewellknownfreefallasymptoticsolutiononshwarzchildbackground. u2()=1;n()=c32; Eq.(8.13)nearthehorizononendsthatA1;A2obey: wherea1;a2arearbitraryconstantsofintegration.demandingsatisfactionof whilebernoulliequationimplies: 1 a2;n()=a2g() 1 A1A2=_M; 1 a2; (8.51) Thesolutionareconsistentprovided+P= massesarenegligible.insuchcasewendthata2= 1=1=3wherewehave A2(+P)g()a2+1 1 a2=[+p 1Pi.e.mn0,ortherest n]1: (8.52) tionsshowsthatnearthehorizonthebaryondensityisgivenbythefollowing expression: takenthepolytropicindextoequalto4=3.manipulationoftheaboveequa- n()=[ Kn(1) ( 1)(+P)1_M g()]32: (8.54) (8.53) 8.6Breakdownoftheadiabaticityassumption relativisticandthus =53.ModelcalculationsfortheSchwarzschildholeshow Inmorerealisticmodelsofaccretinginterstellarmediumontoablackhole,the inowingplasmaconsistsofaprotonandanelectroncomponentofequaldensities.initiallyi.e.atradialinnity,bothcomponentareconsideredasnon thattheelectroncomponentbarelybecomesrelativisticwhiletheprotoncomponentremainsnonrelativisticallthewaydowntothehorizon.howeverfositiesimplyhightemperatures.assuminganidealplasmathenthetemperature measuredinthethelocalrestframeoftheuidisgivenbyt(r)=n(r) 1. theoneallowstheparameteratogetclosetotheextremevalues.buthighden- Theaboveasymptoticsolutionsindicatesthatn()becameextremelyhighas thedilatoniccase,thingsmaybedierent.theasymptoticsolutionsindicate

16 creation,electron-positronannihilationandproton-protoncollisionsleadingto pionproduction,totakeplace.becauseofthisimportantdierenceintheaccretionnearanextremedilatonicblackhole,itisnaturaltowonderwhetherthe 224 thatfordilatonicblackholesclosetotheextremelimitconditionsaresuchthat bothcomponentsoftheinowingplasmabecomehighlyrelativistic.physically thenoneexpectsthatmanycollisionssuchasthermalbremsstrahlung,pair Accretionondilatonicblackhole productionofphotonsduetovariousprocesses.thistaskhoweverentailsan duetovariousprocessesisnegligiblecomparativelytotheincreaseintheinternalenergydensityoftheplasmaduetotheworkdonebygravitationalforces. AsisknownBondiaccretiononaSchwarzschildbackgroundindeedfulllthis requirement.tocheckthevalidityoftheadiabaticityassumptionforaccretion onaanearlyextremedilatonicblackhole,onehastocomputeindetailsthe initiallyimposedadiabaticityassumptionisstilljustiedbytheobtainedsolution.thelargeproductionofradiationmaynotanylongerneglected.onthe elementofuncertaintymainlyduetoambiguitiesinthevariouscrosssections particularlyifoneallowsvaluesofathatleadintopionsproductionviaproton otherhandadiabaticitywouldbeconsistentprovidedtheoutgoingluminosity experimentatthesameregion.inviewofthefactthattheplasmaishighly colission.fortunatelywedonotneedtoenterintosuchnedetails.aswe relativistic,wemaysetwithoutlossofgenerality =4=3.Accordingtothe shallseetakingintoaccountonlythermalbremsstrahlungitwillbesucientto concludethatindeedadiabaticityitisnotconsistentwiththeasymptoticsolutionsandthustreatmentincorporatingradiativetransportisnecessary.since thesensitiveregionisneartheeventhorizonweshallperformourtheoretical calculationsofnovikovandthorne[nt73],agramoftheplasmainthelocal restframeoftheuidlossesradiationaccordingto: Comparingthetwooneconcludesthattheoutgoingluminosityoutweighsthe Ontheotherhandtherstlawimpliestherateofincreaseoftheinternalenergy bytheworkdonebygravityisgivenby d(n)=kn 2g()g() 16 efft12n() 1 2g() 14 internalenergygainingandthusbondiadiabaticaccretionstrictlyisnotany Insomesensethisisratherunderstandable.Theplasmaduetotheexcessive heatingemitsmuchmorefree-freeradiationinthecaseofextremedilatonic longerconsistentwithadilatonicblackholeaapproachingtheextremelimit. blackhole. 8.7Discussion Insummarytheresultsobtainedsofar,showthataccretiononadilatonicblack holemaybeofentirelydierentnaturethanaccretiononaschwarzschildone.

17 8.7Discussion Thecrucialelementisthevalueofa.ThebreakdownofBondiadiabaticaccretionindicatestheneedofinclusionofradiativetransporteects.Howevereven withtheinclusionofsucheectswebelievethatoutowingluminositywould bemuchlargerthantheonewouldhaveemergedifthebackgroundwasthat 225 ofaschwarzschildblackhole.sinceasisclearfromthesofardiscussionisthe geometryofthedilatonicblackholewhichcauseslargeluminositygeneration. Theincorporationofradiativetransporteectsaswellastheincorporationof thebackgroundmonopoleeld,arecurrentlyunderconsideration. ThisworkhasdoneincollaborationwithThomasZannias[VZ].

18 226 Accretionondilatonicblackhole

19 Bibliography [Hol77]T.E.Holzer,J.Geophys.Res.82(1977),23. [Gib82]G.W.Gibbons,Nucl.Phys.B207(1982),925. [GM88]G.W.GibbonsandK.Maeda,Nucl.Phys.B298(1988),741. [Bon52]H.Bondi,MNRAS112(1952),195. [GHS91]D.Garnkle,G.Horowitz,andA.Strominger,Phys.Rev.D43(1991), [HT83]S.R.HabbalandK.Tsinganos,J.Geophys.Res.88(1983), [TFZ81]K.S.Thorne,R.A.Flammang,andA.N.Zytkow,MNRAS194 [Per91]L.Perko,DierentialEquationsandDynamicalSystems,Spring- [NT73]I.D.NovikovandK.Thorne,inBlackHoles,GordonandBreach,N. Verlag,1991. Y.,1973. [VZ]N.VlahakisandT.Zannias,unpublished. [Tho81]K.S.Thorne,MNRAS194(1981),439. (1981),

EXTENSION SPRINGS: STANDARD SERIES (INCH)

EXTENSION SPRINGS: STANDARD SERIES (INCH) LE 014A 01 0.500 12.70 2.000 0.0360 0.990 25.15 L L LE 014A 02 0.563 14.30 1.650 0.0290 1.153 29.29 L L LE 014A 03 0.625 15.88 1.400 0.0250 1.325 33.66 L L LE 014A 04 0.750 19.05 1.080 0.0190 1.660 42.16

More information

Brand Model Tip Toshiba Dynabook Satellite Toshiba Dynabook Satellite Toshiba Equium - A Toshiba Equium - A

Brand Model Tip Toshiba Dynabook Satellite Toshiba Dynabook Satellite Toshiba Equium - A Toshiba Equium - A Brand Model Tip Toshiba Dynabook Satellite - 1400 4 Toshiba Dynabook Satellite - 1410 4 Toshiba Equium - A100-549 4 Toshiba Equium - A100-602 4 Toshiba Equium - A200-15i 4 Toshiba Equium - A200-196 4 Toshiba

More information

Ciascuncorsoincludeunacombinazionedigitescolastiche;duegiorni. interieduemezzegiornateselezionatetraleseguentidestinazioni:

Ciascuncorsoincludeunacombinazionedigitescolastiche;duegiorni. interieduemezzegiornateselezionatetraleseguentidestinazioni: Ognann 4 000g v an udn p v n n da70pa v ngna a B S c hp ud a I ng Ec c 8bun ag np c g B L c annab amacc 70d v naz na ànn c,chdannunapp un àd a nuvam c z da u mnddu an c vabb am magg num d a unz dgnnaz

More information

South East of Process Main Building / 1F. North East of Process Main Building / 1F. At 14:05 April 16, 2011. Sample not collected

South East of Process Main Building / 1F. North East of Process Main Building / 1F. At 14:05 April 16, 2011. Sample not collected At 14:05 April 16, 2011 At 13:55 April 16, 2011 At 14:20 April 16, 2011 ND ND 3.6E-01 ND ND 3.6E-01 1.3E-01 9.1E-02 5.0E-01 ND 3.7E-02 4.5E-01 ND ND 2.2E-02 ND 3.3E-02 4.5E-01 At 11:37 April 17, 2011 At

More information

ให p, q, r และ s เป นพห นามใดๆ จะได ว า

ให p, q, r และ s เป นพห นามใดๆ จะได ว า เศษส วนของพห นาม ให A และ B เป นพห นาม พห นามใดๆ โดยท B 0 เร ยก B A ว า เศษส วนของพห นาม การดาเน นการของเศษส วนของพห นาม ให p, q, r และ s เป นพห นามใดๆ จะได ว า Q P R Q P Q R Q P R Q P Q R R Q P S P Q

More information

FLUSHOMETER REPAIR KITS

FLUSHOMETER REPAIR KITS Kits Coyne Delaney F222-3 Handle Flexer Seal All Models OEM # F 222 3 427 A Vacuum Breaker For all Models OEM # 427A F223 2 Handle Operating Stem New Style Long Flushboy and New Presto OEM # F 223 2 1-15/16

More information

Final GCE Timetable Summer 2015

Final GCE Timetable Summer 2015 Final GCE table Summer 2015 1 GCE A/AS Modern Languages Speaking Tests Tuesday 28 April - Friday 29 2015 2 GCE Religious Studies: where candidates are taking two assessment units which have been timetabled

More information

B y R us se ll E ri c Wr ig ht, DV M. M as te r of S ci en ce I n V et er in ar y Me di ca l Sc ie nc es. A pp ro ve d:

B y R us se ll E ri c Wr ig ht, DV M. M as te r of S ci en ce I n V et er in ar y Me di ca l Sc ie nc es. A pp ro ve d: E ff ec ts o f El ec tr ic al ly -S ti mu la te d Si lv er -C oa te d Im pl an ts a nd B ac te ri al C on ta mi na ti on i n a Ca ni ne R ad iu s Fr ac tu re G ap M od el B y R us se ll E ri c Wr ig ht,

More information

d e f i n i c j i p o s t a w y, z w i z a n e j e s t t o m. i n. z t y m, i p o jі c i e t o

d e f i n i c j i p o s t a w y, z w i z a n e j e s t t o m. i n. z t y m, i p o jі c i e t o P o s t a w y s p o і e c z e t s t w a w o b e c o s у b n i e p e і n o s p r a w n y c h z e s z c z e g у l n y m u w z g lb d n i e n i e m o s у b z z e s p o і e m D o w n a T h e a t t i t uodf

More information

Summary of Hoshin Policy Deployment

Summary of Hoshin Policy Deployment Summary of Hoshin Policy Deployment The Starting Point: First, they must assure the business is healthy today. Second, they must assure the business will remain healthy in the future. Peter Drucker Hoshin

More information

Multiplying polynomials - Decimals - Simplify product of monomials and trinomials

Multiplying polynomials - Decimals - Simplify product of monomials and trinomials -1- MATHX.NET Multiplying polynomials - Decimals - Simplify product of monomials and trinomials Simplify decimal product with two variables: 1) 0.4(2.4x 2 6.87xy 4.27y 2 ) 2) 4.8a 4 (6.1a 2 + 2.9ab 5.8b

More information

Factoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1)

Factoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1) Factoring Methods When you are trying to factor a polynomial, there are three general steps you want to follow: 1. See if there is a Greatest Common Factor 2. See if you can Factor by Grouping 3. See if

More information

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1.

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1. 1. O b l a s t r o z v o j s p o l k a S U U K 1. 1. Z v y š o v á n í k v a l i f i k a c e Š k o l e n í o S t u d e n t s k á u n i e U n i v e r z i t y K a r l o v y ( d á l e j e n S U U K ) z í

More information

plaque reduction assay, modified dye uptake assay including formazan test, dye uptake assay

plaque reduction assay, modified dye uptake assay including formazan test, dye uptake assay Sauerbrei A, Bohn-Wippert K, Kaspar M, Krumbholz A, Karrasch M, Zell R. 2015. Database on natural polymorphisms and resistance-related non-synonymous mutations in thymidine kinase and DNA polymerase genes

More information

Page 1 of 37 # $ $ " $# " #! " % $ &'(")"# *+,)#)./(0 1)2+)1*+, 3")#)./("*+4,%" )#)./(,,)#2+)( 3 %&'/ ",, &*)1*/252+))&1)1*'25 2+))6 " #% 6" " 6 " ",, ", #, 1+, 6 6,, " 3, )/, &'(" )/,6# 2+2(%,*(, 1, ")#).*+

More information

NOTICE TO MEMBERS No. 2005 047 May 10, 2005

NOTICE TO MEMBERS No. 2005 047 May 10, 2005 NOTICE TO MEMBERS No. 2005 047 May 10, 2005 SYMBOL CONVERSION LONG-TERM EQUITY OPTIONS EXPIRING IN JANUARY Bourse de Montréal Inc. (the Bourse) and Canadian Derivatives Clearing Corporation (CDCC) hereby

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a+) f(a)

More information

Ź Ź ł ź Ź ś ź ł ź Ś ę ż ż ł ż ż Ż Ś ę Ż Ż ę ś ź ł Ź ł ł ż ż ź ż ż Ś ę ż ż Ź Ł Ż Ż Ą ż ż ę ź Ń Ź ś ł ź ż ł ś ź ź Ą ć ś ś Ź Ś ę ę ć ż Ź Ą Ń Ą ł ć ć ł ł ź ę Ś ę ś ę ł ś ć ź ś ł ś ł ł ł ł ć ć Ś ł ź Ś ł

More information

Answers to Selected Even-Numbered Problems

Answers to Selected Even-Numbered Problems Answers to Selected Even-Numbered Problems NOTE TO INSTRUCTORS CONSIDERING ADOPTION: Additional content (e.g., FBDs, shear and moment diagrams, etc.) is in the process of being added to this document.

More information

Rossmoor Website SEO Tracking Sheet 2012-2014 Updated: April 1, 2014

Rossmoor Website SEO Tracking Sheet 2012-2014 Updated: April 1, 2014 As of 5/4/2012 As of 5/14/2012 active senior living no n/a active senior living no n/a adult golf community no n/a adult golf community no n/a 55+ community yes 8th 55+ community yes 8th retirement living

More information

www.sakshieducation.com

www.sakshieducation.com LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c

More information

Freshwater Fish Communities of Southeastern New Hampshire

Freshwater Fish Communities of Southeastern New Hampshire F F mmu f u mp O WA c J IG G c g A I V m WI I AU Y u g v A WI I AU Up c W W u Wu F g g u F p p m F D f v g m u p Wc F m g g v f p I v u c b A IV A WI I U A c c W WO G A A A W u v A I W I A U m u c c Gu

More information

Factoring - Factoring Special Products

Factoring - Factoring Special Products 6.5 Factoring - Factoring Special Products Objective: Identify and factor special products including a difference of squares, perfect squares, and sum and difference of cubes. When factoring there are

More information

Inequalities Study Guide

Inequalities Study Guide Class: Date: Inequalities Study Guide Multiple Choice Identify the choice that best completes the statement or answers the question. Which number is a solution of the inequality? 15 1. m > 8 a. I don t

More information

C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t

More information

OPENBARE ZITTING 1. U ni f o r m e a l g e m e ne p o l i t i e v e r o r d e ni ng e n p u nc t u e l e i m p l e m e nt a t i e GAS ( g e m e e nt e l i j k e a d m i ni s t r a t i e v e s a nc t i

More information

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1 5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in

More information

ű Ű ű ű ű űű ű ő ő ű ű ő ő ő Ű ű ő ő Ű ő ű ű ő ű ű Ű ű Ő ű ű Ő Ű ű ű Ű Ű ő ű Ű ű ű ű Ű Ű Ű ő ő ű ő ű Ű Ő ő ő Ő ő ű ő ő Ő ű Ű ű ő Ű Ő ű ő ő ű Ő Ű ű ő ő ő Ő Ű Ő ű ő ű ű Ű Ű ű Ű ű Ű ű Ű Ű ű ű ű Ő ŰŐ ő Ű ő

More information

ASSIGNMENT ONE SOLUTIONS MATH 4805 / COMP 4805 / MATH 5605

ASSIGNMENT ONE SOLUTIONS MATH 4805 / COMP 4805 / MATH 5605 ASSIGNMENT ONE SOLUTIONS MATH 4805 / COMP 4805 / MATH 5605 (1) (a) (0 + 1) 010 (finite automata below). (b) First observe that the following regular expression generates the binary strings with an even

More information

A Place to Choose Quality, Affordable Health Insurance

A Place to Choose Quality, Affordable Health Insurance MI O A ʼ H A L HI U R A C X C H A G mp w n gm n n af a m ma k a h a b u h a m a M nn ha h n u an x hangw mp v mp nbyn u ag ng n u andha h a p v d p a g a unqua yanda dab y M nn a am w avv $1b nbyu ng hx

More information

DTR Part II: Change Requests 4 June 2015 Cargo Movement

DTR Part II: Change Requests 4 June 2015 Cargo Movement II: Change s 4 June 2015 Appendix E II 6/4/4015 USAF Figure E-6 Revised figure TOC II 6/4/4015 CSC Definitions TOC II 6/4/4015 CSC Website Revised definitions 3, 61, 63, 75, 177, 178, 223, 382, 456, and

More information

PANTONE DS-C PANTONE C:0 M:5 Y:100 K:10 DS 2-1 C PANTONE C:0 M:3 Y:100 K:10 DS 2-2 C PANTONE C:0 M:0 Y:100 K:10 DS 2-3 C

PANTONE DS-C PANTONE C:0 M:5 Y:100 K:10 DS 2-1 C PANTONE C:0 M:3 Y:100 K:10 DS 2-2 C PANTONE C:0 M:0 Y:100 K:10 DS 2-3 C 18 November, 1999 10:32:02 PANTONE C:0 M:5 Y:100 K:0 DS 1-1 C PANTONE C:0 M:3 Y:100 K:0 DS 1-2 C PANTONE C:0 M:0 Y:100 K:0 DS 1-3 C PANTONE C:0 M:0 Y:85 K:0 DS 1-4 C PANTONE C:0 M:0 Y:70 K:0 DS 1-5 C PANTONE

More information

USA Mathematical Talent Search Solutions to Problem 5/2/16

USA Mathematical Talent Search Solutions to Problem 5/2/16 5/2/16. Two circles of equal radius can tightly fit inside right triangle A, which has A = 13, = 12, and A = 5, in the three positions illustrated below. Determine the radii of the circles in each case.

More information

DHL EXPRESS CANADA E-BILL STANDARD SPECIFICATIONS

DHL EXPRESS CANADA E-BILL STANDARD SPECIFICATIONS DHL EXPRESS CANADA E-BILL STANDARD SPECIFICATIONS 1 E-Bill Standard Layout A B C D E F G Field/ DHL Account Number Billing Customer Name Billing Customer Address Billing Customer City Billing Customer

More information

OFFSHORE INTERNATIONAL MARINE PERSONNEL SERVICES, INC. EMPLOYMENT APPLICATION

OFFSHORE INTERNATIONAL MARINE PERSONNEL SERVICES, INC. EMPLOYMENT APPLICATION OFFSHORE INTERNATIONAL MARINE PERSONNEL SERVICES, INC. 3802 W. Nvy Bvd Po, FL 32507 Tho: (850) 455-2995 Tx: (850) 455-3033 www.oho-.om EMPLOYMENT APPLICATION Poo Ay Fo Nm: F L SS# - - Add Cy/S Z Pho: Hom

More information

Name: Comments: Description: Brand: For use in:

Name: Comments: Description: Brand: For use in: OEM: OEM PN: PN: Konica 721024802 576205 Name: Comments: Description: : For use in: Lower Fuser Roller Bearing Konica 08AA76060 576205 Bearing Konica 1067570501 15954 Konica 1075577101 576216 Konica 1165571201

More information

Gradient, Divergence and Curl in Curvilinear Coordinates

Gradient, Divergence and Curl in Curvilinear Coordinates Gradient, Divergence and Curl in Curvilinear Coordinates Although cartesian orthogonal coordinates are very intuitive and easy to use, it is often found more convenient to work with other coordinate systems.

More information

1 9 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i dla zawodu M E C H A N I K P O J A Z D Ó W S A M O C H O D O W Y C H Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r

More information

P r o f. d r. W. G u e d e n s L i c. M. R e y n d e r s D 2 Chemie o e l s t e l l i n g B e pal i n g v an d e c o n c e n t r at i e z u u r i n w i t t e w i j n d o o r u i t v o e r i n g v an e

More information

Federation of State Boards of Physical Therapy Jurisdiction Licensure Reference Guide Topic: Continuing Competence

Federation of State Boards of Physical Therapy Jurisdiction Licensure Reference Guide Topic: Continuing Competence This document reports CEU (continuing education units) and CCU (continuing competence units) requirements for renewal. It describes: Number of CEUs/CCUs required for renewal Who approves continuing education

More information

4 m m 2m 21 K N Am -K 5K E m m m m K S mm m B m V ms S m S E D m V m 1 m m m m m 2 ( m ) 2 m E mm m m mn A m V mm m m E mm m m K m mm m K 3 495 175 B 19 415 16 66 A D ( 1 23 391)1 928 9 337 S G O 18 3

More information

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6 Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a

More information

Other State Policy. CA Policy. Increase Requested

Other State Policy. CA Policy. Increase Requested Rate History Contact: 1 (800) 331-1538 Form * ** Date Date Name 1 NH94 I D 9/14/1998 N/A N/A N/A 35.00% 20.00% 1/25/2006 3/27/2006 8/20/2006 2 LTC94P I F 9/14/1998 N/A N/A N/A 35.00% 20.00% 1/25/2006 3/27/2006

More information

Polynomials and Factoring

Polynomials and Factoring 7.6 Polynomials and Factoring Basic Terminology A term, or monomial, is defined to be a number, a variable, or a product of numbers and variables. A polynomial is a term or a finite sum or difference of

More information

12. Finite figures. Example: Let F be the line segment determined by two points P and Q.

12. Finite figures. Example: Let F be the line segment determined by two points P and Q. 12. Finite figures We now look at examples of symmetry sets for some finite figures, F, in the plane. By finite we mean any figure that can be contained in some circle of finite radius. Since the symmetry

More information

The illustrations in this manual may differ from the product you are using.

The illustrations in this manual may differ from the product you are using. The illustrations in this manual may differ from the product you are using. 1 1 2 1 2 3 1 4 1 5 6 7 8 9 Youkei No.4 (105 mm 235 mm) (Envelope Y401 for Canon LBP/recommended) * You cannot use envelopes

More information

1 7 / c S t a n d a r d w y m a g a ń - e g z a m i n c z e l a d n i c z y dla zawodu M E C H A N I K - M O N T E R M A S Z Y N I U R Z Ą D Z E Ń Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot

More information

The Dow Investing Stock History, 1961-1998

The Dow Investing Stock History, 1961-1998 The Dow Investing Stock History, 1961-1998 The following pages illustrate how some popular Dow Investing methods work over long time periods. Each page contains two lists of stocks. The first lists the

More information

Quality of (Mobile & Fixed) Network & Services reporting for Quarter 1.2. 3. 4 2013

Quality of (Mobile & Fixed) Network & Services reporting for Quarter 1.2. 3. 4 2013 Quality of (Mobile & Fixed) Network & Services reporting for Quarter 1.2. 3. 4 2013 Background The Technical Quality of Service (QoS) & Key Performance Indicators (KPIs) Regulations forms part of the regulations

More information

M O ND A Y T UESD A Y WE DN E SD A Y T HUR S DA Y F RID AY. 6 Panel 2. Exams. Ord P/T Grand Blanc Twp CENTRAL P/T. Jury Trials 11.

M O ND A Y T UESD A Y WE DN E SD A Y T HUR S DA Y F RID AY. 6 Panel 2. Exams. Ord P/T Grand Blanc Twp CENTRAL P/T. Jury Trials 11. JANUARY 2016 M O ND A Y T UESD A Y WE DN E SD A Y T HUR S DA Y F RID AY Panel 1 Panel 4 5 Panel 1 6 Panel 2 7 Panel 1 8 Panel 1 11 12 Panel 1 13 Panel 2 GB City 14 Panel 2 ORD P/T STATE P/T 15 Panel 2

More information

Targeted Cancer Gene Analysis For Research Use Only - Not Intended for Clinical Use

Targeted Cancer Gene Analysis For Research Use Only - Not Intended for Clinical Use Targeted Cancer Gene Analysis For Research Use Only - Not Intended for Clinical Use PGDX ID Sample ID Mutation Position Nucleotide (genomic) Amino Acid (protein) Mutation Type Consequence PGDX2163N_NotchCp

More information

Difference of Squares and Perfect Square Trinomials

Difference of Squares and Perfect Square Trinomials 4.4 Difference of Squares and Perfect Square Trinomials 4.4 OBJECTIVES 1. Factor a binomial that is the difference of two squares 2. Factor a perfect square trinomial In Section 3.5, we introduced some

More information

8 / c S t a n d a r d w y m a g a ń - e g z a m i n c z e l a d n i c z y dla zawodu Ś L U S A R Z Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji zawodów

More information

2200 Series End Drive Conveyors

2200 Series End Drive Conveyors 00 Series End Drive Conveyors Installation, Maintenance & Parts Manual DORNER MFG. CORP. INSIDE THE USA OUTSIDE THE USA P.O. Box 0 975 Cottonwood Ave. TEL: -800-397-8664 TEL: 6-367-7600 Hartland, WI 5309-000

More information

Geometry CP Lesson 5-1: Bisectors, Medians and Altitudes Page 1 of 3

Geometry CP Lesson 5-1: Bisectors, Medians and Altitudes Page 1 of 3 Geometry CP Lesson 5-1: Bisectors, Medians and Altitudes Page 1 of 3 Main ideas: Identify and use perpendicular bisectors and angle bisectors in triangles. Standard: 12.0 A perpendicular bisector of a

More information

QUADRILATERALS CHAPTER 8. (A) Main Concepts and Results

QUADRILATERALS CHAPTER 8. (A) Main Concepts and Results CHAPTER 8 QUADRILATERALS (A) Main Concepts and Results Sides, Angles and diagonals of a quadrilateral; Different types of quadrilaterals: Trapezium, parallelogram, rectangle, rhombus and square. Sum of

More information

Workload Management Services. Data Management Services. Networking. Information Service. Fabric Management

Workload Management Services. Data Management Services. Networking. Information Service. Fabric Management The EU D a t a G r i d D a t a M a n a g em en t (EDG release 1.4.x) T h e Eu ro p ean Dat agri d P ro j ec t T eam http://www.e u - d a ta g r i d.o r g DataGrid is a p ro j e c t f u n de d b y th e

More information

Point Park Conservatory of Performing Arts International Summer Dance Weekly Class Schedule - Subject to Change WEEK 2

Point Park Conservatory of Performing Arts International Summer Dance Weekly Class Schedule - Subject to Change WEEK 2 9:00a-10:45a MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY Studio GRWB Ballet 1 Ballet 1 Ballet 1 Ballet 1 Ballet 1 NR NR NR NR NR Studio GRW1 Ballet 5 Ballet 5 Ballet 5 Ballet 5 Ballet 5 DN DN DN DN DN Studio

More information

a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a

a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a Bellwork a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a c.) Find the slope of the line perpendicular to part b or a May 8 7:30 AM 1 Day 1 I.

More information

QUALIFICATION EQUIVALENTS TABLE

QUALIFICATION EQUIVALENTS TABLE north west regional college Derry~ Limavady Strabane QUALIFICATION EQUIVALENTS TABLE Version 6 - September 2011 www.nwrc.ac.uk info@nwrc.ac.uk Qualification Equivalents Table - Progression to College HE

More information

AGRICULTURAL ALLIS-CHALMERS

AGRICULTURAL ALLIS-CHALMERS Models ACCESSORIES ALLIS-CHALMERS TECH-FIT HEAVY DUTY TRUCK GVW 7-8 21060 22023 22028 22032 22042 22043 22861 22904 APPLICATION BY ENGINE MEDIUM DUTY TRUCK GVW 3-6 SCHOOL BUS MUFFLER SPECS O.E. CROSS REFERENCE

More information

NEW JERSEY DEPARTMENT OF EDUCATION DIVISION OF FIELD SERVICES DATES FOR 2016 SCHOOL ELECTION AND BUDGET PROCEDURES

NEW JERSEY DEPARTMENT OF EDUCATION DIVISION OF FIELD SERVICES DATES FOR 2016 SCHOOL ELECTION AND BUDGET PROCEDURES NEW JERSEY DEPARTMENT OF EDUCATION DIVISION OF FIELD SERVICES DATES FOR 2016 SCHOOL ELECTION AND BUDGET PROCEDURES 2016 SCHOOL ELECTION AND BUDGET PROCEDURES CALENDAR Topic Page Type II Districts Including

More information

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F. Hf Cd Na Nb Lr Ho Bi Ce u Ac I Fl Fr Mo i Md Co P Pa Tc Uut Rh K N Dy Cl N Am b At Md H Y Bh Cm H Bi s Mo Uus Lu P F Cu Ar Ag Mg K Thomas Jefferson National Accelerator Facility - Office of cience ducation

More information

UNIK4250 Security in Distributed Systems University of Oslo Spring 2012. Part 7 Wireless Network Security

UNIK4250 Security in Distributed Systems University of Oslo Spring 2012. Part 7 Wireless Network Security UNIK4250 Security in Distributed Systems University of Oslo Spring 2012 Part 7 Wireless Network Security IEEE 802.11 IEEE 802 committee for LAN standards IEEE 802.11 formed in 1990 s charter to develop

More information

OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS

OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS 1. Be able to determine the behavioural characteristics and parameters

More information

COMPRESSION SPRINGS: STANDARD SERIES (INCH)

COMPRESSION SPRINGS: STANDARD SERIES (INCH) : STANDARD SERIES (INCH) LC 014A 01 0.250 6.35 11.25 0.200 0.088 2.24 F F M LC 014A 02 0.313 7.94 8.90 0.159 0.105 2.67 F F M LC 014A 03 0.375 9.52 7.10 0.126 0.122 3.10 F F M LC 014A 04 0.438 11.11 6.00

More information

Florida Workers Comp Market

Florida Workers Comp Market Florida Workers Comp Market 10/5/10 Lori Lovgren 561-893-3337 Lori_Lovgren@ncci.com Florida Workers Compensation Rates 10-1-03 1-1-11 to 1-1-11* Manufacturing + 9.9% 57.8% Contracting + 7.3% 64.4 % Office

More information

Monthly Vacation and Sick Leave Accrual Schedule Fiscal Year

Monthly Vacation and Sick Leave Accrual Schedule Fiscal Year Classified Civil Service 0 to 84 months (0 to 7 years) 85 to 168 months (7+ to 14 years) 169 to 288 months (14+ to 24 years) Leave Accrual Factor Rate Annual Leave Accrual (.0577) (.0385) (.0577) (.0577)

More information

23 280 ก ก 2558. ก ก Hydrologic Cycle

23 280 ก ก 2558. ก ก Hydrologic Cycle ก 23 28 ก ก 2558 ก ก Hydrologic Cycle ก. ก ก ก ก. ก... ก 65-5533-46-5533-47 ก - ก - 8 ก ก ก ก ก 12-46 ก 17 1 ก ก ก ก ก ก ก 1. ก ก 25 2. ก ก ก ก ก 3. ก ก ก ก ก ก 4. ก ก ก ก 5. 1 31 - 1. ก. ก 2 2. P.7A..

More information

7200 Series Sanitary End Drive Conveyors

7200 Series Sanitary End Drive Conveyors 7200 Series Sanitary End Drive Conveyors Installation, Maintenance & Parts Manual DORNER MFG. CORP. INSIDE THE USA OUTSIDE THE USA P.O. Box 20 975 Cottonwood Ave. TEL: 1-800-397-8664 TEL: 262-367-7600

More information

G d y n i a U s ł u g a r e j e s t r a c j i i p o m i a r u c z a s u u c z e s t n i k ó w i m p r e z s p o r t o w y c h G d y s k i e g o O r o d k a S p o r t u i R e k r e a c j i w r o k u 2 0

More information

First Health Part D Enrollment Checklist

First Health Part D Enrollment Checklist THIS ENROLLMENT FM IS IN SECTIONS. PLEASE REMOVE THIS TAB TO SEPARATE THE SECTIONS BEFE YOU BEGIN. First Health Part D Medicare Prescription Drug Plan (PDP) Individual Enrollment Form Instructions Follow

More information

= r t dt + σ S,t db S t (19.1) with interest rates given by a mean reverting Ornstein-Uhlenbeck or Vasicek process,

= r t dt + σ S,t db S t (19.1) with interest rates given by a mean reverting Ornstein-Uhlenbeck or Vasicek process, Chaper 19 The Black-Scholes-Vasicek Model The Black-Scholes-Vasicek model is given by a sandard ime-dependen Black-Scholes model for he sock price process S, wih ime-dependen bu deerminisic volailiy σ

More information

Ž Ž Ň Ň Č ú Ď Ř Á Ó ž ž Ú ž ž Ň Á Š ž É Á Ň Ň Ň ú Ú Š Ó ž Ř ú Á ž Ď ú ú Ú Ú Ň Ž Á Ž Ž Á Ž Č É Ó Á Ž Ž Ř Ž Ř Ž Ř Ž Ř Ž Ž Ř Ž Ž Ž Ř Ž Ž Ž Ž Ř ú Ž Ž Ř Ý Š Ď ž Ý ž Ý Ď Ď Ž Á ú Š Á ž Ď ŽŽ Š Á Ň Ý ž Ď ú Č Ú

More information

NAV 100 Part II. Piloting & Chartwork Scenario

NAV 100 Part II. Piloting & Chartwork Scenario NAV 100 Part II Piloting & Chartwork Scenario Objectives Practice in measuring & calculating skills Integration of skills in a semi-realistic scenario Improved speed with maintained accuracy Introduction

More information

MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas.

MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas. MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA The concepts of first and second moments of area fundamental to several areas of engineering including solid mechanics and fluid mechanics. Students who are

More information

List of Part Numbers Manufacturer's No. / Hella No.

List of Part Numbers Manufacturer's No. / Hella No. List of Part Numbers Manufacturer's No. / No. List of part numbers.02-.09 Manufacturer's no. / no..-.53 Note: The original numbers listed in the manufacturer number - number comparison serve exclusively

More information

G d y n i a B u d o w a b o i s k a w i e l o f u n k c y j n e g o o n a w i e r z c h n i p o l i u r e t a n o w e j p r z y S z k o l e P o d s t a w o w e j n r 3 5 w G d y n i N u m e r o g ł o s

More information

Chapter 2 Electromagnetic Radiation

Chapter 2 Electromagnetic Radiation Chapter 2 Electromagnetic Radiation Bohr demonstrated that information about the structure of hydrogen could be gained by observing the interaction between thermal energy (heat) and the atom. Many analytical

More information

Campus Sustainability Assessment and Related Literature

Campus Sustainability Assessment and Related Literature Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626

More information

Math 531, Exam 1 Information.

Math 531, Exam 1 Information. Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)

More information

Indexed Annuities Last update June 22, 2015 SPDA. Ages 0-80 NQ/Q

Indexed Annuities Last update June 22, 2015 SPDA. Ages 0-80 NQ/Q American National Genworth Strategy Index Plus 7 Strategy Index Plus 10 Value Lock 10 Secure Living Index 5 Secure Living Index 7 A AM Best A AM Best A AM Best A AM Best A AM Best A Standard & Poors A

More information

Energy Management Energy Analyzer Type EM112

Energy Management Energy Analyzer Type EM112 Energy Management Energy Analyzer Type EM112 Single phase energy analyzer Class 1 (kwh according to EN62053-21 Class B (kwh according to EN50470-3 Accuracy ±0.5% RDG (current/voltage Direct current measurement

More information

CE 201 (STATICS) DR. SHAMSHAD AHMAD CIVIL ENGINEERING ENGINEERING MECHANICS-STATICS

CE 201 (STATICS) DR. SHAMSHAD AHMAD CIVIL ENGINEERING ENGINEERING MECHANICS-STATICS COURSE: CE 201 (STATICS) LECTURE NO.: 28 to 30 FACULTY: DR. SHAMSHAD AHMAD DEPARTMENT: CIVIL ENGINEERING UNIVERSITY: KING FAHD UNIVERSITY OF PETROLEUM & MINERALS, DHAHRAN, SAUDI ARABIA TEXT BOOK: ENGINEERING

More information

Indiana Health Coverage Programs

Indiana Health Coverage Programs Indiana Health Coverage Programs Standard Companion Guide Transaction Information Instructions related to Transactions based on ASC X12 Implementation Guides, version 005010 Group Premium Payment for Insurance

More information

Altivar 71. Variable speed drives for synchronous motors and asynchronous motors

Altivar 71. Variable speed drives for synchronous motors and asynchronous motors Altivar 71 Installation Manual Retain for future use Variable speed drives for synchronous motors and asynchronous motors 0.37 (0.5 HP)... 45 KW (60 HP)/200-24 0.75 (1 HP)... 75 KW (100 HP)/380-48 1.5

More information

W Cisco Kompetanse eek end 2 0 0 8 SMB = Store Mu ll ii gg hh eter! Nina Gullerud ng ulleru@ c is c o. c o m 1 Vår E n t e r p r i s e e r f a r i n g... 2 S m å o g M e llo m s t o r e B e d r i f t e

More information

Cisco Security Agent (CSA) CSA je v í c eúčelo v ý s o f t w a r o v ý ná s t r o j, k t er ý lze p o už í t k v ynuc ení r ů zný c h b ezp ečno s t ní c h p o li t i k. CSA a na lyzuje c h o v á ní a

More information

First A S E M R e c to rs C o n f e re n c e : A sia E u ro p e H ig h e r E d u c a tio n L e a d e rsh ip D ia l o g u e Fre ie U n iv e rsitä t, B e rl in O c to b e r 2 7-2 9 2 0 0 8 G p A G e e a

More information

Drug Hypersensitivity Reactions: Pathomechanism and Clinical Symptoms

Drug Hypersensitivity Reactions: Pathomechanism and Clinical Symptoms D yvy R: P Sy W J P, MD,, *, Jq A, MS, B D, MS, T G, MS, Mk K, PD, D Yy, PD KEYWRDS P G S IE Ty IV Ex M yvy F T y v, w v y y w v y P x y, y (w, y vy S,, v y vy T w y v wy y w, yy q, w D v y A y B : Ty

More information

2. SALESMATERIALSStudentswithorwithoutsmartphonesareabletofacilitatethesalewiththesales materialsprovidedintheirstarterkit,aswelasonourwebsite.

2. SALESMATERIALSStudentswithorwithoutsmartphonesareabletofacilitatethesalewiththesales materialsprovidedintheirstarterkit,aswelasonourwebsite. T GA Tym wamcm mk y!wm,wy Wyykb, mw: 1 PREENTATIONAPPwmqwyymk wwmtmmmbb FBLAby,yw,y m 2 ALEMATERIALwwmbw mk,wwb 3 GOALETTINGHEETEb Tm,mkyyw 4 REVENUECALCULATORM ybywm w mbwb 5 INTRUCTIONALWEBINARP AMCM

More information

Thermistor motor protection relays CM-MSS.22 and CM-MSS.23

Thermistor motor protection relays CM-MSS.22 and CM-MSS.23 Data sheet Thermistor motor protection relays CM-MSS.22 and CM-MSS.23 The thermistor motor protection relays CM-MSS.22 and CM-MSS.23 monitor the winding temperature of motors and protect them from overheating,

More information

Building a High Performance Environment for RDF Publishing. Pascal Christoph

Building a High Performance Environment for RDF Publishing. Pascal Christoph Bud H Pfm Evm f RDF Pu P Cp T d d p md y u d k fm p://pp./ ddd pu dm : p://vmm./u/0. A mk md my dmk d dmk f pv w. Rd u f T m f Edwd Mu p://.wkpd./wk/f:t_sm.jp Lk Op D ud dm, y Rd Cyk d Aj Jz. p://d-ud./

More information

U.S. Department of Housing and Urban Development: Weekly Progress Report on Recovery Act Spending

U.S. Department of Housing and Urban Development: Weekly Progress Report on Recovery Act Spending U.S. Department of Housing and Urban Development: Weekly Progress Report on Recovery Act Spending by State and Program Report as of 3/7/2011 5:40:51 PM HUD's Weekly Recovery Act Progress Report: AK Grants

More information

BEGINNING ALGEBRA ACKNOWLEDMENTS

BEGINNING ALGEBRA ACKNOWLEDMENTS BEGINNING ALGEBRA The Nursing Department of Labouré College requested the Department of Academic Planning and Support Services to help with mathematics preparatory materials for its Bachelor of Science

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, June 19, :15 a.m. to 12:15 p.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, June 19, :15 a.m. to 12:15 p.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 19, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

More information

The To Complete Performance Index

The To Complete Performance Index The To Complete Performance Index transforming project performance Walt Lipke 1.1 PMI - Oklahoma City Chapter 1.0 +1 405 364 1594 waltlipke@cox.net www.earnedschedule.com Index 1.3 1.2 TCPI vs CPI TCPI

More information

Extraction and Properties of the Polyphenol, Catechin, as an Antioxidant

Extraction and Properties of the Polyphenol, Catechin, as an Antioxidant Extraction and Properties of the Polyphenol, Catechin, as an Antioxidant Anthony U. Onuzuruike and Jacob J. Woltering Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65201

More information