Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD. q j

Size: px
Start display at page:

Download "Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD. q j"

Transcription

1 Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD Introduction Let take Lagrange s equations in the form that follows from D Alembert s principle, ) d T T = Q j, 1) dt q j q j suppose that the generalized force is derivable not from the potential V q j ) but from a more general function Uq j, q j ), by the prescription Q j = U + d ) U. ) q j dt q j Substituting this expression for the force into Eqs. 1) yields ) d T T = U + d ) U, 3) dt q j q j q j dt q j or ) d T U) dt q j T U) q j = 0. 4) It follows that these equations can be written in the form of Lagrange s equations, ) d L L = 0, 5) dt q j q j if we use as the Lagrangian the function L = T U. 6) The function U is called usually the velocity-dependent potential sometimes the term generalized potential is also used). It can be thought that the possibility of using such a strange potential is purely academic but this is not the case! On the contrary, it appears that all the fundamental forces in physics can be expressed in the form ), for a suitably chosen potential function U. Its near practical importance relates to the theory of an electric charge in an electromagnetic field. As you know, a charge q moving with the velocity v in an electromagnetic field, containing both an electric, E, magnetic, B, fields, experiences a force Note: 1/c appears in Gauss system of units, in SI system it will be absent) which is called the Lorentz force. F = q [ E + v B) ], 7) Both vectors Er, t) Br, t) are continuous functions of time t position r = x, y, z) derivable from the scalar vector

2 potentials ϕr, t) Br, t) by E = ϕ A t 8) B = A. 9) Here, is the differential operator defined in Cartesian coordinates by, y, ), 10) z so that ϕ = ϕ ϕ ˆx + y ŷ + ϕ z ẑ 11) ˆx ŷ ẑ A = y z, A x A y A z 1) where ˆx, ŷ ẑ are the unit vectors along x-, y- z axes, respectively. Notice that the electromagnetic field defined by Eqs. 8-9) don t change when the potentials are transformed according to: ϕ = ϕ ψ t, A = A + ψ, 13) where ψ is an arbitrary function of the coordinates time. These transformations are known as the gauge transformations. Problem 14. Lagrangian of Charged Particle in Electromagnetic Field Show that the Lagrangian of a particle with the charge q moving with the velocity v in an electromagnetic field given by the scalar vector potentials ϕ A is L = 1 mv qϕ + qa v. 14) Solution: Taking the vectors of the electric magnetic fields E B represented in terms of the scalar vector potentials in accordance with Eqs. 8) 9), we have for the Lorentz force F = q [ ϕ A t + v A) ) ]. 15)

3 Let calculate, say, the x-component of this vector force, [ F x = q ϕ) x A x + v A) ) ]. 16) t x Using the definitions 11) 1), we obtain since v A) ) x = v y = v y A y v y A x y ϕ) x = ϕ Ay + v z Az v z Ax z ) Ax y Ax vz z + v x Ax v x Ax ) Az 17) = dax v A) + Ax, 18) dt t v A) = v A x xa x + v y A y + v z A z ) = v x + v A y y + v A z z da x = A x A x + v x dt t + v A x y y + v A x z z. 0) Substituting Eqs. 17) 18) into Eq. 16), we finally obtain F x = q [ ϕ Ax + dax v A) t dt q [ ] [ + Ax t = q ) ] ϕ v A da x dt = 19) ) )] ϕ v A + d dt v x ϕ v A, 1) which can be written as F x = U + d U, ) dt v x where we introduce the function U = qϕ qv A = qϕ qa v. 3) Note that the term in the right-h side of this equation coincides with the potential V defined by Eq..119) from our Lecture notes in a particular case of a single particle of charge q. Comparing the expression for the Lorentz force in the form ) with the definition ) of the generalized force in terms of the velocity-dependent potential, we see that in our case this potential is defined just by the equation 3). immediately yields the Lagrangian in the desired form given by Eq. 6), This observation L = T U = 1 mv qϕ + qa v. 4)

4 Problem 15. Calculate the conjugate momentum p the energy function h for a particle of the mass m charge q in an electromagnetic field given by the scalar vector potentials ϕ A. Solution: The x-component of the conjugate momentum is p x = L ẋ = v x { } 1 m[v x + vy + vz] qϕ + q[a x v x + A y v y + A z v z ] The same for y- z-components = mv x + qa x. 5) p y = mv y + qa y 6) p z = mv z + qa z. 7) The second terms in these expressions play the role of a potential momentum. The energy function is h = j q j L q j L = j q j p j L = v x p x + v y p y + v z p z mv qϕ + qa v ) = v x mvx + qa x ) + vy mvy + qa y ) + vz mvz + qa z ) 1 mv qϕ + qa v ) = mv + qa v 1 mv qϕ + qa v ) = 1 mv + qϕ = T + qϕ. 8) If A ϕ are independent of t, then L does not depend on t explicitly the energy function is constant, that is T + qϕ = const. 9) Since the second term in this equation is nothing but the potential energy of a charge particle, we see that in this case the total energy of the system is conserved as it might be. Problem 16. A particle of the mass m charge q moves in a constant magnetic field B = 0, 0, B). 30) Show that the orbit of a particle is a helix.

5 Solution: Let specify the scalar vector potentials for the case when the electric field is absent, E = 0, 31) magnetic field has only non-zero component B z = B. Keeping in mind that this component is expressed in terms of the vector potential A as we can choose the potentials in the form With this choice, the Lagrangian is B z = A y A x y, 3) A = 0, Bx, 0), ϕ = 0. 33) L = m ẋ + ẏ + ż ) + qbxẏ. 34) The corresponding Lagrange s equation are written as d mẋ) qbẏ = 0 dt d mẏ + qbx) = 0 35) dt d mż) = 0. dt From the second third equations it follows ẏ = C ωx 36) z = z 0 + Dt, 37) where C, D, z 0 are constants the substitution ω = qb m 38) has been made. With the value of the ẏ given by 36), the first equation from 35) takes the form ẍ ωc ωx) = 0, 39) or where ẍ + ω x x 0 ) = 0, 40) x 0 = C ω. 41)

6 The general solution of Eq. 40) can be written as x x 0 = a cosωt + δ). 4) Then ẏ = C ωx = ωx 0 x) = aω cosωt + δ). 43) Integrating this equation yields y = a sinωt + δ) + y 0. 44) Finally, combining Eqs. 4) 44) we obtain x x 0 ) + y y 0 ) = a. 45) Together with Eq. 37) for z-component, this defines a helix as a trajectory of a particle. Problem 17. Find the eigenfrequencies for an isotropic three-dimensional harmonic oscillator realized as a particle of charge q placed in a uniform magnetic, B, electric, E, fields which are mutually perpendicular take their directions along z- x-axes, respectively. Solution: As the particle is an isotropic harmonic oscillator has the charge q, its potential energy may be written as V = 1 kr + qϕ qa v 1 mω 0r + qϕ qa v, 46) where we introduced the natural angular frequency of an isotropic oscillator k ω 0 = m, 47) r = x, y, z) is the displacement of the particle from the origin. We can easily check also that the configuration of electric magnetic field given in the problem can be realized by the choice of the scalar vector potentials in the form Indeed, with this choice we have ϕ = Ex, A = 1 By, 1 Bx, 0). 48) E = ϕ = ˆxE 49)

7 B z = A y A x y = [ 1 Bx] [ 1 y By] = 1 B + 1 B = B, 50) as it should be. It is instructive to notice that in previous problem to obtain the same result for B we used another choice of A given by Eq. 33). Now we are able to write the total Lagrangian as L = 1 mẋ + ẏ + ż ) 1 mω 0x + y + z ) + qex + 1 qb ẋy + xẏ). 51) This Lagrangian create Lagrange s equations ẍ + ω0x qb ẏ qe = 0 m m ÿ + ω 0y + qb ẋ = 0 m z + ω0z = 0. The general solution of the last equation is 5) z = z 0 cosω 0 t + δ), 53) that is the oscillation in z-direction takes place with the natural angular frequency ω 0. By the change of variables x = x + qe, 54) mω0 the first two equations can be represented in a more symmetric form { ẍ + ω 0x ω L ẏ = 0 ÿ + ω 0y + ω L ẋ = 0, 55) where ω L = qb m. 56) This is the system of the coupled linear differential equations of the second order, hence we can try a solution of type x = Ae iωt, y = Be iωt. 57) Then the system 55) changes to the system of the algebraic equations which is written in matrix form as ω 0 ω ) ) iω L ω A iω L ω ω0 ω = 0. 58) B So the secular equation is ω0 ω iω L ω iω L ω ω0 ω = ω 0 ω ) ω L ω) = 0. 59)

8 This equation is equivalent two the pair of equations, { ω + ω L ω ω 0 = 0; ω ω L ω ω 0 = 0, 60) which has two positive roots ω + = 1[ω L + ωl + 4ω0], ω = 1[ ω L + ωl + 4ω0]. 61) Hence the oscillator in a combined electric magnetic field exhibits the three eigenfrequencies ω 0, ω + ω. Note that first mode does not depend on the applied fields at all, the last two modes are caused by the magnetic field alone, whereas the electric field only causes a displacement magnetic field, qe mω 0 the frequencies ω ± are approximated to the form along its direction. For a weak ω L << ω 0, 6) ω + = ω 0 + ω L, while in an opposite case of a strong magnetic field, we have ω = ω 0 ω L, 63) ω L >> ω 0, 64) ω + [ 1 ωl + )] 1 + ω 0 ω = L ωl + ω 0 ω 1 [ ωl 1 + ω 0 ω L ω L, )] = ω 0 ω L. 65)

Oscillations. Vern Lindberg. June 10, 2010

Oscillations. Vern Lindberg. June 10, 2010 Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1

More information

Let s first see how precession works in quantitative detail. The system is illustrated below: ...

Let s first see how precession works in quantitative detail. The system is illustrated below: ... lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,

More information

How do we obtain the solution, if we are given F (t)? First we note that suppose someone did give us one solution of this equation

How do we obtain the solution, if we are given F (t)? First we note that suppose someone did give us one solution of this equation 1 Green s functions The harmonic oscillator equation is This has the solution mẍ + kx = 0 (1) x = A sin(ωt) + B cos(ωt), ω = k m where A, B are arbitrary constants reflecting the fact that we have two

More information

Examples of magnetic field calculations and applications. 1 Example of a magnetic moment calculation

Examples of magnetic field calculations and applications. 1 Example of a magnetic moment calculation Examples of magnetic field calculations and applications Lecture 12 1 Example of a magnetic moment calculation We consider the vector potential and magnetic field due to the magnetic moment created by

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

Lecture 5 Motion of a charged particle in a magnetic field

Lecture 5 Motion of a charged particle in a magnetic field Lecture 5 Motion of a charged particle in a magnetic field Charged particle in a magnetic field: Outline 1 Canonical quantization: lessons from classical dynamics 2 Quantum mechanics of a particle in a

More information

2.2 Magic with complex exponentials

2.2 Magic with complex exponentials 2.2. MAGIC WITH COMPLEX EXPONENTIALS 97 2.2 Magic with complex exponentials We don t really know what aspects of complex variables you learned about in high school, so the goal here is to start more or

More information

Charged Particle in a Magnetic Field

Charged Particle in a Magnetic Field Charged Particle in a Magnetic Field Consider a particle moving in an external magnetic field with its velocity perpendicular to the field The force is always directed toward the center of the circular

More information

Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2014 fall

Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2014 fall UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Suggested solutions, FYS 500 Classical Mecanics and Field Teory 014 fall Set 11 for 17/18. November 014 Problem 59: Te Lagrangian for

More information

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Exam in: FYS 310 Classical Mechanics and Electrodynamics Day of exam: Tuesday June 4, 013 Exam hours: 4 hours, beginning at 14:30 This examination

More information

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

Introduction to Schrödinger Equation: Harmonic Potential

Introduction to Schrödinger Equation: Harmonic Potential Introduction to Schrödinger Equation: Harmonic Potential Chia-Chun Chou May 2, 2006 Introduction to Schrödinger Equation: Harmonic Potential Time-Dependent Schrödinger Equation For a nonrelativistic particle

More information

Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries

Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries Chapter 22 The Hamiltonian and Lagrangian densities from my book: Understanding Relativistic Quantum Field Theory Hans de Vries January 2, 2009 2 Chapter Contents 22 The Hamiltonian and Lagrangian densities

More information

ASEN 3112 - Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1

ASEN 3112 - Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1 19 MDOF Dynamic Systems ASEN 3112 Lecture 1 Slide 1 A Two-DOF Mass-Spring-Dashpot Dynamic System Consider the lumped-parameter, mass-spring-dashpot dynamic system shown in the Figure. It has two point

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

3. KINEMATICS IN TWO DIMENSIONS; VECTORS.

3. KINEMATICS IN TWO DIMENSIONS; VECTORS. 3. KINEMATICS IN TWO DIMENSIONS; VECTORS. Key words: Motion in Two Dimensions, Scalars, Vectors, Addition of Vectors by Graphical Methods, Tail to Tip Method, Parallelogram Method, Negative Vector, Vector

More information

arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014

arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic

More information

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

More information

F en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself.

F en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself. The Electron Oscillator/Lorentz Atom Consider a simple model of a classical atom, in which the electron is harmonically bound to the nucleus n x e F en = mω 0 2 x origin resonance frequency Note: We should

More information

arxiv:1603.01211v1 [quant-ph] 3 Mar 2016

arxiv:1603.01211v1 [quant-ph] 3 Mar 2016 Classical and Quantum Mechanical Motion in Magnetic Fields J. Franklin and K. Cole Newton Department of Physics, Reed College, Portland, Oregon 970, USA Abstract We study the motion of a particle in a

More information

ANALYTICAL METHODS FOR ENGINEERS

ANALYTICAL METHODS FOR ENGINEERS UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

Introduction to Complex Numbers in Physics/Engineering

Introduction to Complex Numbers in Physics/Engineering Introduction to Complex Numbers in Physics/Engineering ference: Mary L. Boas, Mathematical Methods in the Physical Sciences Chapter 2 & 14 George Arfken, Mathematical Methods for Physicists Chapter 6 The

More information

Unified Lecture # 4 Vectors

Unified Lecture # 4 Vectors Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

Exam 2 Practice Problems Part 2 Solutions

Exam 2 Practice Problems Part 2 Solutions Problem 1: Short Questions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Exam Practice Problems Part Solutions (a) Can a constant magnetic field set into motion an electron, which is initially

More information

1 Variational calculation of a 1D bound state

1 Variational calculation of a 1D bound state TEORETISK FYSIK, KTH TENTAMEN I KVANTMEKANIK FÖRDJUPNINGSKURS EXAMINATION IN ADVANCED QUANTUM MECHAN- ICS Kvantmekanik fördjupningskurs SI38 för F4 Thursday December, 7, 8. 13. Write on each page: Name,

More information

Part A : Gravity. F = dp dt

Part A : Gravity. F = dp dt Part A : Gravity Recap of Newtonian Dynamics Consider a particle of mass m and velocity v. Momentum of the particle is defined as p = mv. Newton s Second Law (N2) states that, if particle is acted upon

More information

Physics 2B. Lecture 29B

Physics 2B. Lecture 29B Physics 2B Lecture 29B "There is a magnet in your heart that will attract true friends. That magnet is unselfishness, thinking of others first. When you learn to live for others, they will live for you."

More information

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations

More information

Lecture L5 - Other Coordinate Systems

Lecture L5 - Other Coordinate Systems S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates

More information

2.6 The driven oscillator

2.6 The driven oscillator 2.6. THE DRIVEN OSCILLATOR 131 2.6 The driven oscillator We would like to understand what happens when we apply forces to the harmonic oscillator. That is, we want to solve the equation M d2 x(t) 2 + γ

More information

THE ELECTROMAGNETIC FIELD DUE TO THE ELECTRONS.

THE ELECTROMAGNETIC FIELD DUE TO THE ELECTRONS. THE ELECTROMAGNETIC FIELD DUE TO THE ELECTRONS 367 Proceedings of the London Mathematical Society Vol 1 1904 p 367-37 (Retyped for readability with same page breaks) ON AN EXPRESSION OF THE ELECTROMAGNETIC

More information

Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged

More information

Math 1302, Week 3 Polar coordinates and orbital motion

Math 1302, Week 3 Polar coordinates and orbital motion Math 130, Week 3 Polar coordinates and orbital motion 1 Motion under a central force We start by considering the motion of the earth E around the (fixed) sun (figure 1). The key point here is that the

More information

Vector Algebra. Addition: (A + B) + C = A + (B + C) (associative) Subtraction: A B = A + (-B)

Vector Algebra. Addition: (A + B) + C = A + (B + C) (associative) Subtraction: A B = A + (-B) Vector Algebra When dealing with scalars, the usual math operations (+, -, ) are sufficient to obtain any information needed. When dealing with ectors, the magnitudes can be operated on as scalars, but

More information

Torque Analyses of a Sliding Ladder

Torque Analyses of a Sliding Ladder Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while

More information

Figure 27.6b

Figure 27.6b Figure 27.6a Figure 27.6b Figure 27.6c Figure 27.25 Figure 27.13 When a charged particle moves through a magnetic field, the direction of the magnetic force on the particle at a certain point is A. in

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by author at Imperial College, University of London, between 1981 and 1990. It is available free to all individuals,

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes

Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes J. Peraire, S. Widnall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes 3D Rigid Body Dynamics: Euler Equations in Euler Angles In lecture 29, we introduced

More information

Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Applications of Second-Order Differential Equations Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration

More information

The Quantum Harmonic Oscillator Stephen Webb

The Quantum Harmonic Oscillator Stephen Webb The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Unit - 6 Vibrations of Two Degree of Freedom Systems

Unit - 6 Vibrations of Two Degree of Freedom Systems Unit - 6 Vibrations of Two Degree of Freedom Systems Dr. T. Jagadish. Professor for Post Graduation, Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore Introduction A two

More information

Electromagnetism Laws and Equations

Electromagnetism Laws and Equations Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2

More information

Isaac Newton s (1642-1727) Laws of Motion

Isaac Newton s (1642-1727) Laws of Motion Big Picture 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/7/2007 Lecture 1 Newton s Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big Picture First

More information

Second Order Linear Differential Equations

Second Order Linear Differential Equations CHAPTER 2 Second Order Linear Differential Equations 2.. Homogeneous Equations A differential equation is a relation involving variables x y y y. A solution is a function f x such that the substitution

More information

How To Understand The Dynamics Of A Multibody System

How To Understand The Dynamics Of A Multibody System 4 Dynamic Analysis. Mass Matrices and External Forces The formulation of the inertia and external forces appearing at any of the elements of a multibody system, in terms of the dependent coordinates that

More information

Symmetric planar non collinear relative equilibria for the Lennard Jones potential 3 body problem with two equal masses

Symmetric planar non collinear relative equilibria for the Lennard Jones potential 3 body problem with two equal masses Monografías de la Real Academia de Ciencias de Zaragoza. 25: 93 114, (2004). Symmetric planar non collinear relative equilibria for the Lennard Jones potential 3 body problem with two equal masses M. Corbera,

More information

1 Lecture 3: Operators in Quantum Mechanics

1 Lecture 3: Operators in Quantum Mechanics 1 Lecture 3: Operators in Quantum Mechanics 1.1 Basic notions of operator algebra. In the previous lectures we have met operators: ˆx and ˆp = i h they are called fundamental operators. Many operators

More information

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of

More information

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity Electrostatic Fields: Coulomb s Law & the Electric Field Intensity EE 141 Lecture Notes Topic 1 Professor K. E. Oughstun School of Engineering College of Engineering & Mathematical Sciences University

More information

Section 13.5 Equations of Lines and Planes

Section 13.5 Equations of Lines and Planes Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.

More information

6 J - vector electric current density (A/m2 )

6 J - vector electric current density (A/m2 ) Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J - vector electric current density (A/m2 ) M - vector magnetic current density (V/m 2 ) Some problems

More information

Differentiation of vectors

Differentiation of vectors Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where

More information

Review of First- and Second-Order System Response 1

Review of First- and Second-Order System Response 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.151 Advanced System Dynamics and Control Review of First- and Second-Order System Response 1 1 First-Order Linear System Transient

More information

Rigid body dynamics using Euler s equations, Runge-Kutta and quaternions.

Rigid body dynamics using Euler s equations, Runge-Kutta and quaternions. Rigid body dynamics using Euler s equations, Runge-Kutta and quaternions. Indrek Mandre http://www.mare.ee/indrek/ February 26, 2008 1 Motivation I became interested in the angular dynamics

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

Chapter 12 Modal Decomposition of State-Space Models 12.1 Introduction The solutions obtained in previous chapters, whether in time domain or transfor

Chapter 12 Modal Decomposition of State-Space Models 12.1 Introduction The solutions obtained in previous chapters, whether in time domain or transfor Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology 1 1 c Chapter

More information

APPLICATIONS. are symmetric, but. are not.

APPLICATIONS. are symmetric, but. are not. CHAPTER III APPLICATIONS Real Symmetric Matrices The most common matrices we meet in applications are symmetric, that is, they are square matrices which are equal to their transposes In symbols, A t =

More information

2 Session Two - Complex Numbers and Vectors

2 Session Two - Complex Numbers and Vectors PH2011 Physics 2A Maths Revision - Session 2: Complex Numbers and Vectors 1 2 Session Two - Complex Numbers and Vectors 2.1 What is a Complex Number? The material on complex numbers should be familiar

More information

The Two-Body Problem

The Two-Body Problem The Two-Body Problem Abstract In my short essay on Kepler s laws of planetary motion and Newton s law of universal gravitation, the trajectory of one massive object near another was shown to be a conic

More information

19 LINEAR QUADRATIC REGULATOR

19 LINEAR QUADRATIC REGULATOR 19 LINEAR QUADRATIC REGULATOR 19.1 Introduction The simple form of loopshaping in scalar systems does not extend directly to multivariable (MIMO) plants, which are characterized by transfer matrices instead

More information

Lecture 7. Matthew T. Mason. Mechanics of Manipulation. Lecture 7. Representing Rotation. Kinematic representation: goals, overview

Lecture 7. Matthew T. Mason. Mechanics of Manipulation. Lecture 7. Representing Rotation. Kinematic representation: goals, overview Matthew T. Mason Mechanics of Manipulation Today s outline Readings, etc. We are starting chapter 3 of the text Lots of stuff online on representing rotations Murray, Li, and Sastry for matrix exponential

More information

Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry

Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry Apeiron, Vol. 15, No. 3, July 2008 206 Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry Krzysztof Rȩbilas Zak lad

More information

Kinetic Theory of Gases. Chapter 33. Kinetic Theory of Gases

Kinetic Theory of Gases. Chapter 33. Kinetic Theory of Gases Kinetic Theory of Gases Kinetic Theory of Gases Chapter 33 Kinetic theory of gases envisions gases as a collection of atoms or molecules. Atoms or molecules are considered as particles. This is based on

More information

4 Lyapunov Stability Theory

4 Lyapunov Stability Theory 4 Lyapunov Stability Theory In this section we review the tools of Lyapunov stability theory. These tools will be used in the next section to analyze the stability properties of a robot controller. We

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

FLAP P11.2 The quantum harmonic oscillator

FLAP P11.2 The quantum harmonic oscillator F L E X I B L E L E A R N I N G A P P R O A C H T O P H Y S I C S Module P. Opening items. Module introduction. Fast track questions.3 Ready to study? The harmonic oscillator. Classical description of

More information

Equations of Lines and Planes

Equations of Lines and Planes Calculus 3 Lia Vas Equations of Lines and Planes Planes. A plane is uniquely determined by a point in it and a vector perpendicular to it. An equation of the plane passing the point (x 0, y 0, z 0 ) perpendicular

More information

arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013

arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013 Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013 Krzysztof Rȩbilas

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

Chapter 6 Circular Motion

Chapter 6 Circular Motion Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example

More information

5 Homogeneous systems

5 Homogeneous systems 5 Homogeneous systems Definition: A homogeneous (ho-mo-jeen -i-us) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x +... + a n x n =.. a m

More information

CBE 6333, R. Levicky 1 Differential Balance Equations

CBE 6333, R. Levicky 1 Differential Balance Equations CBE 6333, R. Levicky 1 Differential Balance Equations We have previously derived integral balances for mass, momentum, and energy for a control volume. The control volume was assumed to be some large object,

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

More information

Operators and Matrices

Operators and Matrices Operators and Matrices You ve been using operators for years even if you ve never heard the term. Differentiation falls into this category; so does rotation; so does wheel-alignment. In the subject of

More information

Special Theory of Relativity

Special Theory of Relativity June 1, 2010 1 1 J.D.Jackson, Classical Electrodynamics, 3rd Edition, Chapter 11 Introduction Einstein s theory of special relativity is based on the assumption (which might be a deep-rooted superstition

More information

Assessment Plan for Learning Outcomes for BA/BS in Physics

Assessment Plan for Learning Outcomes for BA/BS in Physics Department of Physics and Astronomy Goals and Learning Outcomes 1. Students know basic physics principles [BS, BA, MS] 1.1 Students can demonstrate an understanding of Newton s laws 1.2 Students can demonstrate

More information

Magnetic Field and Magnetic Forces

Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 Magnets

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

3. Derive the partition function for the ideal monoatomic gas. Use Boltzmann statistics, and a quantum mechanical model for the gas.

3. Derive the partition function for the ideal monoatomic gas. Use Boltzmann statistics, and a quantum mechanical model for the gas. Tentamen i Statistisk Fysik I den tjugosjunde februari 2009, under tiden 9.00-15.00. Lärare: Ingemar Bengtsson. Hjälpmedel: Penna, suddgummi och linjal. Bedömning: 3 poäng/uppgift. Betyg: 0-3 = F, 4-6

More information

Discrete mechanics, optimal control and formation flying spacecraft

Discrete mechanics, optimal control and formation flying spacecraft Discrete mechanics, optimal control and formation flying spacecraft Oliver Junge Center for Mathematics Munich University of Technology joint work with Jerrold E. Marsden and Sina Ober-Blöbaum partially

More information

11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Rotational Motion: 11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

More information

2, 8, 20, 28, 50, 82, 126.

2, 8, 20, 28, 50, 82, 126. Chapter 5 Nuclear Shell Model 5.1 Magic Numbers The binding energies predicted by the Liquid Drop Model underestimate the actual binding energies of magic nuclei for which either the number of neutrons

More information

Inner products on R n, and more

Inner products on R n, and more Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +

More information

Vector surface area Differentials in an OCS

Vector surface area Differentials in an OCS Calculus and Coordinate systems EE 311 - Lecture 17 1. Calculus and coordinate systems 2. Cartesian system 3. Cylindrical system 4. Spherical system In electromagnetics, we will often need to perform integrals

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

Chapter 15 Collision Theory

Chapter 15 Collision Theory Chapter 15 Collision Theory 151 Introduction 1 15 Reference Frames Relative and Velocities 1 151 Center of Mass Reference Frame 15 Relative Velocities 3 153 Characterizing Collisions 5 154 One-Dimensional

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com

Copyright 2011 Casa Software Ltd. www.casaxps.com Table of Contents Variable Forces and Differential Equations... 2 Differential Equations... 3 Second Order Linear Differential Equations with Constant Coefficients... 6 Reduction of Differential Equations

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani Problem 6.40 and 6.4 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani 6.40 A wheel with fine teeth is attached to the end of a spring with constant k and unstretched length

More information

Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A.

Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A. MECHANICS: STATICS AND DYNAMICS Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A. Keywords: mechanics, statics, dynamics, equilibrium, kinematics,

More information

Coherent Ion Acceleration using Two Electrostatic Waves

Coherent Ion Acceleration using Two Electrostatic Waves Coherent Ion Acceleration using Two Electrostatic Waves E.Y. Choueiri and R. Spektor Electric Propulsion and Plasma Dynamics Laboratory (EPPDyL) Princeton University, Princeton, New Jersey 8 This paper

More information