# Indices of Model Fit STRUCTURAL EQUATION MODELING 2013

Size: px
Start display at page:

## Transcription

1 Indices of Model Fit STRUCTURAL EQUATION MODELING 2013

2 Indices of Model Fit A recommended minimal set of fit indices that should be reported and interpreted when reporting the results of SEM analyses: 1. Model chi-square 2. Steiger-Lind root mean square error of approximation (RMSEA; Steiger, 1990) with its 90% confidence interval 3. Bentler comparative fit index (CFI; Bentler, 1990) 4. Standardized root mean square residual (SRMR)

3 Model Chi-square The model chi-square is the most basic fit statistic, and it is reported in virtually all reports of SEM analyses Most if not all other fit indices include the model chi-square, so it is a key ingredient. It equals the product (N-1) F ML where N-1 are the sample degrees of freedom and F ML is the value of the statistical criterion (fitting function) minimized in ML estimation. In large samples and assuming multivariate normality, (N-1 F ML is distributed as a Pearson chi-square statistic with degrees of freedom equal to df M

4 Model Chi-square (continued) Recall that df M is the difference between the number of observations and the number of free model parameters. The statistic (N-1) F ML under the assumptions just stated is referred to here as χ 2 M. The term χ 2 M is also known as the likelihood ratio chi-square or generalized likelihood ratio. The value of χ 2 M for a just identified model generally equals zero and has no degrees of freedom If χ 2 M = 0, the model perfectly fits the data

5 Model Chi-square (continued) As the value of χ 2 M increases, the fit of an overidentified model becomes increasingly worse In the sense of χ 2 M is actually a badness of fit index because the higher its value, the worse the model s correspondence to the data For an overidentified model (i.e. df M 0), χ 2 M tests the null hypothesis that the model is correct (i.e., it has perfect fit in the population) Therefore, it is the failure to reject the null hypothesis that supports the researcher s model

6 Model Chi-sqs Reported by LISREL Minimum Fit Function Chi-Square Located in table of fit indices in the output (n-1)(minimum VALUE OF FIT FUNCTION) Fit function is maximum likelihood Normal Theory Weighted Least Squares Chi-Square This appears underneath the path diagram and output (n-1)(minimum VALUE OF THE WEIGHTED LEAST SQUARES FIT FUNCTION) Fit function uses weights to correct for non-normality

7 Chi-Square Statistic a function of sample size The latter means that if the sample size is large, the value of χ 2 M may lead to rejection of the model even though differences between observed and predicted covariances are slight Thus, rejection of basically any overidentified model based on χ 2 M requires only a sufficiently large sample

8 Chi-Sq/DF Some researchers divide the model chi-square by its degrees of freedom to reduce the effect of sample size This generally results in a lower value called the normed chisquare: NC=χ 2 M/df M However, there is no clear-cut guideline about what value of the NC is minimally acceptable For example, Bollen (1989) notes that values of the NC of 2.0, 3.0, or even as high as 5.0 have been recommended as indicated reasonable fit

9 Root Mean Square Error of Approximation (RMSEA) The RMSEA has the following characteristics. It: 1. Is a parsimony-adjusted index in that its formula includes a built-in correction for model complexity (i.e. It favors simpler models) 2. Also takes sample size into account 3. Is usually reported in computer output with a confidence interval, which explicitly acknowledges that the RMSEA is subject to sampling error as are all fit indices The RMSEA measures error of approximation, and for this reason it is sometimes referred to as a population-based index The RMSEA is a badness of fit index in that a value of 0 indicates the best fit and higher values indicate worse fit

10 The formula is RMSEA (continued) RMSEA = RMSEA estimates the amount of error of approximation per model degree of freedom and takes sample size into account RMSEA = 0 says only that χ 2 M = df M, not that χ 2 M perfect) = 0 (i.e., fit is Rules of thumb by Browne and Cudeck (1993): RMSEA.05 indicates close approximate fit Values between.05 and.08 suggest reasonable error of approximation RMSEA 1 suggests poor fit

11 Comparative Fit Index (CFI) The CFI is one of a class of fit statistics known as incremental or comparative fit indices, which are among the most widely used in SEM All such indexes assess the relative improvement in fit of the researcher s model compared with a baseline model The latter is typically the independence model also called the null model which assumes zero population covariances among the observed variables A rule of thumb for the CFI and other incremental indices is that values greater than roughly.90 may indicate reasonably good fit of the researcher s model (Hu & Beltler, 1999) Similar to the RMSEA, however, CFI = 1.00 means only that χ 2 M, df M not that the model has perfect fit

12 Standardized Root Mean Square Residual (SRMR) The root mean square residual (RMSR) is a measure of the mean absolute value of the covariance residuals Perfect model fit is indicated by RMR = 0, and increasingly higher values indicate worse fit (i.e., badness of fit index) One problem with the RMR is that because it is computed with unstandardized variables, its range depends on the scales of the observed variables The SRMR is based on transforming both the sample covariance matrix and the predicted covariance matrix into correlation matrices The SRMR is thus a measure of the mean absolute correlation residual, the overall difference between the observed and predicted correlations Values of the SRMR less than.10 are generally considered favorable.

13 Testing Nested Models Two path models are hierarchical or nested if one is a subset of the other (e.g. a path is dropped from Model A to form Model B) There are two general contexts in which hierarchical path models are compared: 1. Model trimming: Paths are eliminated from a model (i.e. it is simplified) 2. Model building: Paths are added to a model (i.e. it is made more complex) As a model is trimmed, its fit to the data usually becomes progressively worse (e.g. χ 2 M increases). As a model is built, its fit to the data usually becomes progressively better (e.g. χ 2 M decreases) The goal is to find a parsimonious model that still fits the data reasonably well.

14 Delta Chi-Square Test The Chi-Square difference statistic, df D, can be used to test the statistical significance of the decrement in overall fit as paths are deleted or the improvement in fit as paths are added The statistic χ 2 D is just the difference between the χ 2 M values of two hierarchical models estimated with the same data Its degrees of freedom, df D equal the difference between the two respective values of df M.

15 Comparing Non-Nested Models Sometimes researchers specify alternative models that are not hierarchically related Although the values of χ 2 M from two different nonhierarchical models can still be compared, the difference between them cannot be interpreted as a test statistic This is where a predictive fit index, such as the Akaike information criterion (AIC) comes in handy A predictive fit index assesses model fit in hypothetical replication samples the same size and randomly drawn from the same population as the researcher s original sample Specifically, the model in a set of competing nonhierarchical models estimated with the same data with the smallest AIC is preferred. This is the model with the best predicted fit in a hypothetical replication sample considering the degree of fit in the actual sample and parsimony compared with the other models

### Applications of Structural Equation Modeling in Social Sciences Research

American International Journal of Contemporary Research Vol. 4 No. 1; January 2014 Applications of Structural Equation Modeling in Social Sciences Research Jackson de Carvalho, PhD Assistant Professor

### Evaluating the Fit of Structural Equation Models: Tests of Significance and Descriptive Goodness-of-Fit Measures

Methods of Psychological Research Online 003, Vol.8, No., pp. 3-74 Department of Psychology Internet: http://www.mpr-online.de 003 University of Koblenz-Landau Evaluating the Fit of Structural Equation

### Goodness of fit assessment of item response theory models

Goodness of fit assessment of item response theory models Alberto Maydeu Olivares University of Barcelona Madrid November 1, 014 Outline Introduction Overall goodness of fit testing Two examples Assessing

### SPSS and AMOS. Miss Brenda Lee 2:00p.m. 6:00p.m. 24 th July, 2015 The Open University of Hong Kong

Seminar on Quantitative Data Analysis: SPSS and AMOS Miss Brenda Lee 2:00p.m. 6:00p.m. 24 th July, 2015 The Open University of Hong Kong SBAS (Hong Kong) Ltd. All Rights Reserved. 1 Agenda MANOVA, Repeated

### I n d i a n a U n i v e r s i t y U n i v e r s i t y I n f o r m a t i o n T e c h n o l o g y S e r v i c e s

I n d i a n a U n i v e r s i t y U n i v e r s i t y I n f o r m a t i o n T e c h n o l o g y S e r v i c e s Confirmatory Factor Analysis using Amos, LISREL, Mplus, SAS/STAT CALIS* Jeremy J. Albright

### lavaan: an R package for structural equation modeling

lavaan: an R package for structural equation modeling Yves Rosseel Department of Data Analysis Belgium Utrecht April 24, 2012 Yves Rosseel lavaan: an R package for structural equation modeling 1 / 20 Overview

: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

### Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

### Confirmatory factor analysis in MPlus

Jan Štochl, Ph.D. Department of Psychiatry University of Cambridge Email: js883@cam.ac.uk Confirmatory factor analysis in MPlus The Psychometrics Centre Agenda of day 1 General ideas and introduction to

### Presentation Outline. Structural Equation Modeling (SEM) for Dummies. What Is Structural Equation Modeling?

Structural Equation Modeling (SEM) for Dummies Joseph J. Sudano, Jr., PhD Center for Health Care Research and Policy Case Western Reserve University at The MetroHealth System Presentation Outline Conceptual

### SPSS Guide: Regression Analysis

SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

### This can dilute the significance of a departure from the null hypothesis. We can focus the test on departures of a particular form.

One-Degree-of-Freedom Tests Test for group occasion interactions has (number of groups 1) number of occasions 1) degrees of freedom. This can dilute the significance of a departure from the null hypothesis.

### Psychology 405: Psychometric Theory Homework on Factor analysis and structural equation modeling

Psychology 405: Psychometric Theory Homework on Factor analysis and structural equation modeling William Revelle Department of Psychology Northwestern University Evanston, Illinois USA June, 2014 1 / 20

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Evaluating Goodness-of-Fit Indexes for Testing Measurement Invariance

STRUCTURAL EQUATION MODELING, 9(2), 233 255 Copyright 2002, Lawrence Erlbaum Associates, Inc. Evaluating Goodness-of-Fit Indexes for Testing Measurement Invariance Gordon W. Cheung Department of Management

### ABSTRACT INTRODUCTION

Factors influencing Adoption of Biometrics by Employees in Egyptian Five Star hotels Ahmed Abdelbary Iowa State University Ames, IA, USA ahmad@alumni.iastate.edu and Robert Bosselman Iowa State University

### Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

### Rens van de Schoot a b, Peter Lugtig a & Joop Hox a a Department of Methods and Statistics, Utrecht

This article was downloaded by: [University Library Utrecht] On: 15 May 2012, At: 01:20 Publisher: Psychology Press Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office:

### Multivariate Normal Distribution

Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

### Specification of Rasch-based Measures in Structural Equation Modelling (SEM) Thomas Salzberger www.matildabayclub.net

Specification of Rasch-based Measures in Structural Equation Modelling (SEM) Thomas Salzberger www.matildabayclub.net This document deals with the specification of a latent variable - in the framework

### SEM Analysis of the Impact of Knowledge Management, Total Quality Management and Innovation on Organizational Performance

2015, TextRoad Publication ISSN: 2090-4274 Journal of Applied Environmental and Biological Sciences www.textroad.com SEM Analysis of the Impact of Knowledge Management, Total Quality Management and Innovation

### USING MULTIPLE GROUP STRUCTURAL MODEL FOR TESTING DIFFERENCES IN ABSORPTIVE AND INNOVATIVE CAPABILITIES BETWEEN LARGE AND MEDIUM SIZED FIRMS

USING MULTIPLE GROUP STRUCTURAL MODEL FOR TESTING DIFFERENCES IN ABSORPTIVE AND INNOVATIVE CAPABILITIES BETWEEN LARGE AND MEDIUM SIZED FIRMS Anita Talaja University of Split, Faculty of Economics Cvite

### Chapter 6: Multivariate Cointegration Analysis

Chapter 6: Multivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie VI. Multivariate Cointegration

### IDENTIFYING GENERAL FACTORS OF INTELLIGENCE: A CONFIRMATORY FACTOR ANALYSIS OF THE BALL APTITUDE BATTERY

EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT NEUMAN ET AL. IDENTIFYING GENERAL FACTORS OF INTELLIGENCE: A CONFIRMATORY FACTOR ANALYSIS OF THE BALL APTITUDE BATTERY GEORGE A. NEUMAN, AARON U. BOLIN, AND THOMAS

### Use of deviance statistics for comparing models

A likelihood-ratio test can be used under full ML. The use of such a test is a quite general principle for statistical testing. In hierarchical linear models, the deviance test is mostly used for multiparameter

### Chapter 9. Two-Sample Tests. Effect Sizes and Power Paired t Test Calculation

Chapter 9 Two-Sample Tests Paired t Test (Correlated Groups t Test) Effect Sizes and Power Paired t Test Calculation Summary Independent t Test Chapter 9 Homework Power and Two-Sample Tests: Paired Versus

### The Technology Acceptance Model with Online Learning for the Principals in Elementary Schools and Junior High Schools

The Technology Acceptance Model with Online Learning for the Principals in Elementary Schools and Junior High Schools RONG-JYUE FANG 1, HUA- LIN TSAI 2, CHI -JEN LEE 3, CHUN-WEI LU 4 1,2 Department of

### Overview of Factor Analysis

Overview of Factor Analysis Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone: (205) 348-4431 Fax: (205) 348-8648 August 1,

### Evaluation of Goodness-of-Fit Indices for Structural Equation Models

Evaluation of Goodness-of-Fit Indices for Structural Equation Models Stanley A. Mulaik, Larry R. James, Judith Van Alstine, Nathan Bennett, Sherri Lind, and C. Dean Stilwell Georgia Institute of Technology

### Mplus Tutorial August 2012

August 2012 Mplus for Windows: An Introduction Section 1: Introduction... 3 1.1. About this Document... 3 1.2. Introduction to EFA, CFA, SEM and Mplus... 3 1.3. Accessing Mplus... 3 Section 2: Latent Variable

### Use of structural equation modeling in operations management research: Looking back and forward

Journal of Operations Management 24 (2006) 148 169 www.elsevier.com/locate/dsw Use of structural equation modeling in operations management research: Looking back and forward Rachna Shah *, Susan Meyer

### 11. Analysis of Case-control Studies Logistic Regression

Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:

### Comparison of Estimation Methods for Complex Survey Data Analysis

Comparison of Estimation Methods for Complex Survey Data Analysis Tihomir Asparouhov 1 Muthen & Muthen Bengt Muthen 2 UCLA 1 Tihomir Asparouhov, Muthen & Muthen, 3463 Stoner Ave. Los Angeles, CA 90066.

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

### CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### Linear Mixed-Effects Modeling in SPSS: An Introduction to the MIXED Procedure

Technical report Linear Mixed-Effects Modeling in SPSS: An Introduction to the MIXED Procedure Table of contents Introduction................................................................ 1 Data preparation

### Multivariate Logistic Regression

1 Multivariate Logistic Regression As in univariate logistic regression, let π(x) represent the probability of an event that depends on p covariates or independent variables. Then, using an inv.logit formulation

### August 2012 EXAMINATIONS Solution Part I

August 01 EXAMINATIONS Solution Part I (1) In a random sample of 600 eligible voters, the probability that less than 38% will be in favour of this policy is closest to (B) () In a large random sample,

### Pragmatic Perspectives on the Measurement of Information Systems Service Quality

Pragmatic Perspectives on the Measurement of Information Systems Service Quality Analysis with LISREL: An Appendix to Pragmatic Perspectives on the Measurement of Information Systems Service Quality William

### MINITAB ASSISTANT WHITE PAPER

MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way

### Logistic Regression. http://faculty.chass.ncsu.edu/garson/pa765/logistic.htm#sigtests

Logistic Regression http://faculty.chass.ncsu.edu/garson/pa765/logistic.htm#sigtests Overview Binary (or binomial) logistic regression is a form of regression which is used when the dependent is a dichotomy

### The Latent Variable Growth Model In Practice. Individual Development Over Time

The Latent Variable Growth Model In Practice 37 Individual Development Over Time y i = 1 i = 2 i = 3 t = 1 t = 2 t = 3 t = 4 ε 1 ε 2 ε 3 ε 4 y 1 y 2 y 3 y 4 x η 0 η 1 (1) y ti = η 0i + η 1i x t + ε ti

### This chapter will demonstrate how to perform multiple linear regression with IBM SPSS

CHAPTER 7B Multiple Regression: Statistical Methods Using IBM SPSS This chapter will demonstrate how to perform multiple linear regression with IBM SPSS first using the standard method and then using the

### " Y. Notation and Equations for Regression Lecture 11/4. Notation:

Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

### Factor Analysis. Principal components factor analysis. Use of extracted factors in multivariate dependency models

Factor Analysis Principal components factor analysis Use of extracted factors in multivariate dependency models 2 KEY CONCEPTS ***** Factor Analysis Interdependency technique Assumptions of factor analysis

### SAS Software to Fit the Generalized Linear Model

SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling

### Factors Affecting Demand Management in the Supply Chain (Case Study: Kermanshah Province's manufacturing and distributing companies)

International Journal of Agriculture and Crop Sciences. Available online at www.ijagcs.com IJACS/2013/6-14/994-999 ISSN 2227-670X 2013 IJACS Journal Factors Affecting Demand Management in the Supply Chain

### HLM software has been one of the leading statistical packages for hierarchical

Introductory Guide to HLM With HLM 7 Software 3 G. David Garson HLM software has been one of the leading statistical packages for hierarchical linear modeling due to the pioneering work of Stephen Raudenbush

### Regression Analysis: A Complete Example

Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

### DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,

### SIMPLE LINEAR CORRELATION. r can range from -1 to 1, and is independent of units of measurement. Correlation can be done on two dependent variables.

SIMPLE LINEAR CORRELATION Simple linear correlation is a measure of the degree to which two variables vary together, or a measure of the intensity of the association between two variables. Correlation

### Applied Statistics. J. Blanchet and J. Wadsworth. Institute of Mathematics, Analysis, and Applications EPF Lausanne

Applied Statistics J. Blanchet and J. Wadsworth Institute of Mathematics, Analysis, and Applications EPF Lausanne An MSc Course for Applied Mathematicians, Fall 2012 Outline 1 Model Comparison 2 Model

### MAGNT Research Report (ISSN. 1444-8939) Vol.2 (Special Issue) PP: 213-220

Studying the Factors Influencing the Relational Behaviors of Sales Department Staff (Case Study: The Companies Distributing Medicine, Food and Hygienic and Cosmetic Products in Arak City) Aram Haghdin

### Structural Equation Modelling (SEM)

(SEM) Aims and Objectives By the end of this seminar you should: Have a working knowledge of the principles behind causality. Understand the basic steps to building a Model of the phenomenon of interest.

### Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500 6 8480

1) The S & P/TSX Composite Index is based on common stock prices of a group of Canadian stocks. The weekly close level of the TSX for 6 weeks are shown: Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500

### UNDERSTANDING THE INDEPENDENT-SAMPLES t TEST

UNDERSTANDING The independent-samples t test evaluates the difference between the means of two independent or unrelated groups. That is, we evaluate whether the means for two independent groups are significantly

### Rank-Based Non-Parametric Tests

Rank-Based Non-Parametric Tests Reminder: Student Instructional Rating Surveys You have until May 8 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs

### Overview Classes. 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7)

Overview Classes 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7) 2-4 Loglinear models (8) 5-4 15-17 hrs; 5B02 Building and

### http://www.jstor.org This content downloaded on Tue, 19 Feb 2013 17:28:43 PM All use subject to JSTOR Terms and Conditions

A Significance Test for Time Series Analysis Author(s): W. Allen Wallis and Geoffrey H. Moore Reviewed work(s): Source: Journal of the American Statistical Association, Vol. 36, No. 215 (Sep., 1941), pp.

### Factorial Invariance in Student Ratings of Instruction

Factorial Invariance in Student Ratings of Instruction Isaac I. Bejar Educational Testing Service Kenneth O. Doyle University of Minnesota The factorial invariance of student ratings of instruction across

### Applied Multivariate Analysis

Neil H. Timm Applied Multivariate Analysis With 42 Figures Springer Contents Preface Acknowledgments List of Tables List of Figures vii ix xix xxiii 1 Introduction 1 1.1 Overview 1 1.2 Multivariate Models

### Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

### Gerry Hobbs, Department of Statistics, West Virginia University

Decision Trees as a Predictive Modeling Method Gerry Hobbs, Department of Statistics, West Virginia University Abstract Predictive modeling has become an important area of interest in tasks such as credit

### Simple Second Order Chi-Square Correction

Simple Second Order Chi-Square Correction Tihomir Asparouhov and Bengt Muthén May 3, 2010 1 1 Introduction In this note we describe the second order correction for the chi-square statistic implemented

### Factors That Improve the Quality of Information Technology and Knowledge Management System for SME(s) in Thailand

China-USA Business Review, ISSN 1537-1514 March 2012, Vol. 11, No. 3, 359-367 D DAVID PUBLISHING Factors That Improve the Quality of Information Technology and Knowledge Management System for SME(s) in

### Please follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software

STATA Tutorial Professor Erdinç Please follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software 1.Wald Test Wald Test is used

### Analyzing Structural Equation Models With Missing Data

Analyzing Structural Equation Models With Missing Data Craig Enders* Arizona State University cenders@asu.edu based on Enders, C. K. (006). Analyzing structural equation models with missing data. In G.

### Recall this chart that showed how most of our course would be organized:

Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

### Portable Privacy: Mobile Device Adoption

Portable Privacy: Mobile Device Adoption Joseph H. Schuessler Bahorat Ibragimova 8 th Annual Security Conference Las Vegas, Nevada April 15 th & 16 th 2009 Relying on the government to protect your privacy

### International Statistical Institute, 56th Session, 2007: Phil Everson

Teaching Regression using American Football Scores Everson, Phil Swarthmore College Department of Mathematics and Statistics 5 College Avenue Swarthmore, PA198, USA E-mail: peverso1@swarthmore.edu 1. Introduction

### Multivariate Analysis of Variance (MANOVA): I. Theory

Gregory Carey, 1998 MANOVA: I - 1 Multivariate Analysis of Variance (MANOVA): I. Theory Introduction The purpose of a t test is to assess the likelihood that the means for two groups are sampled from the

### Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

### General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.

General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n

### THE UNIVERSITY OF CHICAGO, Booth School of Business Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay. Solutions to Homework Assignment #2

THE UNIVERSITY OF CHICAGO, Booth School of Business Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay Solutions to Homework Assignment #2 Assignment: 1. Consumer Sentiment of the University of Michigan.

### Choosing the Optimal Number of Factors in Exploratory Factor Analysis: A Model Selection Perspective

Multivariate Behavioral Research, 48:28 56, 2013 Copyright Taylor & Francis Group, LLC ISSN: 0027-3171 print/1532-7906 online DOI: 10.1080/00273171.2012.710386 Choosing the Optimal Number of Factors in

### Technical report. in SPSS AN INTRODUCTION TO THE MIXED PROCEDURE

Linear mixedeffects modeling in SPSS AN INTRODUCTION TO THE MIXED PROCEDURE Table of contents Introduction................................................................3 Data preparation for MIXED...................................................3

### Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study

STRUCTURAL EQUATION MODELING, 14(4), 535 569 Copyright 2007, Lawrence Erlbaum Associates, Inc. Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation

### Binary Logistic Regression

Binary Logistic Regression Main Effects Model Logistic regression will accept quantitative, binary or categorical predictors and will code the latter two in various ways. Here s a simple model including

### Using Stata for Categorical Data Analysis

Using Stata for Categorical Data Analysis NOTE: These problems make extensive use of Nick Cox s tab_chi, which is actually a collection of routines, and Adrian Mander s ipf command. From within Stata,

### One-Way Analysis of Variance (ANOVA) Example Problem

One-Way Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesis-testing technique used to test the equality of two or more population (or treatment) means

### Statistical Functions in Excel

Statistical Functions in Excel There are many statistical functions in Excel. Moreover, there are other functions that are not specified as statistical functions that are helpful in some statistical analyses.

### Multiple Linear Regression in Data Mining

Multiple Linear Regression in Data Mining Contents 2.1. A Review of Multiple Linear Regression 2.2. Illustration of the Regression Process 2.3. Subset Selection in Linear Regression 1 2 Chap. 2 Multiple

### Penalized regression: Introduction

Penalized regression: Introduction Patrick Breheny August 30 Patrick Breheny BST 764: Applied Statistical Modeling 1/19 Maximum likelihood Much of 20th-century statistics dealt with maximum likelihood

### Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation

Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.

### Chapter 15. Mixed Models. 15.1 Overview. A flexible approach to correlated data.

Chapter 15 Mixed Models A flexible approach to correlated data. 15.1 Overview Correlated data arise frequently in statistical analyses. This may be due to grouping of subjects, e.g., students within classrooms,

### The lavaan tutorial. Yves Rosseel Department of Data Analysis Ghent University (Belgium) June 28, 2016

The lavaan tutorial Yves Rosseel Department of Data Analysis Ghent University (Belgium) June 28, 2016 Abstract If you are new to lavaan, this is the place to start. In this tutorial, we introduce the basic

### Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

### Longitudinal Data Analysis

Longitudinal Data Analysis Acknowledge: Professor Garrett Fitzmaurice INSTRUCTOR: Rino Bellocco Department of Statistics & Quantitative Methods University of Milano-Bicocca Department of Medical Epidemiology

### t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

### CHAPTER 5 COMPARISON OF DIFFERENT TYPE OF ONLINE ADVERTSIEMENTS. Table: 8 Perceived Usefulness of Different Advertisement Types

CHAPTER 5 COMPARISON OF DIFFERENT TYPE OF ONLINE ADVERTSIEMENTS 5.1 Descriptive Analysis- Part 3 of Questionnaire Table 8 shows the descriptive statistics of Perceived Usefulness of Banner Ads. The results

### UNDERSTANDING THE DEPENDENT-SAMPLES t TEST

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)

### 2. What is the general linear model to be used to model linear trend? (Write out the model) = + + + or

Simple and Multiple Regression Analysis Example: Explore the relationships among Month, Adv.\$ and Sales \$: 1. Prepare a scatter plot of these data. The scatter plots for Adv.\$ versus Sales, and Month versus

### NCSS Statistical Software

Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

### Data Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools

Data Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools Occam s razor.......................................................... 2 A look at data I.........................................................

### One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups

One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups In analysis of variance, the main research question is whether the sample means are from different populations. The