Modeling Secure Connectivity of Self-Organized Wireless Ad Hoc Networks

Size: px
Start display at page:

Download "Modeling Secure Connectivity of Self-Organized Wireless Ad Hoc Networks"

Transcription

1 This ull txt ppr ws pr rviw t th irtio o IEEE Commuitios Soity sujt mttr xprts or pulitio i th IEEE INFOCOM 8 prois. Moli Sur Cotivity o Sl-Oriz Wirlss A Ho Ntworks Chi Zh, Y So Yuu F Dprtmt o Eltril Computr Eiri Uivrsity o Flori, Gisvill, FL 36 Emil: @.}ul.u Astrt Wirlss ho tworks (WANETs) or ommuitios ovr shr wirlss hl without y pr-xisti irstrutur. Formi pr-to-pr surity ssoitios i sloriz WANETs is mor hlli th i ovtiol tworks u to th lk o trl uthoritis. I this ppr, w propos ri mol to vlut th rltioship o otivity, mmory siz, ommuitio ovrh surity i ully sl-oriz WANETs. Bs o som rsol ssumptios o o ploymt moility, w show tht wh th vr umr o uthtit ihors o h o is Θ(), with rspt to th twork siz, most o th os surly ot, ormi ot sur ko, i.., th sur twork prolts. This ot sur ko utiliz to rk routi-surity py loop, provi ouh riv sur liks oti isolt os with th sur ko i multi-hop shio, whih ls to th sur otivity o th whol twork. I. INTRODUCTION By iitio, wirlss ho twork (WANET) (moil or sttiory) is roup o wirlss os tht ooprtivly orm twork whih oprts without th support o y pr-stlish or trliz twork mmt irstrutur [] [3]. I th litrtur, thr r two xtrm wys to itrou surity i WANETs: () throuh sil uthority omi, whr rtiits /or kys r issu y sil uthority, typilly, i th systm stup phs [4] [9], or () throuh ull sl-oriztio, whr surity os ot rly o y trust uthority or ix srvr, ot v i th iitiliztio phs [] [3], []. I this ppr, w ollow th so pproh. Our mi motivtio oms rom osrvtios o som WANET srios, whih rquir sloriz twork mmt,.., wh th WANET mrs prtitios i spori wy th twork ot pr-pl; wh h usr hs iiviul itrsts thus is its ow uthority omi whr th ull otrol o th surity sttis o its ow os is sir; wh usrs prr to joi lv th twork t rom without otti y rmot trust uthority; wh th umr o usrs ts lr thus th ky srvrs, i y, will om th ottlk or trl poits o ilur. This work ws support i prt y th U.S. Ntiol Si Foutio ur rt CNS-7744, CNS-7645 CNS All ths situtios hihliht th o surity rhittur with sl-oriztio proprty, i.., th ility o os to stlish surity ssoitios mo thmslvs tr twork ormtio without th i o y orm o o-li or o-li trust thir prty (TTP) []. Althouh ot ll WANETs r rquir to ully sl-oriz, this proprty is osir s o o th il ojtivs i most o th ooi rsrh projts, suh s Trmios, Spott zro-oiurtio tworks [] [3], []. Impromptu, sl-oriz WANETs iormlly visuliz s roup o wirlss ommuitio vis (ll WANET os i this ppr), hl y popl without y prpli, omi tothr to orm twork or ommo purpos (.., mry rspos). Som kyi mtrils or primry surity ssoitios (SAs), whih w will ormlly i ltr, r lry pr-oiur i ommuitio vis, s o th trust rltioships tw th popl ivolv. Th prolm is how to xploit thos primry surity ssoitios to provi sur ommuitio or ritrry o pirs wh. Nihor uthtitio, whih provis hop-y-hop surity, is th irst stp or sur ommuitios i ll kis o tworks. This is spilly ruil or WANETs si vry o to t s th routr to orwr pkts or othrs. I th o ot uthtit its physil ihors, how it trust ll thos physil ihors to hl its pkt orrtly? Oviously, ihori os with primry surity ssoitios uthtit h othr irtly with pr-oiur kyi mtrils. Si th umr th istriutio o primry surity ssoitios r trmi y th m soil twork (.., trust rltios) o usrs, o my ot hv primry surity ssoitios with y o its physil ihors. I this s, Nihor Authtitio Protool (NAP) is rquir to st up riv surity ssoitios with its ihors o th sis with th hlp o lry uthtit ihors. Althouh som xmpls o ully sl-oriz surity rhittur or WANETs hv isuss i th litrtur [] [3], [], my thortil prolms r still rmii:.., wht is th miimum rtio o primry SAs or suri ll th liks? Wht is th ommuitio ovrh or NAPs to provi riv SAs? How o th hrtristis o th trust rph o usrs t th prorm o NAPs th surity o WANETs? Is this ki o sl-oriz /8/$5. 8 IEEE 85

2 This ull txt ppr ws pr rviw t th irtio o IEEE Commuitios Soity sujt mttr xprts or pulitio i th IEEE INFOCOM 8 prois. WANETs sll i trms o th rquir mmory siz or kyi mtril i h o or th ommuitio ovrh or th NEP, wh th twork siz oms ritrrily lr? I this ppr, w propos ri mol to vlut th rltios o otivity, mmory siz, ommuitio ovrh surity i ully sl-oriz WANETs. Bs o som rsol ssumptios o o ploymt moility, w show tht wh th vr umr o uthtit ihors o h o is Θ(), with rspt to th twork siz, most o th os surly ot, ormi ot sur ko, i.., th sur twork prolts. This ot sur ko utiliz to rk routi-surity py loop (. Stio II-B), provi ouh riv sur liks oti isolt os with th sur ko i multi-hop shio, whih ls to th sur otivity o whol twork. II. NETWORK MODEL AND PROBLEM FORMULATION A. Ntwork Mol ) Physil Grph G(X, E pl ): Lt X = {X,X,, X } ot th o st o WANET, with twork siz X =. By sliht us o ottio, w lt X i ot th lotio, s wll s th itity, o o. Th os r istriut uiormly t rom o th iv orphil r, whih is, without loss o rlity, uit isk D tr t th orii. Two os X i X j hv physil wirlss lik (X i,x j ) i thir Euli ist is o rtr th r,thommuitio r, X i X j r ll physil ihor with rspt to h othr. Lt E pl ot th physil lik st. Th rph G(X, E lik ) with vrtx st X st E lik is trm rom omtri rph (RGG) [], whih is wily us i th litrtur to mol th physil rph o WANET. A physil pth tw two os,.., X X k, is st o osqutil s i E pl. Two os r si to physilly ot i thr xists physil pth tht strts t o s t th othr. Grph G(X, E pl ) is si to physilly ot i vry pir o os i th rph is physilly ot. I this ppr, w r mily or with vts tht our isi th uit isk D with hih proility (w.h.p.); tht is, with proility ti to o s. For moil WANET, w ssum tht os mov iptly i th uit isk D ori to Browi motio mol (BMM) i []. W ssum tht th iitil positios o os r i.i.. uiormly istriut i th isk D. This implis tht th positios o th os will rmi uiorm t ll tims ur th BMM. Si w r oly itrst i th sttistil proprtis o G(X, E pl ) othr rlt rph mols, s o th BMM, w omit th tim imsio trt th moil WANET s stti i iv tim poit, whih will rtly simpliy our lysis. Not tht th rsults o this ppr lso pply to othr rlt moility mols suh s th rom wlk moility mol [3] th Mrkovi moility mol [4]. This is us th Browi motio mol viw s limiti s o ths othr moility mols []. Commuitio R Fi.. A xmplry WANET with primry SAs. Hr soli lis sh lis rprst physil liks primry SAs, rsptivly. ) Trust Grph G(X, E SA ): Wh w sy two os hv primry surity ssoitio (SA), w m tht two os trust h othr ithr symmtri ky r shr tw thm, or tht th os kow h othrs uthti puli kys. Two os my hv xh thir kys throuh si hl (.., ovr irr hl t th tim o physil outr, or just mully st up thos kys). W urthr ssum tht surity ssoitios r lwys symmtri. I th ii, this ssumptio my sm oliti with th symmtri tur o rtiits o puli kys. Du to th t tht o X i kows th uthti puli ky o o X j os ot ssrily imply tht o X j lso hols th uthti puli ky o o X i, vi vrs, rltios i rtiit rph [], [3], [4] r symmtri. Howvr, irst o ll, i prti th sttistil lysis o th W o Trust mo usrs o Prtty Goo Privy (PGP) [5], th mrkt lr i th worl o sur mil ommuitios, shows tht out /3 o th liks i th lr stroly ot ompot r iirtiol [6]. So, i our shm, w rquir two os to iirtiolly xh thir kyi mtrils i orr to sussully stlish primry SA. Thir, sis th rquirmt o possssi orrt kyi mtril, w lso rquir tht two os trust h othr,.., thy rly o h othr to hl thir pkts, whih is th rso tht this ki o trust must iirtiol. Primry SA m s loil lik oti two os i th WANET. W m two os with primry SA s ris ot th st o primry SAs s E SA. Th rph G(X, E SA ) with vrtx st X st E SA is trm th trust rph, is us to mol th trust rltioships tw usrs i th WANET. Th hrtristis o trust rphs rt i WANETs will p o th xisti soil rltioships tw usrs. I wht ollows, w just itrou o simplii prmtr p to qutiy th xist o SAs i th WANET. W osir homoous trust rph mol, i.., th umr o ris o h o is o th sm orr o. Bsothi.i.. uiorm istriutio o iitil positios o th os th BMM, whvr two os mt s physil ihors, thy will ris (hv SA) with lmost th sm proility, ot s p. 3) Sur Grph G(X, E sl ) or G(X, p ): Oviously, wh o o X i s ris,.., o X j, oms th physil ihor o X i, th os X i X j irtly uthtit h othr. W ll X i th ihori ri o X j, thr xists sur physil lik throuh wirlss om- 86

3 This ull txt ppr ws pr rviw t th irtio o IEEE Commuitios Soity sujt mttr xprts or pulitio i th IEEE INFOCOM 8 prois. () () Fi.. Grph mols ostrut rom th oriil wirlss ho tworkifi..() Physil rph; () trust rph; () sur rph; () lol umt sur rph. muitio tw X i X j. W ot th st o sur physil liks s E sl, i th rph with vrtx st X st E sl s th sur rph. Si (X i,x j ) E sl i (X i,x j ) E pl (X i,x j ) E SA, G(X, E sl ) is th oupl rph o G(X, E pl ) G(X, E SA ). Not tht som liks i st E pl \E sl lso sur with th ssist o lol uthtit ihors. W m ll thos liks lolly umt sur liks, ot s E lsl. Th rph G(X, E sl ) with E sl = E sl E lsl is trm lolly umt sur rph. Th rltioship tw G(X, E sl ) G(X, E sl ), th thiqus to lolly umt sur liks will urthr ivstit i Stio III-C. W i th sur otivity i G(X, E sl ) (or G(X, E sl )) i wy similr to physil otivity i G(X, E pl ), i.., thr xists sur pth with liks i E sl (or E sl ) or ritrry o pirs i X X. Hr w iv rliz ormultio to sri th rph mols itrou ov. Giv X s th vrtx st, w ot vry two os X i X j (i j) with proility (X i X j ). Th rsulti rph is ot s G(X,). W trm th ot ompots o G(X,) s lustrs, th umr o os i h lustr s its orr. Th lustr with th mximl orr is ll th it lustr. Th rph G(X,) is ot i thr xists oly o lustr. Thror, G(X, E pl ) lso ot s G(X, ), whr { i x r, (x) = () i x >r. Giv p, G(X, E sl ) lso ot s G(X, p ), whr { p i x r p (x) =, () i x >r. Bs o th proprty o th Poisso pross, th umr o physil ihors th umr o ihori ris or h o i X r rom vrils ollowi Poissoistriutio with xpt vlus o πr p πr, rsptivly (or simpliity, hr w ior th orr t,. th Appix i [7]). Usi th trm o rph thory, ths two vlus r lso ll th vr o r or G(X, ) G(X, p ), rsptivly. B. Nihor Authtitio Pirwis Ky Estlishmt For sl-oriz WANETs, ihor uthtitio osists o thr phss, mly ihori-ri isovry, () () lol sur-lik multi-hop sur-lik umttio. Th ihori-ri isovry phs tks pl wh o isovrs tht w ihori o pprs i its o-hop ihorhoo. Th simplst wy or y two os to isovr i thy r ris is tht h o os its o ID rlvt itiitio iormtio i lr txt ito its o mss (lso ll HELLO mss) whih is prioilly rost to its physil ihors or ihor isovry hl us ooritio i MAC lyr. Altrt mthos xist whih hi itity iormtio rom vrsry thry stlishi privt ihoriri isovry. Wh o o is othr s its ri, thy mutully uthtit th itity o th othr prty s it lims, usi y hll-rspos protools. Wh two ihori os r mutully uthtit, sur lik is stlish, thir surity ssoitio is rliz, orti- vt. Atr th irst phs, h o X i kows ll its physil ihors ihori ris, whih r ot y sts N(X i ) NF(X i ), rsptivly. Th sts uthtit uuthtit ihors o o X i r rprst y NA(X i ) UA(X i ), rsptivly. Atr th irst phs, NA(X i ) = NF(X i ), UA(X i ) = N(X i ) \ NF(X i ) th os with sur liks r mol y th trust rph G(X, E sl ). Du to th limittio o th trust rph, os oly shr primry SAs with sust o th ihori os. Thror, th lol sur-lik umttio phs is to stlish riv SAs with th rmii ihors with th hlp o uthtit ihors. Th thiqus qutittiv lysis o th so phs will til i Stio III-C. Hr, w just mphsiz tht i this phs, h usr oly mks us o its o-hop ihors iormtio, whih ollt i th MAC lyr. O ihor i st UA(X i ) is uthtit th pirwis ky is stlish i th so phs, it is ilu i st NA(X i ) lt rom st UA(X i ), th orrspoi lolly umt sur liks will i th st E lsl. Atr this phs, os with sur liks r mol y th rph G(X, E sl ), whr E sl = E sl E lsl. Not tht th ky ir tw WANETs othr istriut systms is tht, h o i th WANET is rquir to t s routr to orwr pkts or othr os. This uiqu tur itrous th wll-kow routi-surity py loop [8], [9]: yli py riss tw surity srvis routi srvis si multi-hop surity srvis rquir routi lyr surity thmslvs. This loop implis two osqus spilly or o uthtitio. O th o h, th primry SA tw two rmot os ot utiliz i thr is o sur pth tw thm. Ev thouh th pkts -to- rypt or uthtit, thy r t risk to st throuh ls routs, or simply ropp without th sur pth (routi lyr surity). O th othr h, riv SAs tw ihori os ot stlish ovr multipl hops i th routi protool os ot oprt surly. Hr, w rly o th irst two phss to rk this loop, si thy oly th 87

4 This ull txt ppr ws pr rviw t th irtio o IEEE Commuitios Soity sujt mttr xprts or pulitio i th IEEE INFOCOM 8 prois. iormtio ollt o th MAC lyr r ipt o oth sur routi othr surity srvis. Upo ompltio o ths two phss, som multi-hop sur pths with hop-y-hop surity will mr, s o whih sur routi implmt. I rl, thr still xists uuthtit physil ihors tr th so phs. I th ollowi multi-hop sur-lik umttio phs, multihop sur pths will us to uthtit stlish pirwis kys with th rmii ihors i st UA(X i ). Th ritrio tht th ihor uthtitio omplts ps o th pplitio rquirmt o prtiulr WANET. For xmpl, i th mi purpos o WANET is to ilitt th ooprtio tw th ihori os/usrs, th mi tri ptt will lol ommuitios whr o s to uthtit s my ihors s possil, or stops util th rtio o uthtit ihors NA(Xi) N(X i) is rtr th systm prmtr, sy. I th mi purpos o WANET is to provi irstrutur to support ommuitios with rmot os, th mi tri pttr will multi-hop ommuitios. I vry sour o is l to i sur pth to th trt stitio, o umt sur liks r rquir. Th uthtitio with th rmii ihors tivt i o-m shio, i.., to uthtit h othr oly wh thy to ommuit. O ihor i st UA(X i ) is uthtit th pirwis ky is stlish, this ihor will ilu i st NA(X i ) lt rom st UA(X i ), th orrspoi lolly umt sur liks will i th st E sl.atth o this phs, os with sur liks r mol y th rph G(X, E sl C. Prolm Formultio ), whr E sl = E sl E sl. Now, w ormlly i th ojtiv o sur WANETs s ollows: Ojtiv: Costruti sur pth tw ritrry pir o os i X X w.h.p. Costrits: (i)physil rph G(X, E pl ) is ot, (ii) trust rph G(X, E SA ) is ot. Mthmtilly, th ojtiv is quivlt to th situtio tht th lolly umt sur rph G(X, E sl ) is ot w.h.p. Hr, w to xpli ths two ostrits i til. I t, ths two ostrits r th ssry oitios to hiv th ojtiv. First o ll, wh th physil rph is isot, it is impossil to provi multi-hop ommuitios or isot os with tritiol routi shms (rtiv or protiv) si or WANETs. Althouh th moility o os utiliz, som routi shms si or ly tolrt tworks (DTNs) us to provi ommuitios tw som isot os, o protools urt th livry o pkts tw thm so r v i th w.h.p. ss. Howvr, it is itrsti to xmi i wht r this ostrit rlx y opti th DTN routi protools, whih will our utur work. So, isot trust rph implis tht usrs ivi ito svrl isolt trust ( x ) p r or G(, r ) p sqush (/p) r x Fi. 3. Squishi Squshi. Th utio is squish sqush to iv th utio p sqush. roups, thr is o trust rltioship tw thos roups. I this situtio, th ojtiv o ostruti sur pth tw two os tht lo to irt trust roups is milss. Thror, wh w mtio th ojtiv o provii sur pth tw ritrry pir o os, w impliitly ilu ths two ostrits. Prvious rsrh o Erös-Réyi rom rph [], [] rom omtri rph [], [7] show tht th ssry oitios or th otivity o th trust rph physil rph r ), rsptivly. p =Ω ( lo ) r =Ω ( lo Ur this ojtiv, w list th prolms tht to rss s ollows: () Wht r th rquirmts o th physil rph G(X, E pl ) trust rph G(X, E SA ) so tht it is possil or G(X, E sl ) to ot? Or mor prisly, wht shoul r p? () Wht is th ommuitio ovrh iurr u to th ihor uthtitio? (3) Wht is th t o th sur lik istriutio o th prorm o sur routi? III. PROPERTIES OF SECURE GRAPHS A. Bkrou o Cotiuum Proltio I this stio, w mk us o th rsults rom otiuum proltio, whih ws irst itrou y Gilrt [] ltr lyz y Mstr Roy [3], Pros [], [4]. I otiuum proltio thory, os r ssum to istriut s homoous Poisso pross P λ o R with sity λ. Howvr, our oriil twork mol ori ix umr o os X romly uiormly istriut i th uit r is D. I most o th proos i this ppr, it is usul to irst osir, ist o X, oupl Poisso pross P λ with sity λ los to, th u th rsults o X rom th rsults o P λ, usi th so-ll Poissoiztio thiqu [, Chptr.7]. W irst i th twork mol s o o istriutio P λ.lt{x,x,x 3, } th st o os ori to P λ i R, so tht th xpt umr o os i y rio is qul to th r o th rio multipli y λ. LtG(P λ,) ot th ollowi rom omtri rph: w ot y two poits X i X j (i j) ip λ with proility (X i X j ), ipt o y othr pirs o os. W trm th ot ompots o G(P λ,) s lustrs, th umr o os i h lustr s its orr. W irst show th xist o otrivil ritil sity t whih proltio ours (tht is, iiit-orr lustr orms) i G(P λ,). Lmm : [Proltio Proprtis o G(P λ,)] Cosir rph G(P λ,) or som iv msurl utio : 88

5 This ull txt ppr ws pr rviw t th irtio o IEEE Commuitios Soity sujt mttr xprts or pulitio i th IEEE INFOCOM 8 prois. R [, ], stisyi: (x) =( x ),x R, (3) < (x)x <, (4) R w hv th ollowi rsults: () Thr xist ritil vlu (otiuum proltio thrshol) λ p suh tht <λ p () =i{λ : iiit-orr lustr w.h.p.} <. Wh λ > λ p w sy tht th G(P λ,) prolts [4, Thorm ]. () I (x) (y) whvr x y, org(p λ,), thr is t most o iiit-orr lustr w.h.p. [3, Thorm 6.3, pp.7]. (3) Giv msurl utio <p<, i th sqush utio p sqush w hv o s sqush p (x) =p ( px), λ p () λ p ( sqush p ), (5) s Fi. 3 or xmpl [5, Thorm.]. (4) Wh (x) = (x) s i i (), w hv spil RGG ot y G(P λ, ). Th xt vlu λ p or this s is ot kow. Simultio stuis iit tht λ p 4.5 πr [, pp.89] whil riorous ous.87 πr λ p.593 πr r iv i Mstr Roy [3, Chptr 3.9]. A rt rsult o Blistr t l. [6] shows tht with 99.99% oi, th ritil vlu λ p lis tw 4.58 πr 4.55 πr, i.., 4.58 πr λ p (6) Gupt Kumr [7] Pros [] show tht, G(P λ, ) is quivlt to G(X, ) wh λ =. Thror, i this ppr w ssum πrλ p =4.5 or G(P λ, ) or G(X, ). W pl o X t th orii. Th th rsulti Poisso poit pross P λ X is oitio to hv poit t, i th ss o Plm msurs X isssumto ritrry poit o th Poisso pross [4]. Lt C() th lustr t th orii, th st o os hvi pth to X i G(P λ X,). Ltp k (λ) ot th proility tht C() hs k poits. Th proltio proility, i.., p (λ), isth proility tht lis i iiit lustr wh λ. W hv th ollowi rsult: Lmm : [Isolt Nos i G(P λ X,)] Assum msurl utio stisyi qutio (3) iqulity (4). I lso loss zro (sstilly, is symmtri, hs ou support, is ou wy rom zro i som op ihorhoo o th sur, s [4]; ot tht ll th utios osir i this ppr loss zro), th lim λ k= p k(λ) =, (7) p (λ) whih implis tht or lr λ, th orii lis i ithr iiit-orr lustr or orr-o lustr (i.., it is isolt) w.h.p. [4, Thorm 3]. B. Thortil Rsults o th Sur Grph Bs o Lmm Lmm (), th ollowi lmm sily riv. Lmm 3: [Isoltio Cotivity o G(P λ X,)] Assum msurl utio stisyi qutio (3) iqulity (4), lso loss zro, (x) (y) whvr x y. Asλ, th proility tht th rph G(P λ X,) is ot is symptotilly qul to th proility tht th rph G(P λ X,) hs o isolt os, i.., lim Pr[G(P λ X,) is ot] λ = lim Pr[G(P λ X,) hs o isolt os]. λ Now w ivstit th otivity proprty o th sur rph G(X, p ). Thorm : [Cotivity o G(X, p )] Assum tht p is y ostt i [, ]. Ltp πr = lo()+(). Th, th rph G(X, p ) is ot w.h.p. i () is isot w.h.p. i (). Proo: This rsult prov rom Lmm 3 usi Poissoiztio thiqu. Th tils o th proo hs omitt u to sp ostrits. Not tht i Thorm, i p is th proility tht two ihori os stlish th SA, th k = p = p πr ots th vr umr o uthtit ihors. Thorm shows tht or G(X, p ), thr xists phs trsitio phomo, i.., thr is ritil thrshol k = lo() or k, orrspoi to miimum umr o uthtit ihors or iiviul os, ov whih sirl lol proprty (.., otivity) xists with hih proility. Wh k is low th thrshol k, th sir lol proprty xists with low proility. This phs trsitio is typilly s to om shrpr s th umr o os i th twork irss. Th ollowi thorm will rvl othr phs trsitio phomo or G(X, p ). Thorm : [Proltio Proprtis o G(X, p )] Di th ritil vlu (proltio thrshol) o th vr o r or G(X, p ) s k p = i{k : iiit-orr lustr w.h.p. i G(X, p ) s }. () <k p 4.5. () Wh k = p πr >k p, w sy tht G(X, p ) prolts, thr xists oly o iiit-orr lustr w.h.p. (3) Wh th rph G(X, p ) prolts, ll o th iit-orr lustrs r o-orr lustrs w.h.p. Proo: Th xist o o-trivil ritil vlu o th vr o r or G(P λ, p ) oms rom Lmm (). W i G(P λ, ) s th rph with vrtx st P λ, (x) = (x) { i x r i x >r, whr r = p r. Oviously, p is th sqush utio o. Aori to Lmm (3) (4), w hv <λ p ( p ) λ p ( )= 4.5 πr. (8) 89

6 This ull txt ppr ws pr rviw t th irtio o IEEE Commuitios Soity sujt mttr xprts or pulitio i th IEEE INFOCOM 8 prois. k p = simult vlus lult vlus p Fi. 4. Proltio thrshols o irt p vlus. Clult vlus p +. ollow th qutio k p =4.5 i (). +. Th vr o r k p or G(P λ, p ) is iv y k p = p λ p ( p ) πr λ p ( ) πr. (9) From (8) (9), w oti <k p 4.5. Ltλ =, w t th sm rsult or G(X, p ). Th so prt o th thorm ollows rom Lmm (). For p, si p (x) p (y) whvr x y, thr xists oly o iiit-orr lustr w.h.p. or G(P λ, p ). Usi Poissoiztio thiqu, w prov tht it lso hols or G(X, p ). Th thir prt o th thorm ollows orm Lmm, usi Poissoiztio thiqu. Lt S th it lustr s siz rtio, i.., th umr o os i th it lustr ivi y. ForErös-Réyi rom rphs [], [], it is wll kow tht S is utio o th vr o r k, is th o-zro solutio to th ollowi qutio S = k S wh. () For RGGs, simultio rsults show tht, S k rltioship lso ollows th sm orm ut pprs to shit lo th vr o r xis (. Fi. 7). Si th proo prour o Thorm iits tht th proility o isolt os or G(X, p ) is uppr lowr ou y th proilitis o isolt os or Erös-Réyi rom rph mol G(X, ) RGG mol G(X, ), rsptivly, it is rsol to ssum tht S k rltioship or G(X, p ) rs th sm orm with som shit lo th vr o r xis. Thror, w hv th ollowi ojtur: Cojtur : [Siz o th Lrst Clustr o G(X, p )] Th siz o th lrst lustr o G(X, p ),sys, isth o-zro solutio to th ollowi qutio w.h.p.: S = (k kp+.45) S p +., whr k p = () Not tht () is mrly shit vrsio o (). W to stimt this shit. Oviously it ps o k p. Howvr, Thorm () oly ivs th r o k p.givp, th xt vlu o k p is still op prolm. Simult vlus o k p or irt p vlus r iv i Fi. 4. W hv tri svrl utio orms to stimt th p k p rltioship. A oo p Fi.4 pproximtio is ou to k p = 4.5 illustrts th lult k p rsulti rom this pproximtio, whih shows oo mth tw th simult lult vlus o k p. Two importt prtil osqus () Fi. 5. Lol trust rphs or () o () o i Fi.. Not tht i th lol trust rph, two os r ot i thy r physil ihors thy hv primry SA. ollow rom Cojtur : (i) Giv p, w lult th ritil thrshol o k or proltio; (ii) Giv k, w lult th siz o th it lustr i G(X, p ).W urthr support Cojtur with simultios prorm usi irt vlus o p (s Stio III-D). C. Proprtis o th Grph G(X, E sl ) I this sustio, w wt to stuy th ollowi prolm: iv p, wht is th proility tht two ihori os stlish riv SA tr th lol sur-lik umttio phs? Rll tht tr th ihori-ri isovry phs (. Stio II-B), vry o X i kows its physil ihors N(X i ) ihori ris NF(X i ). I th lol sur-lik umttio phs, vry o X i irst lolly rosts its sts N(X i ) NF(X i ).Usith sts riv rom ihors, o uil lol trust rph s o th ri rltios mo ihors. Th lol trust rph miti y o X i is i s G i (V i,e i ), whr th vrtx st V i = {X j X j N(X i ) j = i} th st E i = {(X j,x k ) X j,x k N(X i ) X k N(X j ) X j N(X k ) (X k,x j ) E SA }. Fi. 5 illustrts lol trust rphs miti y iiviul os. Thr r two possil ss to lolly umt sur liks. I th irst s, two os o ot shr primry SA (ot irtly ot i th trust rph), ut hv ommo physil ihor tht shrs primry SA with h o thm. I Fi. 5 (), or ist, os o ot hv primry SA, ut hv ommo physil ihor o tht hs primry SA with h o thm. Sur ommuitios tw os ow hiv vi th hlp o o. W ot th proility tht this vt ours s p. Wh th symmtri ky s ryptorphy is us, th pirwis ky rt y o is st to o throuh th sur pth i th lol trust rph, sy sur liks (, ) (, ) i Fi. 5 (). Th pirwis ky is rypt/rypt i h hop till it rhs th stitio. Wh th symmtri ky s ryptorph is us, o oti o s vli puli ky rom o, rts th pirwis ky whih is st to o irtly, rypt y o s puli ky. I rl, i o is sur pth i its lol trust rph rom itsl to o o its uuthtit ihors, this o opt th mtho sri ov to uthtit h othr stlish irt sur lik tw thm. I th so s, two os o ot shr primry SA (ot irtly ot i th trust rph), ot i ihor stisyi th irst s. Howvr, thr xists o tht shrs primry SA with h o th two os, is physil ihor o oly o o thm. I Fi. 5 (), os () 83

7 This ull txt ppr ws pr rviw t th irtio o IEEE Commuitios Soity sujt mttr xprts or pulitio i th IEEE INFOCOM 8 prois. o ot hv primry SA, ut o hs primry SA with h o thm, o is th physil ihor o oly o. Sur ommuitios tw os hiv vi th hlp o o. W ot th proility tht this vt ours s p. I this situtio, o will irst i th possiility to umt sur lik (,), tk th rsposiility to iitit this prour. Wh th symmtri ky s ryptorphy is us, th pirwis ky rt y o will st to o, th this ky will st k to whih is rypt y os s pirwis ky i thir primry SA. No th rlys th rypt ky to o. Wh th symmtri ky s ryptorph is us, o oti o s vli puli ky rom o, th pirwis ky rt y o is st to o irtly, whih is rypt y o s puli ky. I rl, i o X i is sur pth rom itsl to o o its uthtit ihors, sy X j, o X j os ot hv primry SA with o o o X i s -hop wy ihors, sy X k, whih is o o o X i s ris, th o X i us this sur pth to hlp ths two os uthtit h othr stlish irt sur lik. Proilitis p p lult s th ollowi: (.5865 (.5865 ) p =( p ) (p ) k k k= ( ( p ).5865 k ( p ) k)). () (.87 (.87 ) p =( p ) ( p ) (p ) k k k= ( ( p ).87 k ( p ) k)). (3) Not tht p p r utios o p, = πr is trmi y r. I rl, r p r lso iv s utio o. Thror, p p r utios o oly. Atr th lol sur-lik umttio phs, th proility tht thr xists sur lik tw two ihori os, ot y p, is iv y, p () =p ()+p ()+p (). (4) Th th rph G(X, E sl ) is quivlt to G(X, p ), whr { p p (x) = i x r i x >r. A simpl xmitio o qutios () (3) shows tht p () p () Θ(p ()), whih implis p () Θ(p ()) rom qutio (4). As rsult, w hv th ollowi thorm: Thorm 3: [Et o Lol Sur-Lik Aumttio] Th lol sur-lik umttio shms will ot ltr th orr o th proility or two ihori os to stlish sur lik, i.. p () Θ(p ()). Si w r oly itrst i th symptoti proprtis o th WANET with ti to iiity, Thorm 3 iits tht G(X, E sl ) (i.., G(X, p )) is quivlt to G(X, E sl ) (i.., G(X, p )) si p () Θ(p ()). D. Summry o th Proprtis o Sur Grphs Rsults i Stio III-B show tht th sur rph G(X, ) uros two phs trsitios with th vryi o k, th vr o r o G(X, ). Th two ritil vlus o k, orrspoi to two phs trsitios, sprt th vlu o k ito thr itrvls: () k k p 4.5: sur rph G(X, ) is i th suritil phs, iiti tht G(X, ) os ot prolt. Th tir twork osists o O() smll lustrs, th umr o os i y lustr is ot rtr th O(lo()). () k p <k k = Θ(lo()): sur rph G(X, ) is i th suprritil phs, iiti tht G(X, ) prolts is ot ot w.h.p. I this phs, G(X, ) osists o o iiit-orr lustr som isolt os. Eh o lis i ithr th iiit-orr lustr or o-orr lustr (i.., it is isolt) w.h.p. (3) k>k : th sur rph G(X, ) is ot w.h.p., i.., thr xists oly o lustr. Not tht k = p = p πr, whih iits tht k is trmi y two prmtrs: p rom th trust rph r rom th physil rph. Now, w pro to ivstit th tr-o tw mmory siz, ommuitio ovrh sur otivity i G(X, ). Cot Phs Prvious works [7] [9] sust tht i orr to hiv th ojtiv, t lst G(X, E sl ) shoul ot. Thror, tr th ihori-ri isovry phs, th trust rph G(X, p ) is rt ll th os r ot with sur liks w.h.p. A sur pth tw ritrry o pir stlish with y routi shms oprt o thos sur liks. Nxt, w osir th ommuitio ovrh i this phs. Th sur rph G(X, p ) must hv lowr vr o r ompr to th orrspoi physil rph G(X, ), i tht lowr o r will irs th pth lth whih will t th ommuitio ovrh. Oviously, this ovrh hrtriz y th vr pth lth. Prvious works [7] show tht, i orr to kp th physil rph ot, th vr o r or G(X, E pl ), i.., = πr, shoul o th orr o lo() miimlly, th vr pth lth is O( ). Thollowi thorm iits tht, wh G(X, p ) is ot, th vr pth lth is o th sm orr, whih implis tht th ommuitio ovrh itrou y th sur oprtios is symptotilly liil. Thorm 4: [Avr Pth lth o G(X, p )] Wh G(X, p ) is ot, th vr pth lth ovr ll o pirs (or hop-outs) is O( ). Proo: Cosir th rph G(X, ) with { (x) i x pr = i x > pr. G(X, ) hs th sm vr o r s G(X, p ). Si p is th sqush utio o, th vr pth lth 83

8 This ull txt ppr ws pr rviw t th irtio o IEEE Commuitios Soity sujt mttr xprts or pulitio i th IEEE INFOCOM 8 prois. Fi = p = E[h]=6. p =.9 E[h]=.8 p =.8 E[h]=6.47 p =.7 E[h]= umr o hops, h Et o p o th hop-out istriutio i th sur rph =5 Pro o otivity (lult) 5 5 vr o r, k =5 Pro o otivity (lult) 5 5 vr o r, k = Pro o otivity (lult) 5 5 vr o r, k Fi. 7. Simult lult vlus or th it lustr siz proility o otivity i RGGs (p =) or irt vlus o. =,p =. =,p =.4 =,p =.8 or G(X, p ) is smllr th tht or G(X, ). G(X, ) is lso RGG, hs th sm orr o vr pth lth s G(X, ). Thror, th vr pth lth or G(X, p ) is o th sm orr s tht or G(X, ), i.., is O( ). Fi. 6 isplys th simult vlus o hop-out istriutio or irt p s iv tht th vr o rs rmi th sm. It osrv tht, wh p oms smllr, th vr pth lth rus siiitly. Th rso is tht, to kp th vr o r o th orr o lo(), r shoul orrspoily irs. Thror, th proility o hvi irt lik tw two os t lor ist irss s wll, whih will tivly rs th vr pth lth. Thorm 4 iits tht wh th twork is oprt i th situtio tht G(X, p ) is ot, th sur otivity ojtiv hiv with liil ommuitio ovrh. Th prolm, howvr, is tht it is ot sll, whih is mostrt y th ollowi k-oth-vlop lultio. I orr to kp th physil rph ot, th vr o r or G(X, E pl ), i.., = πr is t lst o th orr o lo() [7]. Thror, i w wt sur rph G(X, E sl ) to ot, p is t lst o th orr o O(), whih ms th vr umr o ris or vry o, i.., p, is i th orr o O(). Oviously, it is urlisti or th trust rph s wll s th rquir mmory siz i h o or primry SAs. Lst, w osir th t o lol sur-lik umttio phs. Thorm 3 shows tht, tr this phs, th proility tht two ihori os shr SA (primry or riv) is p (), whih is o th sm orr o p (). Thror, iv p (), whih ot hiv th otivity o sur rph G(X, p ), lthouh lol sur-lik umttio thiqus hiv p rtr th p,th rsulti sur rph G(X, p ) is still isot. Put it i othr wy, si p () Θ(p ()), it is impossil to rly o lol sur-lik umttio thiqus to ru th rquirmt o th orr o p () or th sur otivity. Suprritil Phs Thorm shows tht i orr to kp G(X, p ) ot, th vr o r must row pproximtly lik lo(), wh th umr o os i th twork irss, whih is xpsiv rsults i poor slility. W show, howvr, tht it is o lor th s i w oly slihtly loos th otivity rquirmt, y just imposi tht G(X, p ) is i th suprritil phs. Mor Pro o otivity (lult) 5 5 vr o r, k Pro o otivity (lult) 5 5 vr o r, k Pro o otivity (lult) 5 5 vr o r, k Fi. 8. Simult lult vlus or th it lustr siz proility o otivity i trust rphs or irt vlus o p. prisly, w wt it lustr to ppr i G(X, p ), tht otis vst mjority o th os, ut w lv smll umr o os out o it (i othr wors, w wt th surly ot os to prolt). This pprtly i h ivs muh mor optimisti prsptiv o th slility o our shm. Fi. 7 8 show th lult simult rsults out th siz o th it lustr th proility o otivity or irt p vlus. Th irst olusio w rw tr lyzi simultio t is tht Cojtur ivs quit urt stimtio o th it lustr siz wh is lr ouh. Soly, i ll simult ss w s tht th it lustr siz is rowi stply towrs or thos vlus o th m r tht th proility o -otivity is vry low. For rltivly lr sp o th m r vlus th it lustr is lry ovri most o th twork ut -otivity is ot hiv yt. This is u to oly w isolt os or smll o lustrs outsi th it lustr. Not tht th it lustr o G(X, p ) orms ot sur ko, i.., ll os i th it lustr r ot with sur liks or pths. It is sy to show tht th vr sur pth lth o o pirs i th it lustr is lso o th orr o O( ), whih ms th ommuitio ovrh (or routi strth) is symptotilly liil. Thror, w ru th mmory siz or h th slility o th twork y tor o lo() with th tr-o o isoltio o ritrry smll rtio o os. Hr, isoltio oly ms tht thr is o sur liks oti isolt os with th sur ko. W still urt th physil otivity y stti tht = πr is t lst o th orr o lo() [7]. Hli Isolt Nos Althouh smll rtio o isolt os is rsol tr-o, i rti viromts w miht to ot ths isolt os to th twork. To ot isolt os to th twork, th isolt os to tt it is isolt. Existi twork prtitio ttio lorithms my us or this purpos. But ori to Thorm, wh th rph ts ito th 83

9 This ull txt ppr ws pr rviw t th irtio o IEEE Commuitios Soity sujt mttr xprts or pulitio i th IEEE INFOCOM 8 prois. suprritil phs, xpt or th it lustr, th siz o th rmii lustrs is vry smll, usully i our simultio rsults. Thus th ost or th prtitio ttio lorithm is ot xpsiv, or wh th lustr siz is, it roiz itsl s isolt without y prtitio ttio lorithm. Th isolt os surly ot to th it lustr (sur ko) y ii o o th os i th it lustr whih shrs primry SA with it. To o this it shoul ithr irs trsmissio r or mov rou or rost th mss to i ri with or mor hops. Th routi-surity py loop voi si tht h isolt o ommuit with th sur ko (th it lustr i G(X, p )) with oly o-hop w.h.p. th ommuitio ovrh ior si th umr o isolt os m ritrrily smll. Suritil Phs It is itrsti to sk whthr w urthr ru th rquir umr o uthtit ihors, i.., k, suh tht k<4.5 th sur rph G(X, p ) is i th suritil phs. Th prolm is tht i this phs, th tir twork osists o O() smll isolt trust roups (lustrs), th umr o os i y trust roup is ot rtr th O(lo()). Th, wh w to stlish pth tw two os, this pth will o throuh O( ) isolt trust roups w.h.p., whih is lmost o th sm orr o th pth lth. Thror, wh G(X, p ) is i th suritil phs, w will mt routi-surity py loop i, lol sur-lik umttio is ot ouh to rk this loop. Our olusio is tht, th sur rph G(X, p ) is t lst i th suprritil phs, k ot urthr ru. IV. CONCLUSION I this ppr, w propos ri mol to vlut th rltioship o otivity, mmory siz, ommuitio ovrh surity i ully sl-oriz WANETs. Bs o som rsol ssumptios o o ploymt moility, w show tht w hiv sur otivity wh th vr umr o uthtit ihors o h o is t lst Ω(). W utiliz otiuum proltio thory to ostrut th sur ko, ot th isolt os to th sur ko with multi-hop sur lik umttio shm. Th ommuitio ovrh iurr u to th ihor uthtitio th routi strth r symptotilly liil. REFERENCES [] J. Huux, L. Butty, S. Cpku, Th qust or surity i moil ho tworks, i MoiHo, Lo Bh, CA, Ot.. [] L. Fy, B. Ahlr, A. Wstrlu, Spotous tworki: pplitio-orit pproh to ho tworki, IEEE Commuitios Mzi, vol. 39, o. 6, pp. 76 8, Ju. [3] S. Cpku, L. Butty, J. Huux, Sl-oriz puli-ky mmt or moil ho tworks, IEEE Trstios o Moil Computi, vol., o., pp. 5 64, J. 3. [4] L. Zhou Z. Hs, Suri ho tworks, IEEE Ntwork Mzi, vol. 3, o. 6, pp. 4 3, Nov [5] J. Ko, P. Zros, H. Luo, S. Lu, L. Zh, Provii roust uiquitous surity support or moil ho tworks, i Pro. o IEEE ICNP, Rivrsi, CA, Nov.. [6] H. Luo, J. Ko, P. Zros, S. Lu, L. Zh, Sl-suri ho wirlss tworks, i Pro. o IEEE Symposium o Computrs Commuitios, Itly, July. [7] S. Yi R. Krvts, Mo: Moil rtiit uthority or wirlss ho tworks, i Pro. o th Aul PKI Rsrh Workshop (PKI 3), Githrsur, MD, April 3. [8] Y. Zh, W. Liu, W. Lou, Y. F, Suri moil ho tworks with rtiitlss puli kys, IEEE Trstios o Dpl Sur Computi,, vol. 3, o. 4, pp , Ot.-D. 6. [9] K. R, W. Lou, Y. Zh, Ls: Provii lotio-wr to- t surity i wirlss ssor tworks, i Pro. o IEEE INFOCOM 6, Brlo, Spi, Apr. 6. [] J. Mrw, D. Dwou, S. MDol, Fully sl-oriz pr-topr ky mmt or moil ho tworks, i Pro. o WiSE 5, Colo, Grmy, Sp. 5. [] M. Pros, Rom Gomtri Grphs. Oxor: Oxor Uivrsity Prss, 3. [] X. Li, G. Shrm, R. Mzumr, N. Shro, Drt lypity tr-os i ho tworks with rowi moility, IEEE/ACM Trstios o Ntworki, vol. 5, o. 6, pp , Ju 6. [3] M. Nly E. Moio, Cpity ly tros or -ho moil tworks, IEEE Trstios o Iormtio Thory, vol. 5, o. 6, pp , Ju 5. [4] S. Cpku, L. Butty, J. Huux, Smll worls i surity systms: lysis o th pp rtiit rph, i Nw Surity Prims Workshop, Norolk, VA, Sp.. [5] S. Grikl, PGP: Prtty Goo Privy. Cmri, MA: O Rilly & Assoits, 994. [6] M. Stri, Kylyz lysis o lr OPENPGP ri. Dt r rom Otor 3, 4. [7] P. Gupt P. R. Kumr, Stohsti Alysis, Cotrol, Optimiztio Applitios: A Volum i Hoor o W.H. Flmi. Bosto: Birkhusr, 998, h. Critil Powr or Asymptoti Cotivity i Wirlss Ntworks. [8] Y.-C. Hu, A. Prri, D. Johso, Ari: A sur o-m routi protool or ho tworks, i Pro. o ACM MoiCom, Atlt, GA, Sptmr. [9] R. Bo, L. Eshur, V. Glior, W. Aruh, Bootstrppi surity ssoitios or routi i moil -ho tworks, i Pro. o GLOBECOM 3, S Friso, CA, D. 3. [] B. Bolloás, Rom Grphs. Orlo, FL: Ami Prss, 985. [] S. Jso, T. Luzk, A. Ruiski, Rom Grphs. Nw York: Joh Wily & Sos,. [] E. Gilrt, Rom pl tworks, Jourl o th Soity or Iustril Appli Mthmtis, vol. 9, o. 4, pp , D. 96. [3] R. Mstr R. Roy, Cotiuum Proltio. Cmri: Cmri Uivrsity Prss, 996. [4] M. Pros, O otiuum proltio mol, Avs i Appli Proility, vol. 3, o. 3, pp , Sp. 99. [5] M. Frshtti, L. Booth, M. Cook, J. Bruk, R. Mstr, Cotiuum proltio with urlil spr out otios, Jourl o Sttistil Physis, vol. 8, o. 3/4, pp , F. 5. [6] P. Blistr, Bolloás, M. Wltrs, Cotiuum proltio with stps i th squr or th is, Rom Struturs Alorithms, vol. 6, o. 4, pp , April 5. [7] L. Eshur V. Glior, A ky-mmt shm or istriut ssor tworks, i Pro. o ACM CCS, Wshitio, DC, Nov.. [8] W. Du, J. D, Y. S. H, P. K. Vrshy, A pirwis ky pristriutio shm or wirlss ssor tworks, i Pro. o ACM CCS 3, Wshitio, DC, Ot. 3. [9] D. Hu, M. Mht, A. v Livoort, D. Mhi, Moli pirwis ky stlishmt or rom ky pristriutio i lr-sl ssor tworks, IEEE/ACM Trs. o Ntworki, vol. 5, o. 5, pp. 4 5, Ot

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6 Rin Stion 9.6 Minimum Spnnin Trs Outlin Minimum Spnnin Trs Prim s Alorithm Kruskl s Alorithm Extr:Distriut Shortst-Pth Alorithms A Fil Shrin Prolm Sy unh o usrs wnt to istriut il monst thmslvs. Btwn h

More information

Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems. Distributed File Systems. Example: NFS Architecture

Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems. Distributed File Systems. Example: NFS Architecture Distriut Systms Prinipls n Prigms Mrtn vn Stn VU mstrm, Dpt. Computr Sin stn@s.vu.nl Chptr 11: Vrsion: Dmr 10, 2012 1 / 14 Gnrl gol Try to mk fil systm trnsprntly vill to rmot lints. 1. Fil mov to lint

More information

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993 (Rul 5(10)) Shul C Noti in trms o Rul 5(10) o th Cpitl Gins Ruls, 1993 Sttmnt to sumitt y trnsror o shrs whr thr is trnsr o ontrolling intrst Prt 1 - Dtils o Trnsror Nm Arss ROC No (ompnis only) Inom Tx

More information

Enhancing Downlink Performance in Wireless Networks by Simultaneous Multiple Packet Transmission

Enhancing Downlink Performance in Wireless Networks by Simultaneous Multiple Packet Transmission Enhning Downlink Prormn in Wirlss Ntworks y Simultnous Multipl Pkt Trnsmission Zhngho Zhng n Yunyun Yng Dprtmnt o Eltril n Computr Enginring, Stt Univrsity o Nw York, Stony Brook, NY 11794, USA Astrt In

More information

Algorithmic Aspects of Access Networks Design in B3G/4G Cellular Networks

Algorithmic Aspects of Access Networks Design in B3G/4G Cellular Networks Algorithmi Aspts o Ass Ntworks Dsign in BG/G Cllulr Ntworks Dvi Amzllg, Josph (Si) Nor,DnnyRz Computr Sin Dprtmnt Thnion, Hi 000, Isrl {mzllg,nny}@s.thnion..il Mirosot Rsrh On Mirosot Wy, Rmon, WA 980

More information

Uses for Binary Trees -- Binary Search Trees

Uses for Binary Trees -- Binary Search Trees CS122 Algorithms n Dt Struturs MW 11:00 m 12:15 pm, MSEC 101 Instrutor: Xio Qin Ltur 10: Binry Srh Trs n Binry Exprssion Trs Uss or Binry Trs Binry Srh Trs n Us or storing n rtriving inormtion n Insrt,

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Nikolus Augstn Fr Univrsity of Bozn-Bolzno Fulty of Computr Sin DIS 1 Binry Rprsnttion of Tr Binry Brnhs Lowr Boun for th Eit Distn Unit 10 My 17, 2012 Nikolus Augstn (DIS) Similrity

More information

Network Decoupling for Secure Communications in Wireless Sensor Networks

Network Decoupling for Secure Communications in Wireless Sensor Networks Ntwork Doupling for Sur Communitions in Wirlss Snsor Ntworks Wnjun Gu, Xiol Bi, Srirm Chllppn n Dong Xun Dprtmnt of Computr Sin n Enginring Th Ohio-Stt Univrsity, Columus, Ohio 43210 1277 Emil: gu, ixi,

More information

Matching Execution Histories of Program Versions

Matching Execution Histories of Program Versions Mt Exuto Hstors o Prorm Vrsos Xyu Z Rv Gupt Dprtmt o Computr S T Uvrsty o Arzo Tuso, Arzo 85721 {xyz,upt}@s.rzo.u ABSTRACT W vlop mto or mt ym stors o prorm xutos o two prorm vrsos. T mts prou usul my

More information

Link-Disjoint Paths for Reliable QoS Routing

Link-Disjoint Paths for Reliable QoS Routing Link-Disjoint Pths or Rlil QoS Routing Yuhun Guo, Frnno Kuiprs n Pit Vn Mighm # Shool o Eltril n Inormtion Enginring, Northrn Jiotong Univrsity, Bijing, 000, P.R. Chin Fulty o Inormtion Thnology n Systms,

More information

Back left Back right Front left Front right. Blue Shield of California. Subscriber JOHN DOE. a b c d

Back left Back right Front left Front right. Blue Shield of California. Subscriber JOHN DOE. a b c d Smpl ID r n sription o trms Bk lt Bk right Front lt Front right Provirs: Pls il ll lims with your lol BluCross BluShil lins in whos srvi r th mmr riv srvis or, whn Mir is primry, il ll Mir lims with Mir.

More information

A122 MARION COUNTY HEALTH BUILDING HVAC, GLAZING AND LIGHTING RENOVATION 75% DOCUMENTS 08/31/2015

A122 MARION COUNTY HEALTH BUILDING HVAC, GLAZING AND LIGHTING RENOVATION 75% DOCUMENTS 08/31/2015 7 ' 7 /" ' " ' /" ' 9 /" ' 0" ' 0" ' 0" ' 0" ' " ' /" 0 NRL SHT NOTS IL VRIY XISTIN PRIOR TO WORK N NOTIY RHITT/NINR O ISRPNIS TWN RWINS N XISTIN ONITIONS. 0 0 0 PTH LOTIONS N IR PROOIN WHR XISTIN WLLS

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

One Ring to Rule them All: Service Discovery and Binding in Structured Peer-to-Peer Overlay Networks

One Ring to Rule them All: Service Discovery and Binding in Structured Peer-to-Peer Overlay Networks On Ring to Rul thm All: Srvi Disovry n Bining in Strutur Pr-to-Pr Ovrly Ntworks Migul Cstro Mirosot Rsrh, J J Thomson Clos, Cmrig, CB 0FB, UK. mstro@mirosot.om Ptr Drushl Ri Univrsity, 100 Min Strt, MS-1,

More information

Where preparation meets opportunity. My Academic Planner. Early Academic Outreach Program (EAOP)

Where preparation meets opportunity. My Academic Planner. Early Academic Outreach Program (EAOP) Whr prprtion mts opportunity. My Ami Plnnr Erly Ami Outrh Prorm (EAOP) Follow this 4-stp pln to prpr or mission to th Univrsity o Cliorni (UC), Cliorni Stt Univrsity (CSU) n mny inpnnt olls with similr

More information

PIN #1 ID FIDUCIAL LOCATED IN THIS AREA TOP VIEW. ccc C SIDE VIEW

PIN #1 ID FIDUCIAL LOCATED IN THIS AREA TOP VIEW. ccc C SIDE VIEW Packag iagrams ruary 20 all W Packag Option : i0 P imnsions in illimtrs ata ht r PI # I IUI OT I TI R (X) 2 OTTO VIW. X Ø s TOP VIW Ø.0 Ø.0 I VIW OT:. IIO TOR PR Y. 99. 2. IIO R I IITR. IIO I UR T T XIU

More information

Set Notation Element v is a member of set Element v is not a member of set Cardinality (number of members) of set V Set is a subset of set

Set Notation Element v is a member of set Element v is not a member of set Cardinality (number of members) of set V Set is a subset of set CS/EE 5740/6740: Computr Ai Dsign of Digitl Ciruits Chris J. Myrs Ltur 3: Sts, Rltions, n Funtions Ring: Chptr 3.1 v v S S St Nottion Elmnt v is mmr of st Elmnt v is not mmr of st Crinlity (numr of mmrs)

More information

Jesus Performed Miracles

Jesus Performed Miracles F Jonl P Ju Pr Mircl ch f lo Al n fri r b f Li blo n of ick li on Po k r u yi li br o n o y o on y r v y o r b f ch rfriror n -ll cr r p r o y k li Tor n of o ll y r u o kn on r ch n L ch p Ju Hl Officil

More information

Oracle PL/SQL Programming Advanced

Oracle PL/SQL Programming Advanced Orl PL/SQL Progrmming Avn In orr to lrn whih qustions hv n nswr orrtly: 1. Print ths pgs. 2. Answr th qustions. 3. Sn this ssssmnt with th nswrs vi:. FAX to (212) 967-3498. Or. Mil th nswrs to th following

More information

Hospitals. Internal Revenue Service Information about Schedule H (Form 990) and its instructions is at www.irs.gov/form990.

Hospitals. Internal Revenue Service Information about Schedule H (Form 990) and its instructions is at www.irs.gov/form990. SCHEDULE H Hospitls OMB No. 1545-0047 (Form 990) Complt if th orgniztion nswr "Ys" to Form 990, Prt IV, qustion 20. Atth to Form 990. Opn to Puli Dprtmnt of th Trsury Intrnl Rvnu Srvi Informtion out Shul

More information

WAVEGUIDES (& CAVITY RESONATORS)

WAVEGUIDES (& CAVITY RESONATORS) CAPTR 3 WAVGUIDS & CAVIT RSONATORS AND DILCTRIC WAVGUIDS OPTICAL FIBRS 導 波 管 & 共 振 腔 與 介 質 導 波 管 光 纖 W t rqu is t irowv rg >4 G? t losss o wv i two-odutor trsissio li du to iprt odutor d loss diltri o

More information

Predicting Current User Intent with Contextual Markov Models

Predicting Current User Intent with Contextual Markov Models Priting Currnt Usr Intnt with Contxtul Mrkov Mols Juli Kislv, Hong Thnh Lm, Mykol Phnizkiy Dprtmnt of Computr Sin Einhovn Univrsity of Thnology P.O. Box 513, NL-5600MB, th Nthrlns {t.l.hong, j.kislv, m.phnizkiy}@tu.nl

More information

ELECTRICAL CAPACITY SYMBOL EQUIPMENT TYPE LOCATION / SERVING MFR MODEL (GALLONS) VOLTS PH AMPS WATTS

ELECTRICAL CAPACITY SYMBOL EQUIPMENT TYPE LOCATION / SERVING MFR MODEL (GALLONS) VOLTS PH AMPS WATTS OT: This is a stadard symbol list ad ot all items listed may be used. bbreviatios () XT OV OOR OW OOR P OW PRVTR OT R OT. OTTO V VV W O WTR R OT TR OW T TR O OOR OT OOR R T T O P O PR OR P O PR T W R WT,

More information

Standard Conditions for Street Traders The Royal Borough of Kensington and Chelsea. Revised standard conditions for street trading

Standard Conditions for Street Traders The Royal Borough of Kensington and Chelsea. Revised standard conditions for street trading Stnr Conitions or Strt Trrs Th Royl Borough o Knsington n Chls Rvis stnr onitions or strt tring Th Royl Borough o Knsington n Chls strt tring linss stnr onitions 2006 1 Dinitions Th ollowing xprssions

More information

SCO TT G LEA SO N D EM O Z G EB R E-

SCO TT G LEA SO N D EM O Z G EB R E- SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e

More information

Change Your History How Can Soccer Knowledge Improve Your Business Processes?

Change Your History How Can Soccer Knowledge Improve Your Business Processes? Symposium Inuurl Lctur o Hjo Rijrs, VU, 26-6-2015 Chn Your History How Cn Soccr Knowl Improv Your Businss Procsss? Wil vn r Alst TU/ n DSC/ 1970 born Oostrbk 1988-1992 CS TU/ 1992-1994 TS TU/ 1994-1996

More information

Cayley s Formula. Graphs - II The number of labeled trees on n nodes is n n-2. Planar Graphs. Is K 5 planar? Outline. K 5 can be embedded on the torus

Cayley s Formula. Graphs - II The number of labeled trees on n nodes is n n-2. Planar Graphs. Is K 5 planar? Outline. K 5 can be embedded on the torus Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Crngi Mllon Univrsity Cyly s Formul Grphs - II Th numr of ll trs on n nos is n n-2 Put nothr wy, it ounts th numr of spnning trs of omplt grph K n. 4

More information

«С e n tra l- A s ia n E le c tric - P o w e r C o rp o ra tio n», JS C

«С e n tra l- A s ia n E le c tric - P o w e r C o rp o ra tio n», JS C J o in t - s t o c k c o m p C E N T R A L - A S IA N E L E C T R IC P O W a n y E R C O R P O R A T IO N I n t e r n a l A u d i t P O L IC Y o f J o in t - S t o c k C o m p a n y C E N T R A L - A S

More information

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES A

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES A 0V TO 0V SUPPLY +0V TO +0V RS85 ONVRTR 9 TO OM PORT ON P TO P OM PORT US 9600 U 8IT, NO PRITY, STOP, NO FLOW TRL. OPTO SNSOR # +0V TO +0V RS85 RS85 OPTO SNSOR # PHOTO TRNSISTOR OPTO SNSOR # L TO OTHR Z

More information

Revised Conditions (January 2009) LLOYDS BANKING GROUP SHARE ISA CONDITIONS

Revised Conditions (January 2009) LLOYDS BANKING GROUP SHARE ISA CONDITIONS Rvis Conitions (Jnury 2009) LLOYDS BANKING GROUP SHARE ISA CONDITIONS Contnts 1 Who r th prtis?... 2 Wht o wors n phrss in ol typ mn?... 3 Whn i my pln strt?... 4 How o I invst in my pln?... 5 Who owns

More information

SKILL TEST IR(H) HELICOPTER SE ME Application and report form A. Udfyldes af ansøgeren/to be filled out by the applicant:

SKILL TEST IR(H) HELICOPTER SE ME Application and report form A. Udfyldes af ansøgeren/to be filled out by the applicant: SKILL TEST IR(H) HELICOPTER SE ME Applition n rport orm A. Uyls nsørn/to ill out y th pplint: CPR-nr./Dt o Birth: Crtiikt nr./lin no.: (I ny) Ustn Stt/Stt o Lin Issu: Fornvn/First nm(s): Etrnvn/Lst nm:

More information

fun www.sausalitos.de

fun www.sausalitos.de O ily i f www.lit. Ctt. Cy... 4 5 Rtt... 6 7 B... 8 11 Tt... 12 13 Pt... 14 15. 2 Ctt. Cy. Rtt. B. Tt. Pt Ctt. Cy. Rtt. B. Tt. Pt. 3 Ti t f vyy lif, ity viti. AUALITO i l t t fi, t ty, t t, jy ktil jt

More information

Form: Parental Consent for Blood Donation

Form: Parental Consent for Blood Donation A R C Wt, C 20006 Ptl Ct f B i Ifi T f t y t ll f i y tl t q y t l A R C ly. Pl ll 1-800-RE-CROSS (1-800-733-2767) v. if y v q r t t i I iv t f yr,, t, y v t t: 1. Y y t t l i ly, 2. Y y t t t l i ( k

More information

c d b a f(a,b,c,d,e) d e d e e b b c

c d b a f(a,b,c,d,e) d e d e e b b c 85 Chptr 6 Exri 6. From Exri 5., w know tht th ingl-rror ttor for 2-out-of-5 o (; ; ; ; ) i implmnt y th xprion: E(; ; ; ; ) = + + + + + + + + + + + + + Uing only gt from Tl 4. of th txtook w n gnrt ll

More information

DRAWING LIST: SITE ANALYSIS - C MASTER PLAN

DRAWING LIST: SITE ANALYSIS - C MASTER PLAN RWI I: RWI M: O. RV. RWI M: O. RV. OVR P - PROJ UMMRY - IO YPI IO - & - - VIUIIO YPI IO - & - - POOMO - VIW -9 I IO - & F-F - POOMO - VIW -9 POOMO - VIW -9 VIO POOMO - VIW 4-94 YPI VIO - & - -4 POOMO -

More information

Chapter 3 Chemical Equations and Stoichiometry

Chapter 3 Chemical Equations and Stoichiometry Chptr Chmicl Equtions nd Stoichiomtry Homwork (This is VERY importnt chptr) Chptr 27, 29, 1, 9, 5, 7, 9, 55, 57, 65, 71, 75, 77, 81, 87, 91, 95, 99, 101, 111, 117, 121 1 2 Introduction Up until now w hv

More information

B a rn e y W a r f. U r b a n S tu d ie s, V o l. 3 2, N o. 2, 1 9 9 5 3 6 1 ±3 7 8

B a rn e y W a r f. U r b a n S tu d ie s, V o l. 3 2, N o. 2, 1 9 9 5 3 6 1 ±3 7 8 U r b a n S tu d ie s, V o l. 3 2, N o. 2, 1 9 9 5 3 6 1 ±3 7 8 T e le c o m m u n ic a t io n s a n d th e C h a n g in g G e o g r a p h ie s o f K n o w le d g e T r a n s m is s io n in th e L a te

More information

IncrEase: A Tool for Incremental Planning of Rural Fixed Broadband Wireless Access Networks

IncrEase: A Tool for Incremental Planning of Rural Fixed Broadband Wireless Access Networks InrEs: A Tool or Inrmntl Plnning o Rurl Fix Bron Wirlss Ass Ntworks Giomo Brnri n Mhsh K. Mrin Shool o Inormtis Th Univrsity o Einurgh, UK Frnso Tlmon n Dmitry Rykovnov EOLO L NGI SpA, Miln, Itly Astrt

More information

Hermes: Dynamic Partitioning for Distributed Social Network Graph Databases

Hermes: Dynamic Partitioning for Distributed Social Network Graph Databases Hrms: Dynm Prttonn or Dstrut Sol Ntwork Grph Dtss Dnl Nor Unvrsty o Wtrloo nl.nor@ml.om Shhn Kml Unvrsty o Wtrloo s3kml@uwtrloo. Khuzm Duj Unvrsty o Wtrloo kuj@uwtrloo. L Chn HKUST lhn@s.ust.hk ABSTRACT

More information

Diagram Editing with Hypergraph Parser Support

Diagram Editing with Hypergraph Parser Support Copyright 1997 IEEE. Pulish in th Proings o VL 97, Sptmr 23-26, 1997 in Cpri, Itly. Prsonl us o this mtril is prmitt. Howvr, prmission to rprint/rpulish this mtril or vrtising or promotionl purposs or

More information

11 + Non-verbal Reasoning

11 + Non-verbal Reasoning Prti Tst + Non-vrl Rsoning R th instrutions rfully. Do not gin th tst or opn th ooklt until tol to o so. Work s quikly n s rfully s you n. Cirl th orrt lttr from th options givn to nswr h qustion. You

More information

Campus Sustainability Assessment and Related Literature

Campus Sustainability Assessment and Related Literature Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626

More information

C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t

More information

Problem Set 6 Solutions

Problem Set 6 Solutions 6.04/18.06J Mathmatics for Computr Scic March 15, 005 Srii Dvadas ad Eric Lhma Problm St 6 Solutios Du: Moday, March 8 at 9 PM Problm 1. Sammy th Shar is a fiacial srvic providr who offrs loas o th followig

More information

Scholarship Help for Technology Students

Scholarship Help for Technology Students i NOVEMBER 2014 Sli Hl f Tl S S i il ili l j i il i v f $150000 i li VN l f li Pl Tl N f xl i ii f v Pi Oli i N fi f i f vl i v f f li f i v f Viii Sli f vill f flli j: Pl Tl Mi Alli Hl li A Ifi Tl li

More information

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

More information

Frederikshavn kommunale skolevæsen

Frederikshavn kommunale skolevæsen Frederikshavn kommunale skolevæsen Skoleåret 1969-70 V e d K: Hillers-Andersen k. s k o l e d i r e k t ø r o g Aage Christensen f u l d m æ g t i g ( Fr e d e rik sh av n E k sp r e s- T ry k k e rie

More information

Process Mining Making Sense of Processes Hidden in Big Event Data

Process Mining Making Sense of Processes Hidden in Big Event Data Pross Minin Mkin Sns o Prosss Hin in Bi Evnt Dt EIS Colloquium, 7-12-2012, TU/, Einovn Wil vn r Alst www.prossminin.or omplin-orint qustions, prolms n solutions prormn-orint qustions, prolms n solutions

More information

/* ------------------------------------------------------------------------------------

/* ------------------------------------------------------------------------------------ Pr o g r a m v a r e fo r tr a fik k b e r e g n in g e r b a s e r t p å b a s is k u r v e m e to d e n n M a tr ix * x M a tr ix E s ta lp h a B e ta ; n M a tr ix * z M a tr ix ; g e n M a tr ix X

More information

Approximate Subtree Identification in Heterogeneous XML Document Collections

Approximate Subtree Identification in Heterogeneous XML Document Collections Approximat Sutr Intiiation in Htrognous XML Doumnt Colltions Ismal Sanz 1, Maro Msiti 2, Giovanna Gurrini 3 an Raal Brlanga 1 1 Univrsitat Jaum I, Spain 2 Univrsità gli Stui i Milano, Italy 3 Univrsità

More information

i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner

i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner í d : r ' " B o m m 1 E x p e r i e n c e L : i i n g S e c u r it y. 1-1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his g u id e å ] - ew i c h P e t e r M u la e n PACKT ' TAÞ$Æo

More information

Operational Procedure: ACNC Data Breach Response Plan

Operational Procedure: ACNC Data Breach Response Plan OP 2015/03 Oprtionl Prour: ACNC Dt Brh Rspons Pln This Oprtionl Prour is issu unr th uthority of th Assistnt Commissionr Gnrl Counsl n shoul r togthr with th ACNC Poliy Frmwork, whih sts out th sop, ontxt

More information

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1.

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1. 1. O b l a s t r o z v o j s p o l k a S U U K 1. 1. Z v y š o v á n í k v a l i f i k a c e Š k o l e n í o S t u d e n t s k á u n i e U n i v e r z i t y K a r l o v y ( d á l e j e n S U U K ) z í

More information

G S e r v i c i o C i s c o S m a r t C a r e u ي a d e l L a b o r a t o r i o d e D e m o s t r a c i n R ل p i d a V e r s i n d e l S e r v i c i o C i s c o S m a r t C a r e : 1 4 ع l t i m a A c

More information

Attachment 1 Package D1-1 (Five (5) Locations) 9-26-13Revised 11-1-13

Attachment 1 Package D1-1 (Five (5) Locations) 9-26-13Revised 11-1-13 Space Identifier Near Gate ttachment Package - (Five (5) Locations) 9-26-3Revised --3 Proposed oncept Square Footage Minimum nnual Guarantee Term in Years --Z0 ustoms urrency xchange 98 $20,500 75-2-S06

More information

Operation Transform Formulae for the Generalized. Half Canonical Sine Transform

Operation Transform Formulae for the Generalized. Half Canonical Sine Transform Appl Mhmcl Scnc Vol 7 3 no 33-4 HIKARI L wwwm-hrcom Opron rnorm ormul or h nrl Hl Cnoncl Sn rnorm A S uh # n A V Joh * # ov Vrh Inu o Scnc n Humn Amrv M S In * Shnrll Khnlwl Coll Aol - 444 M S In luh@mlcom

More information

Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage

Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage CAS Loss Reserve Seminar 23 Session 3 Private Passenger Automobile Insurance Frank Cacchione Carlos Ariza September 8, 23 Today

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) 92.222 - Linar Algbra II - Spring 2006 by D. Klain prliminary vrsion Corrctions and commnts ar wlcom! Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial

More information

Accelerating Multi-Patterns Matching on Compressed HTTP Traffic

Accelerating Multi-Patterns Matching on Compressed HTTP Traffic This fll x ppr ws pr rviw h irio of IEEE Commiios Soiy sj mr xprs for pliio i h IEEE INFOCOM 29 proigs. Alrig Mli-Prs Mhig o Comprss HTTP Trffi A Brmlr-Brr Compr Si Dp. Irisipliry Cr, Hrzliy, Isrl Emil:

More information

MANAGEMENT OF INFORMATION SECURITY AND FORENSICS

MANAGEMENT OF INFORMATION SECURITY AND FORENSICS MANAGEMENT OF INFORMATION SECURITY AND FORENSICS CS 307 Ctlog Dsription PREREQUISITE: CS 0. Stuy of informtion surity n igitl fornsis using prtil s stuis. Emphsis is on vloping surity poliis, surity mngmnt

More information

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y and KB rl iak s iol mi a, hme t a ro cp hm a5 a 2k p0r0o 9f i,e ls hv oa nr t ds eu rmv oedye l o nf dae cr

More information

Usability Test Checklist

Usability Test Checklist Crtifi Profssionl for Usility n Usr Exprin Usility Tsting (CPUX-UT) Vrsion.0, Jun 0 Pulishr: UXQB. V. Contt: info@uxq.org www.uxq.org Autorn: R. Molih, T. Gis, B. Rumml, O. Klug, K. Polkhn Contnt Lgn...

More information

U.S. Department of Housing and Urban Development: Weekly Progress Report on Recovery Act Spending

U.S. Department of Housing and Urban Development: Weekly Progress Report on Recovery Act Spending U.S. Department of Housing and Urban Development: Weekly Progress Report on Recovery Act Spending by State and Program Report as of 3/7/2011 5:40:51 PM HUD's Weekly Recovery Act Progress Report: AK Grants

More information

Discovering Petri Nets From Event Logs

Discovering Petri Nets From Event Logs Disovring Ptri Nts From Evnt Logs W.M.P. vn r Alst n B.F. vn Dongn Dprtmnt of Mthmtis n Computr Sin, Thnish Univrsitit Einhovn, Th Nthrlns. {W.M.P.v..Alst,B.F.v.Dongn}@tu.nl Astrt. As informtion systms

More information

Level 3. Monday FRACTIONS ⅔ ⅗ 2) ⅔ =?/18. 1) What is a) ⅕ of 30? b) ⅖ of 30?

Level 3. Monday FRACTIONS ⅔ ⅗ 2) ⅔ =?/18. 1) What is a) ⅕ of 30? b) ⅖ of 30? 2014 Th Wkly Pln. All rights rsrv. Mony 2) ⅔ =?/18 1) Wht is ) ⅕ o 30? ) ⅖ o 30? 4) Us or = to show th rltionship twn th ollowing rtions: 3) Writ n quivlnt rtion or ½ ⅔ ⅗ 5) Brook pik ouqut o 24 lowrs.

More information

Industry regulations Jurisdictional regulations Legal defensibility Legal frameworks Legal research

Industry regulations Jurisdictional regulations Legal defensibility Legal frameworks Legal research A Dutis, Tsks, n Stps Mnging Informtion Risk n Complin 1 Monitor lgl n rgultory lnsp Engg with lgl prtmnt n othr stkholrs Intify n intrprt xisting pplil lws of ll jurisitions n rgultions Intify rsours

More information

W h a t is m e tro e th e rn e t

W h a t is m e tro e th e rn e t 110 tv c h a n n e ls to 10 0 0 0 0 u s e rs U lf V in n e ra s C is c o S y s te m s 2 0 0 2, C is c o S y s te m s, In c. A ll rig h ts re s e rv e d. 1 W h a t is m e tro e th e rn e t O b je c tiv

More information

THE EFFECT OF GROUND SETTLEMENTS ON THE AXIAL RESPONSE OF PILES: SOME CLOSED FORM SOLUTIONS CUED/D-SOILS/TR 341 (Aug 2005) By A. Klar and K.

THE EFFECT OF GROUND SETTLEMENTS ON THE AXIAL RESPONSE OF PILES: SOME CLOSED FORM SOLUTIONS CUED/D-SOILS/TR 341 (Aug 2005) By A. Klar and K. THE EFFECT OF GROUND SETTEMENTS ON THE AXIA RESPONSE OF PIES: SOME COSED FORM SOUTIONS CUED/D-SOIS/TR 4 Aug 5 By A. Klr d K. Sog Klr d Sog "Th Effct of Groud Displcmt o Axil Rspos of Pils: Som Closd Form

More information

A Proxy Based Indirect Routing Scheme for Ad Hoc Wireless Networks

A Proxy Based Indirect Routing Scheme for Ad Hoc Wireless Networks A Proxy Bs Inirt Routin Shm or A Ho Wirlss Ntworks Wook Choi n Sjl K. Ds Cntr or Rsrh in Wirlss Moility n Ntworkin (CRWMN Dprtmnt o Computr Sin n Eninrin Th Univrsity o Txs t Arlinton Arlinton, TX 719-1

More information

Magic Message Maker Amaze your customers with this Gift of Caring communication piece

Magic Message Maker Amaze your customers with this Gift of Caring communication piece Magic Mssag Makr maz your customrs with this Gift of aring communication pic Girls larn th powr and impact of crativ markting with this attntion grabbing communication pic that will hlp thm o a World of

More information

EM EA. D is trib u te d D e n ia l O f S e rv ic e

EM EA. D is trib u te d D e n ia l O f S e rv ic e EM EA S e c u rity D e p lo y m e n t F o ru m D e n ia l o f S e rv ic e U p d a te P e te r P ro v a rt C o n s u ltin g S E p p ro v a rt@ c is c o.c o m 1 A g e n d a T h re a t U p d a te IO S Es

More information

Masters Mens Physique 45+

Masters Mens Physique 45+ C G x By, F, hysq, Bk Chpshps Ap, Cv Cy, Cf Mss Ms hysq + Fs Ls Css Ov Css s G MC Chpk M+ W M+/MC y Bs 9 8 9 9 8 B O'H 8 9 8 S Rs 8 8 9 h K 9 D Szwsk 8 9 8 9 9 G M+ h D Ly Iz M+ 8 M R : : C G x By, F,

More information

Ne l'aria in questi di fatt'ho un si forte Castel,

Ne l'aria in questi di fatt'ho un si forte Castel, 10 19 29 37 46 54 62 70 N l' in qu ftt'ho un si Csl, oginl ky C l sl N l' su in qu ch, Cn poiv' l ftt' houn si Cipno d Ror v nr, nr l vn, poiv' fossin V n v prcuo ft.. mr, L'r, ch tr'l trui fol lr pugnr

More information

Important result on the first passage time and its integral functional for a certain diffusion process

Important result on the first passage time and its integral functional for a certain diffusion process Lcturs Mtmátics Volumn 22 (21), págins 5 9 Importnt rsult on th first pssg tim nd its intgrl functionl for crtin diffusion procss Yousf AL-Zlzlh nd Bsl M. AL-Eidh Kuwit Univrsity, Kuwit Abstrct. In this

More information

AC Circuits Three-Phase Circuits

AC Circuits Three-Phase Circuits AC Circuits Thr-Phs Circuits Contnts Wht is Thr-Phs Circuit? Blnc Thr-Phs oltgs Blnc Thr-Phs Connction Powr in Blncd Systm Unblncd Thr-Phs Systms Aliction Rsidntil Wiring Sinusoidl voltg sourcs A siml

More information

SecurView 6-0-6 Antivirus Software Installation

SecurView 6-0-6 Antivirus Software Installation SurViw 6-0-6 Antivirus Sotwr Instlltion 1. Introdution Antivirus sotwr is n tiv wy to ombt omputr viruss, trojns, worms, nd othr mliious sotwr tht my ttmpt to ompromis th intgrity o systm. It is ssntil

More information

QoS Provisioning in WLAN Mesh Networks Using Dynamic Bandwidth Control

QoS Provisioning in WLAN Mesh Networks Using Dynamic Bandwidth Control QoS Provisioning in WLN Msh Ntworks Using ynmic nwith ontrol. Hock, R. Pris,. Sthl Univrsity o Wurzburg Institut o omputr Scinc Wurzburg, Grmny {hock, pris, sthl}@inormtik.uni-wurzburg. V. Rkocvic School

More information

A Quick Guide to Colleges. Offering Engineering Degrees

A Quick Guide to Colleges. Offering Engineering Degrees Qk gs ffg gg Dgs Fby 2007 www.dgs.g Qk gs ffg gg Dgs Ts qk f g ps sy sg (by s) f U.S. gs ss ffg b s (4-y) gs gg 363 ss, spg 50 ss ps Ds f b R. Ts sy s s gg g pgs by f gg Tgy (T, gz f g sy pgs pp s, pg,

More information

SKIN PREPERATION. skin perfection velvety-s. cause damage to the sk

SKIN PREPERATION. skin perfection velvety-s. cause damage to the sk MAKEUP TUTORIAL Hllo vo! Fo oti I v gttig coplit qtio ot wt I ow I o k p Fitl I jt wt to kow tt I' lw z o lovl cot ot t k p I o I otl v togt it w tt gt til o g tt kig Ti igt co ock t I' ot c of t jk I

More information

Put the human back in Human Resources.

Put the human back in Human Resources. Put the human back in Human Resources A Co m p l et e Hu m a n Ca p i t a l Ma n a g em en t So l u t i o n t h a t em p o w er s HR p r o f essi o n a l s t o m eet t h ei r co r p o r a t e o b j ect

More information

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST: .4 Eponntial Functions: Diffrntiation an Intgration TOOTLIFTST: Eponntial functions ar of th form f ( ) Ab. W will, in this sction, look at a spcific typ of ponntial function whr th bas, b, is.78.... This

More information

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct H ig h L e v e l O v e r v iew S te p h a n M a rt in S e n io r S y s te m A rc h i te ct OPEN XCHANGE Architecture Overview A ge nda D es ig n G o als A rc h i te ct u re O ve rv i ew S c a l a b ili

More information

Distributed Process Discovery and Conformance Checking

Distributed Process Discovery and Conformance Checking Distriut Pross Disovry n Conormn Chkin Wil M.P. vn r Alst 1,2 1 Einhovn Univrsity o Thnoloy, Einhovn, Th Nthrlns 2 Qunsln Univrsity o Thnoloy, Brisn, Austrli www.vlst.om Astrt. Pross minin thniqus hv mtur

More information

Last time Interprocedural analysis Dimensions of precision (flow- and context-sensitivity) Flow-Sensitive Pointer Analysis

Last time Interprocedural analysis Dimensions of precision (flow- and context-sensitivity) Flow-Sensitive Pointer Analysis Flow-Insnsitiv Pointr Anlysis Lst tim Intrprocurl nlysis Dimnsions of prcision (flow- n contxt-snsitivity) Flow-Snsitiv Pointr Anlysis Toy Flow-Insnsitiv Pointr Anlysis CIS 570 Lctur 12 Flow-Insnsitiv

More information

The Lincoln National Life Insurance Company Variable Life Portfolio

The Lincoln National Life Insurance Company Variable Life Portfolio The Lincoln National Life Insurance Company Variable Life Portfolio State Availability as of 12/14/2015 PRODUCTS AL AK AZ AR CA CO CT DE DC FL GA GU HI ID IL IN IA KS KY LA ME MP MD MA MI MN MS MO MT NE

More information

Cruisin with Carina Motorcycle and Car Tour Guide

Cruisin with Carina Motorcycle and Car Tour Guide Ifi Tchlgy Slui Wh Swdih hpiliy V, ully. Cuii wih Ci Mcycl d C Tu Guid Ikp: Ci Th 290 Ru 100 W Dv, V 05356 800-745-3615 802-464-2474 L h g ll! Th d i ck, c, i d l x. My 17h, 18h, & 19h W ivi yu c cui h

More information

WIRELESS mesh networks (WMNs) provide cheap, reliable,

WIRELESS mesh networks (WMNs) provide cheap, reliable, ynmic nwith ontrol in Wirlss Msh Ntworks: Qulity o xprinc bs pproch Rstin Pris, vi Hock, Nico yr, Mtthis Sibrt, irk Sthl, Vslin Rkocvic, ngnn Xu, Phuoc Trn-Gi bstrct Wirlss Msh Ntworks (WMNs) r gining

More information

The Mathematics of Origami

The Mathematics of Origami Puish y th Appi Proiity Trust Appi Proiity Trust 2013 12 Th Mthmtis of Origmi SUDHARAKA PALAMAKUMBURA Origmi is wispr rt form gining popurity mong mthmtiins for its rmrk iity to prform gomtri onstrutions.

More information

CREATE SHAPE VISUALIZE

CREATE SHAPE VISUALIZE SHAPE VISUALIZE B I M E q u i t y BIM Workflow Guide SHAPE VISUALIZE Introduction We o e to t e r t ook i t e BIM Workflow erie I t e o owi ter we wi o er e eryt i eeded or you to ter t e i o re ti i d

More information

J a re k G a w o r, J o e B e s te r, M a th e m a tic s & C o m p u te r. C o m p u ta tio n In s titu te,

J a re k G a w o r, J o e B e s te r, M a th e m a tic s & C o m p u te r. C o m p u ta tio n In s titu te, 1 4 th IE E E In te r n a tio n a l S y m p o s iu m o n H ig h P e r fo r m a n c e D is tr ib u te d C o m p u tin g (H P D C -1 4 ), R e s e a rc h T ria n g le P a rk, N C, 2 4-2 7 J u ly 2 0 0 5.

More information

the machine and check the components Drum Unit (pre-installed) Waste Toner Box (pre-installed)

the machine and check the components Drum Unit (pre-installed) Waste Toner Box (pre-installed) Quik Stup Gui Strt Hr DCP-9270CDN Pls r Sfty n Lgl Booklt first for you st up your mhin. Thn, pls r this Quik Stup Gui for th orrt stup n instlltion. To viw th Quik Stup Gui in othr lngugs, pls visit http://solutions.rothr.om/.

More information

CompactPCI Connectors acc. to PIGMG 2.0 Rev. 3.0

CompactPCI Connectors acc. to PIGMG 2.0 Rev. 3.0 Ctlog E 074486 08/00 Eition ComptPCI Conntors. to PIGMG.0 Rv. 3.0 Gnrl Lt in 999 PCI Inustril Computr Mnufturrs Group (PICMG) introu th nw rvision 3.0 of th ComptPCI Cor Spifition. Vrsion 3.0 of this spifition

More information

Higher. Exponentials and Logarithms 160

Higher. Exponentials and Logarithms 160 hsn uknt Highr Mthmtics UNIT UTCME Eponntils nd Logrithms Contnts Eponntils nd Logrithms 6 Eponntils 6 Logrithms 6 Lws of Logrithms 6 Eponntils nd Logrithms to th Bs 65 5 Eponntil nd Logrithmic Equtions

More information

Federation of State Boards of Physical Therapy Jurisdiction Licensure Reference Guide Topic: Continuing Competence

Federation of State Boards of Physical Therapy Jurisdiction Licensure Reference Guide Topic: Continuing Competence This document reports CEU requirements for renewal. It describes: Number of required for renewal Who approves continuing education Required courses for renewal Which jurisdictions require active practice

More information

MATH PLACEMENT REVIEW GUIDE

MATH PLACEMENT REVIEW GUIDE MATH PLACEMENT REVIEW GUIDE This guie is intene s fous for your review efore tking the plement test. The questions presente here my not e on the plement test. Although si skills lultor is provie for your

More information

Other State Policy. CA Policy. Increase Requested

Other State Policy. CA Policy. Increase Requested Rate History Contact: 1 (800) 331-1538 Form * ** Date Date Name 1 NH94 I D 9/14/1998 N/A N/A N/A 35.00% 20.00% 1/25/2006 3/27/2006 8/20/2006 2 LTC94P I F 9/14/1998 N/A N/A N/A 35.00% 20.00% 1/25/2006 3/27/2006

More information

Swelling and Mechanical Properties of Hydrogels Composed of. Binary Blends of Inter-linked ph-responsive Microgel Particles

Swelling and Mechanical Properties of Hydrogels Composed of. Binary Blends of Inter-linked ph-responsive Microgel Particles Eletroi Supplemetry Mteril (ESI) for Soft Mtter. This jourl is The Royl Soiety of Chemistry 205 SUPPLEMENTARY INFRMATIN Swellig Mehil Properties of Hyrogels Compose of Biry Bles of Iter-like ph-resposive

More information

DATA MANAGEMENT POLICY

DATA MANAGEMENT POLICY Dt Mngmnt Poly Etv: 2 Mrh 2011. R-ssu: 1 Sptmr 2011 DATA MANAGEMENT POLICY IMPORTANT NOTICE Durng th Am Yr 2011-2012, th Unvrsty wll rvsng ts ntrnl struturs whh, mongst othr thngs, my rsult n th rplmnt

More information

Outside Cut 1 of fabric Cut 1 of interfacing

Outside Cut 1 of fabric Cut 1 of interfacing a a Outsi Cut o abric Cut o intracing a a b b Outsi Cut o abric Cut o intracing Placmnt lin or Mony Pockts Dix Not: F. Cut Fol b. Pin t /8 in 5. Nx bottom pics sw th 6. For t Prss, 7. Lay togth on th 8.

More information

M P L S /V P N S e c u rity. 2 0 0 1, C is c o S y s te m s, In c. A ll rig h ts re s e rv e d.

M P L S /V P N S e c u rity. 2 0 0 1, C is c o S y s te m s, In c. A ll rig h ts re s e rv e d. M P L S /V P N S e c u rity M ic h a e l B e h rin g e r < m b e h rin g @ c is c o.c o m > M b e h rin g - M P L S S e c u rity 2 0 0 1, C is c o S y s te m s, In c. A ll rig h ts re s e rv e d. 1 W h

More information