# COLLEGE ALGEBRA IN CONTEXT: Redefining the College Algebra Experience

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 COLLEGE ALGEBRA IN CONTEXT: Redefining the College Algebra Experience Ronald J. HARSHBARGER, Ph.D. Lisa S. YOCCO University of South Carolina Beaufort Georgia Southern University 1 College Center P.O. Box 8093 Hilton Head SC Statesboro, GA ABSTRACT We have developed a redefined college algebra course, which uses an informal approach, is application driven, is technology-based, and uses real data problems to motivate the skills and concepts of the course. Each major topic contains real data examples and problems, and extended application projects that can be solved by students working collaboratively. Students can take advantage of available technology to solve applied problems that are drawn from real life situations. The students use technology, including graphing calculators, Excel, and Derive, to observe patterns and reach conclusions inductively, to check answers of solved problems, to study function types, and to create models for use in the solution of problems. The course provides the skills and concepts of college algebra in a setting that includes applications from business, economics, biology, and the social sciences. The course was designed to provide the required college algebra skills for students in the Business major, in the Hotel, Restaurant, Tourism Administration major, and for majors in the biological, marine, and social sciences. The real life applications included are the result of collaborations with faculty in Business, in Hotel, Restaurant, Tourism Administration, and in Biology Departments in three Universities. Each mathematical topic of the course is introduced informally with a motivational example that presents a real life setting for that topic. The problem in this example is then solved as the skills needed for its solution are being developed or after the necessary skills have been developed. Some applications provide the models for the data and have students solve related problems, while others require students to develop the models before solving the problems. For some topics, students work in small groups to solve extended application problems and to provide a written report on the results and implications of their study. For other topics, students find appropriate real data in the literature or on the internet, develop a model that fits that data, and use the model to solve problems. Most of the examples and exercises in the course are applied problems.

2 Introduction Most of the students taking College Algebra are not math or science majors, and although they are quite intelligent, many are just not interested in mathematics. If we give them compelling applications, they will see that there is some reason for the mathematics to exist, they will be more interested, and they might even come to like math in this context. These people are as likely to be leaders in our communities and country as are people with science and engineering degrees, and so they need the reasoning skills and problem solving skills just as much as science majors do. Those of us teaching college algebra realize that students taking this type of course will not likely become math majors or enter careers that are heavily dependent on mathematics. However, they will likely have a career that requires reading for comprehension, problem solving skills, and the ability to analyze and interpret. Thus we emphasize real problems rather than mathematical theory for its own sake. As mathematicians, we sometimes think that the value we should impart is the logic involved in a rigid outline with proofs of theorems. But for students whose future is not in a mathematical field, there is a much more interesting, challenging and useful approach to mathematics. Thus we sought to offer a wide range of applications, to keep the interest of all students and show that algebra is useful and necessary to solve real problems. Thus our mission was to design a course where algebra skills were not the goals of the course but rather the tools for the attainment of more far-reaching goals. College algebra in context With this mission in mind, we developed an algebra course based on real life applications from business, economics, biology, and the social sciences in a setting that connects mathematical content with the real world. The course can best be described as using a transitional approach, because it has most of the positive attributes of reform algebra without sacrificing the wide variety of algebra topics included in a traditional graphing approach to college algebra. Data analysis, modeling, and technology are woven into the course so that the approach is refreshing and interesting to the students. The course provides the algebraic skills and concepts for a core course, or for the future study of calculus, in an informal, less threatening, and more meaningful setting. The course was designed to provide the required algebra skills for students in the business and economics majors and in majors in the biological and social sciences. In fact, this course provides the algebraic background needed for success in all majors other than the physical sciences and engineering. It is designed so that students can solve meaningful applications and see how mathematics relates to their future. We feel that keeping the skills and concepts in the context of applications gives the course a new perspective for students who were successful in high school algebra and for those who were not. Students respond better to this approach and see the necessity of learning algebra skills to solve these problems. The course attempts to relate algebra to everyday life with examples and exercises relating to real-life math problems. The quality and quantity of the examples and exercises is the strength of our approach to college algebra. We have made an effort to have real applications for every algebra skill and concept introduced in the text. The goal is to provide students with a real sense of the relevance of algebra to the real world. To this end, we concentrate on real problems as opposed to contrived applications.

3 We have sought a good balance of skill-building and application exercises, but we think the purpose of this course is applying algebra to the real world. We use Skills Check exercises to warm students up for the exercises that follow. This gives the students a chance to get familiar with the concepts and skills and to gain confidence. After the skills checks, the exercises are all applied (real or realistic), most with source references. We ease students into word problems by giving similar problems with equations given. We also give exercises that break problem solution into steps. Later exercises involve critical thinking, complete solution, and interpretation. Where reasonable, problems involving integer cases are used at the beginning of the exercise sets, with real data problems requiring technology later in the set. Those skills that are prerequisite for the course are included in an Algebra Toolbox, which provides a just-in-time review for the chapter in which they are needed. These topics can be left for the students to review, or can be included in the day s lecture. We prefer this to teaching or ignoring prerequisite topics in a Chapter 0 or an appendix. The Toolbox for each chapter includes the intermediate topics needed for that specific chapter. The level of our course is appropriate for students taking a terminal course or for students going on to a non-science calculus course that uses some technology. In particular, it is appropriate preparation for a business calculus course. A slightly different approach to the topics we have prepared could also be used in a modeling course. The materials we have developed could be used in a course aimed towards business preparation or one aimed towards modeling. In some cases, we have students develop their own models from the data, after deciding which function best models the data. Models are created from real data and problems are then solved using the models. We have students consider first, second, third, and fourth differences, and constant rates of change to determine which model may be most appropriate for a set of real data. We have included a large number of problems that ask the student to interpret, analyze, and make predictions from real data models. Mathematical concepts can be introduced informally with technology rather than with more formal methods. The students can use graphing calculators to observe patterns and to reach conclusions inductively, to check answers of solved problems, to study function types, and to solve equations graphically and numerically. Technology can be used to develop equations that model real data, and the equations can be used to reach conclusions about the data and to solve problems about the data. We emphasize graphing calculator use, but as an aid, not as a substitute for analytical methods. We frequently solve problems with both analytical methods and technology. The calculator or other graphing utility is integrated seamlessly into the discussion, but students are required to use analytical as well as technological approaches to problem solving. And when applicable, students are shown why the analytical method is easier than graphical or numerical methods of solving a problem. In some cases technology and analytical methods are combined to solve problems. That is, there are cases where technology is used to assist in analytical solutions, and cases where analytic methods are used to assist with graphing (for example, finding the vertex of a parabola to help set the window of a graphing utility). Collaboration is encouraged throughout the course. Students are encouraged to work in teams just as they might in the workplace after graduation. The Extended applications are especially designed for collaboration.

4 A few of the examples of applications used in the course follow. Real Data Applications EXAMPLE 1: SALARIES OF U. S. COLLEGE PROFESSORS Students are asked to find data from a number of resources and to reach conclusions about salaries of male and female college faculty teaching at different levels in different types of institutions. Students were asked to discuss the relationship between male and female professors salaries, using information from the table below. Salaries of College Professors, Source: American Association of University Professors MEN Type of Institution WOMEN Type of Institution TEACHING Private/ Church- Private/ Church- LEVEL Public Independent related Public Independent related Doctoral level Professor Associate Assistant Master s level Professor Associate Assistant General 4-year Professor Associate Assistant 2-year Professor Associate Assistant \$80,379 \$99,979 \$84,796 57,653 65,843 60,059 48,647 57,296 50,009 64,414 70,643 66,151 51,812 54,260 52,634 42,673 44,511 42,317 58,432 68,145 52,945 48,643 51,044 43,412 40,625 41,551 36,534 57,067 45,099 36,422 48,321 40,515 36,359 41,515 35,715 30,342 \$72,885 \$90,611 \$77,972 54,322 61,956 56,180 45,203 52,521 46,427 61,711 65,593 60,588 49,615 51,273 48,189 41,189 43,002 40,312 57,045 64,089 49,678 46,808 49,202 41,791 39,245 40,634 36,017 52,461 40,252 35,496 44,835 35,513 34,609 39,561 34,219 29,774 The students created two matrices, containing the salaries of male and female Professors, respectively, in each type of school and at each level of instruction. Subtracting the matrix of male professor salaries from the matrix female professor salaries shows that female salaries are lower than male salaries in every category. Looking at other comparisons gives the same result. The consistency of this shortfall led students to conclude that gender bias was present in educational institutions.

5 This group of students also attempted to find the relationship between salaries of the male and female professors. The scatter plot of the data shows that there is a linear relationship between the male and female salaries, and linear regression gives the function that gives female professors salaries as a function of male professors salaries. y = x Students in this class who were also taking Sociology 101 discussed gender bias in that class using the conclusions of this study. EXAMPLE 2: ROOM PRICE AND OCCUPANCY RATE Students who are majors in Hotel, Restaurant, and Tourism Administration who were taking both a Tourism course and College Algebra were asked to collect data that investigates the relationship between room pricing and occupancy rate at resort hotels on Hilton Head Island during the off-season. We knew that if occupancy was related to daily room price and if the resort hotels had accurately made a connection between room price and occupancy, they could set the room price so that occupancy would remain nearly constant in the off-season. Students in the HRTA course collected the data in Table 1 below, which gives the room price and occupancy rate for 10 resort hotels during the off-seasons. TABLE 1 Daily Room Price Occupancy Rate (%) Daily Room Price Occupancy Rate (%)

6 As the table shows, the relationship between room price and occupancy is not as linear as might be expected; there is wide variation in the distribution, especially for rooms costing more than \$100 per day. Students in the HRTA course did not reach any useful conclusions about pricing from looking at the table and scatter plot, so they sent the data to the College Algebra class. Observing the shape of the graph over the interval under consideration led the students to use a quadratic function to model the data. The resulting model was 2 y= x x , where x is the room price and y is the occupancy rate. They found the price (value of x) that gives the maximum value for the occupancy rate by finding the x-coordinate of the vertex of this parabola. b x = = = a 2( ) The maximum occupancy for this group of hotels is 57%, when the room price is \$87.79 if this model is accurate for the group. The conclusions from the college algebra course were given to the HRTA class for their consideration. They eventually raised the question of whether maximizing occupancy would necessarily maximize revenue or profit. So they suggested that students in the algebra class determine the price, if it existed, that would maximize revenue. The occupancy rate was then converted into an occupancy and multiplied by the corresponding price to get points relating room price and revenue. When this data resulted in a cubic model, it was decided that the maximum could be found graphically or that it could be found in a calculus course that many of the students were taking next semester. They graphically found that the revenue was maximized if the price was \$ EXAMPLE 3: U.S. KNOWLEDGE WORKERS WORKING WOMEN (January, 1997) states that the ratio of male to female knowledge workersengineers, scientists, technicians, professionals, and senior managers-was 3 to one in The following table, which gives number (in millions) of male and female knowledge workers from 1983 to 1997, shows how that ratio is changing. Year Source: Working Woman, January 1997 Female Knowledge Workers(millions) Male Knowledge Workers (millions)

7 To compare how the growth in the number of female knowledge workers compares with that of male knowledge workers, the students entered the data above in lists, with the number of years from 1980 in L1, the number of female knowledge workers in L2, and the number of male workers in L3. The difference male minus female is found by using the formula L3 L2 after DIFF=. Note that the calculator operates as a spreadsheet if the formula is in quotes and that the values will not change if the formula is not in quotes. The largest difference occurs in 1983 and the differences are, for the most part, getting smaller. Because the differences are getting smaller as 1997 approaches, it appears that the number of female workers will soon equal the number of male workers. To find the year in which the number of female knowledge workers equals the number of male knowledge workers, the students found functions that model the number of female knowledge workers and the number of male knowledge workers and used INTERSECT to find when the numbers are equal. Females Males F( x) = ln x Mx ( ) = lnx The graphs of y = F(x) and y = M(x) intersect at This indicates that the number of female knowledge workers will pass the number of male knowledge workers in 2004.

8 EXAMPLE 4: EXPECTED LIFE SPAN The following table shows the expected life span at birth of people born in certain years in the United States. The following steps compare different models for this data. Birth Year Life Span (in Years) Birth Year Life Span (in Years) Data in the Year column can be realigned to represent the number of years since 1900, and this data can be stored in L1. The life span data can be stored in L2. A scatter plot of the data is shown below. A piece of spaghetti can be used to estimate a line that is the best fit. The free-moving cursor can be used to find two points "under" this line. Example: ( , ) and ( , ) are two points on the visual fit line. Finding the slope of this line is used to write its equation. m = y 2 y = x 2 x y = (x ) )

9 The built-in linear regression feature of the calculator can be used to model the linear function that is the best fit for the data. Assuming that the model applies in the year 2000, the life span of people born in the year 2000 can be predicted. If we evaluate the function at x = 100, we find the life span to be 78. A quadratic function can also be used to model the life span data. 2 The quadratic function that is the best fit for the data is y = x x The scatter plot and the graph of the quadratic regression equation are shown below. This model can be used to predict the life span of people born in the year Evaluating the function at x = 100, we find the life span to be 76. A logarithmic function can also be used to model the life span data. Using the natural logarithmic regression gives the equation y = ln x. This model appears better for values of x after 20, that is, after (Distances from plotted points to each model can be checked to see which model is better.) Evaluating this logarithmic function at x = 100 gives the predicted life span of people born in the year 2000 to be Recent data indicates that the expected life span for people born in the U.S. in 2000 is 76.7, so it appears that the quadratic model is the best predictor of life expectancy for the near future. The graphs

10 below show the linear regression line, the graph of the quadratic regression equation, and the graph of the logarithmic equation, respectively, for the years through EXAMPLE 5: TAXATION Modeling doesn t just mean using a computer or calculator to get a regression curve from data points. It also means creating equations from available information. Consider the following real problem that requires either the creation of linear models or iteration methods for its solution. Federal income tax allows a deduction for any state income tax paid during the year. In addition, the state of Alabama allows a deduction from its state income tax for any federal income tax paid during the year. The federal corporate income tax rate is equivalent to a flat rate of 34% for taxable income between \$335,000 and \$10,000,000, and the Alabama rate is 5% of the taxable state income. Suppose both the Alabama and federal taxable income for a corporation is \$1,000,000 before either tax is paid. Because each tax is deductible on the other return, the taxable income will differ for the state and federal taxes. One procedure often used by tax accountants to find the tax due in this and similar situations are called iteration and are described by the first five steps below. A second method is the direct method, which requires us to create mathematical models from the given information. Iteration Method: 1. We first make an estimate of the federal taxes due by assuming that no state tax is due. The estimate of the federal taxes is 0.34(1,000,000) = \$340, Based on this federal tax, we can then estimate that the taxable state income is \$1,000,000 - \$340,000 = \$666,000 giving a state tax 0.05(660,000) = \$33, Deducting this estimated state tax from the federal taxable income gives \$967,000 as the adjusted federal taxable income. The federal tax on this income is 0.34(967,000) = \$328,780. The state taxable income is now \$1,000,000 \$328,780 = \$671,220, with the state tax of 0.05(671,220) = \$33, Repeating step (3) gives Fed Taxable Federal State Taxable State Income Tax Income Tax 966, , , , , , , , , , , , The state tax remains unchanged at \$33, in the last iteration above, so this amount will not change again. And thus the federal tax will remain unchanged at \$328,

11 Direct Solution To find the tax due each government directly, we can create two linear equations that describe this tax situation and solve the system with graphical methods or matrix methods. 1. Let x = the federal tax owed and y = the state tax owed. Then the federal tax is given by x = 0.34(1,000,000 - y) and the state tax is given by y = 0.05(1,000,000 - x) Solving both of these equations for y permits us to graph them on the same axes and to find the simultaneous solution graphically. The equations are 340,000 x y = and y= 50, x , ,000 0 The intersect feature gives federal tax of \$328, and state tax \$33, This solution can also be found by using SOLVER. These equations can also be written in general form and solved simultaneously with matrices. The system is x y= , R S T 005. x+ y= 50000, Using row reduction of the augmented matrix gives the same solution.

12 Using inverse matrices also gives the same solution. Conclusion Students enrolled in this course initially thought that the course would be very difficult because most of their work was with word problems. However, they adjusted quickly, and in general recognized that the real problems were much more interesting than the skills check problems. Although not every algebra topic was included in the course, the level of performance on algebra skills tests was not significantly different than with traditional tests, and students had increased confidence in their math and problem solving abilities. REFERENCES - Harshbarger, Ronald J. and Yocco, Lisa S., College Algebra in Context: Applications and Models, Boston: Addison Wesley. - Salaries of U.S. College Professors , American Association of University Professors, World Almanac and Book of Facts, U.S. Knowledge Workers, Working Women, January, Expected Lifespan, World Almanac and Book of Facts, Johnson, Kenneth H., A Simplified Calculation of Mutually Dependent Federal and State Tax Liabilities, The Journal of Taxation, December, 1994.

### BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line

College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina - Beaufort Lisa S. Yocco, Georgia Southern University

### PCHS ALGEBRA PLACEMENT TEST

MATHEMATICS Students must pass all math courses with a C or better to advance to the next math level. Only classes passed with a C or better will count towards meeting college entrance requirements. If

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

### Math 1314 Lesson 8 Business Applications: Break Even Analysis, Equilibrium Quantity/Price

Math 1314 Lesson 8 Business Applications: Break Even Analysis, Equilibrium Quantity/Price Three functions of importance in business are cost functions, revenue functions and profit functions. Cost functions

### Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours

MAT 051 Pre-Algebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### Week 1: Functions and Equations

Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.1-2.2, and Chapter

### MATH. ALGEBRA I HONORS 9 th Grade 12003200 ALGEBRA I HONORS

* Students who scored a Level 3 or above on the Florida Assessment Test Math Florida Standards (FSA-MAFS) are strongly encouraged to make Advanced Placement and/or dual enrollment courses their first choices

### Solving Quadratic & Higher Degree Inequalities

Ch. 8 Solving Quadratic & Higher Degree Inequalities We solve quadratic and higher degree inequalities very much like we solve quadratic and higher degree equations. One method we often use to solve quadratic

### Algebra I. In this technological age, mathematics is more important than ever. When students

In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,

### Polynomial Operations and Factoring

Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.

### Diablo Valley College Catalog 2014-2015

Mathematics MATH Michael Norris, Interim Dean Math and Computer Science Division Math Building, Room 267 Possible career opportunities Mathematicians work in a variety of fields, among them statistics,

### Algebra I Credit Recovery

Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,

### Sequence of Mathematics Courses

Sequence of ematics Courses Where do I begin? Associates Degree and Non-transferable Courses (For math course below pre-algebra, see the Learning Skills section of the catalog) MATH M09 PRE-ALGEBRA 3 UNITS

### School of Mathematics, Computer Science and Engineering. Mathematics* Associate in Arts Degree COURSES, PROGRAMS AND MAJORS

Mathematics School of Mathematics, Computer Science and Engineering Dean: Lianna Zhao, MD Academic Chair: Miriam Castroconde Faculty: Miriam Castroconde; Terry Cheng; Howard Dachslager, PhD; Ilknur Erbas

### MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

### ANGELO STATE UNIVERSITY/GLEN ROSE HIGH SCHOOL DUAL CREDIT ALGEBRA II AND COLLEGE ALGEBRA/MATH 1302 2015-2016

ANGELO STATE UNIVERSITY/GLEN ROSE HIGH SCHOOL DUAL CREDIT ALGEBRA II AND COLLEGE ALGEBRA/MATH 1302 2015-2016 I. INSTRUCTOR MRS. JAMI LOVELADY Office: 504 Tutorial Hours: Mornings Monday through Friday

### MTH124: Honors Algebra I

MTH124: Honors Algebra I This course prepares students for more advanced courses while they develop algebraic fluency, learn the skills needed to solve equations, and perform manipulations with numbers,

### Overview of Math Standards

Algebra 2 Welcome to math curriculum design maps for Manhattan- Ogden USD 383, striving to produce learners who are: Effective Communicators who clearly express ideas and effectively communicate with diverse

### Algebra II. Weeks 1-3 TEKS

Algebra II Pacing Guide Weeks 1-3: Equations and Inequalities: Solve Linear Equations, Solve Linear Inequalities, Solve Absolute Value Equations and Inequalities. Weeks 4-6: Linear Equations and Functions:

### Math 313 Lecture #10 2.2: The Inverse of a Matrix

Math 1 Lecture #10 2.2: The Inverse of a Matrix Matrix algebra provides tools for creating many useful formulas just like real number algebra does. For example, a real number a is invertible if there is

### Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

### Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

### Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks

Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Algebra 2! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### College Algebra. Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1

College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides

### Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks

Algebra 2 Year-at-a-Glance Leander ISD 2007-08 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks

### We have offered the course once, and have achieved some of the objectives well. Some of the problems used in the course were:

TRAINING IN-SERVICE AND PRE-SERVICE TEACHERS IN THE USE OF TECHNOLOGY Ronald J. Harshbarger, Associate Professor Department of Mathematics and Computer Science Georgia Southern University Statesboro, GA

### Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

### MATHEMATICS. Administered by the Department of Mathematical and Computing Sciences within the College of Arts and Sciences. Degree Requirements

MATHEMATICS Administered by the Department of Mathematical and Computing Sciences within the College of Arts and Sciences. Paul Feit, PhD Dr. Paul Feit is Professor of Mathematics and Coordinator for Mathematics.

### Mathematics INDIVIDUAL PROGRAM INFORMATION 2014 2015. 866.Macomb1 (866.622.6621) www.macomb.edu

Mathematics INDIVIDUAL PROGRAM INFORMATION 2014 2015 866.Macomb1 (866.622.6621) www.macomb.edu Mathematics PROGRAM OPTIONS CREDENTIAL TITLE CREDIT HOURS REQUIRED NOTES Associate of Arts Mathematics 62

### MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!

MATH BOOK OF PROBLEMS SERIES New from Pearson Custom Publishing! The Math Book of Problems Series is a database of math problems for the following courses: Pre-algebra Algebra Pre-calculus Calculus Statistics

### Simple Predictive Analytics Curtis Seare

Using Excel to Solve Business Problems: Simple Predictive Analytics Curtis Seare Copyright: Vault Analytics July 2010 Contents Section I: Background Information Why use Predictive Analytics? How to use

### Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

### Algebra II Semester Exam Review Sheet

Name: Class: Date: ID: A Algebra II Semester Exam Review Sheet 1. Translate the point (2, 3) left 2 units and up 3 units. Give the coordinates of the translated point. 2. Use a table to translate the graph

### Alabama Department of Postsecondary Education

Date Adopted 1998 Dates reviewed 2007, 2011, 2013 Dates revised 2004, 2008, 2011, 2013, 2015 Alabama Department of Postsecondary Education Representing Alabama s Public Two-Year College System Jefferson

### Administrative - Master Syllabus COVER SHEET

Administrative - Master Syllabus COVER SHEET Purpose: It is the intention of this to provide a general description of the course, outline the required elements of the course and to lay the foundation for

### Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### Review of Fundamental Mathematics

Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

### Developmental Math Course Outcomes and Objectives

Developmental Math Course Outcomes and Objectives I. Math 0910 Basic Arithmetic/Pre-Algebra Upon satisfactory completion of this course, the student should be able to perform the following outcomes and

### MTH304: Honors Algebra II

MTH304: Honors Algebra II This course builds upon algebraic concepts covered in Algebra. Students extend their knowledge and understanding by solving open-ended problems and thinking critically. Topics

### Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.

_.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic

### Quickstart for Desktop Version

Quickstart for Desktop Version What is GeoGebra? Dynamic Mathematics Software in one easy-to-use package For learning and teaching at all levels of education Joins interactive 2D and 3D geometry, algebra,

### CENTRAL COLLEGE Department of Mathematics COURSE SYLLABUS

CENTRAL COLLEGE Department of Mathematics COURSE SYLLABUS MATH 1314: College Algebra Fall 2010 / Tues-Thurs 7:30-9:00 pm / Gay Hall Rm 151 / CRN: 47664 INSTRUCTOR: CONFERENCE TIMES: CONTACT INFORMATION:

### FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x

### Crosswalk Directions:

Crosswalk Directions: UMS Standards for College Readiness to 2007 MLR 1. Use a (yes), an (no), or a (partially) to indicate the extent to which the standard, performance indicator, or descriptor of the

### TASK 2.3.5: FLYING THROUGH THE ST. LOUIS GATEWAY ARCH. Solutions

1 TASK 2.3.5: FLYING THROUGH THE ST. LOUIS GATEWAY ARCH Solutions On a recent visit to St. Louis, Missouri, Anna visited the St. Louis Gateway Arch. On the tour, she learned that the arch is 630 feet tall

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### Math Common Core Sampler Test

High School Algebra Core Curriculum Math Test Math Common Core Sampler Test Our High School Algebra sampler covers the twenty most common questions that we see targeted for this level. For complete tests

### The program also provides supplemental modules on topics in geometry and probability and statistics.

Algebra 1 Course Overview Students develop algebraic fluency by learning the skills needed to solve equations and perform important manipulations with numbers, variables, equations, and inequalities. Students

### MyMathLab ecourse for Developmental Mathematics

MyMathLab ecourse for Developmental Mathematics, North Shore Community College, University of New Orleans, Orange Coast College, Normandale Community College Table of Contents Module 1: Whole Numbers and

### For example, estimate the population of the United States as 3 times 10⁸ and the

CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

### 1 Determine whether an. 2 Solve systems of linear. 3 Solve systems of linear. 4 Solve systems of linear. 5 Select the most efficient

Section 3.1 Systems of Linear Equations in Two Variables 163 SECTION 3.1 SYSTEMS OF LINEAR EQUATIONS IN TWO VARIABLES Objectives 1 Determine whether an ordered pair is a solution of a system of linear

### High School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable.

Performance Assessment Task Quadratic (2009) Grade 9 The task challenges a student to demonstrate an understanding of quadratic functions in various forms. A student must make sense of the meaning of relations

### Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable

### Credit Number Lecture Lab / Shop Clinic / Co-op Hours. MAC 224 Advanced CNC Milling 1 3 0 2. MAC 229 CNC Programming 2 0 0 2

MAC 224 Advanced CNC Milling 1 3 0 2 This course covers advanced methods in setup and operation of CNC machining centers. Emphasis is placed on programming and production of complex parts. Upon completion,

### Excel Guide for Finite Mathematics and Applied Calculus

Excel Guide for Finite Mathematics and Applied Calculus Revathi Narasimhan Kean University A technology guide to accompany Mathematical Applications, 6 th Edition Applied Calculus, 2 nd Edition Calculus:

### CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide

Curriculum Map/Pacing Guide page 1 of 14 Quarter I start (CP & HN) 170 96 Unit 1: Number Sense and Operations 24 11 Totals Always Include 2 blocks for Review & Test Operating with Real Numbers: How are

### Prerequisites: TSI Math Complete and high school Algebra II and geometry or MATH 0303.

Course Syllabus Math 1314 College Algebra Revision Date: 8-21-15 Catalog Description: In-depth study and applications of polynomial, rational, radical, exponential and logarithmic functions, and systems

### is the degree of the polynomial and is the leading coefficient.

Property: T. Hrubik-Vulanovic e-mail: thrubik@kent.edu Content (in order sections were covered from the book): Chapter 6 Higher-Degree Polynomial Functions... 1 Section 6.1 Higher-Degree Polynomial Functions...

### Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### 2013 MBA Jump Start Program

2013 MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Algebra Review Calculus Permutations and Combinations [Online Appendix: Basic Mathematical Concepts] 2 1 Equation of

### South Carolina College- and Career-Ready (SCCCR) Algebra 1

South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR) Mathematical Process

### MATHEMATICS (MATH) 3. Provides experiences that enable graduates to find employment in sciencerelated

194 / Department of Natural Sciences and Mathematics MATHEMATICS (MATH) The Mathematics Program: 1. Provides challenging experiences in Mathematics, Physics, and Physical Science, which prepare graduates

### LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### DRAFT. Further mathematics. GCE AS and A level subject content

Further mathematics GCE AS and A level subject content July 2014 s Introduction Purpose Aims and objectives Subject content Structure Background knowledge Overarching themes Use of technology Detailed

### COGNITIVE TUTOR ALGEBRA

COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,

### COLLEGE ALGEBRA LEARNING COMMUNITY

COLLEGE ALGEBRA LEARNING COMMUNITY Tulsa Community College, West Campus Presenter Lori Mayberry, B.S., M.S. Associate Professor of Mathematics and Physics lmayberr@tulsacc.edu NACEP National Conference

### ModuMath Algebra Lessons

ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations

### MBA Jump Start Program

MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right

### Anchorage School District/Alaska Sr. High Math Performance Standards Algebra

Anchorage School District/Alaska Sr. High Math Performance Standards Algebra Algebra 1 2008 STANDARDS PERFORMANCE STANDARDS A1:1 Number Sense.1 Classify numbers as Real, Irrational, Rational, Integer,

### http://www.aleks.com Access Code: RVAE4-EGKVN Financial Aid Code: 6A9DB-DEE3B-74F51-57304

MATH 1340.04 College Algebra Location: MAGC 2.202 Meeting day(s): TR 7:45a 9:00a, Instructor Information Name: Virgil Pierce Email: piercevu@utpa.edu Phone: 665.3535 Teaching Assistant Name: Indalecio

### Prentice Hall Mathematics: Algebra 1 2007 Correlated to: Michigan Merit Curriculum for Algebra 1

STRAND 1: QUANTITATIVE LITERACY AND LOGIC STANDARD L1: REASONING ABOUT NUMBERS, SYSTEMS, AND QUANTITATIVE SITUATIONS Based on their knowledge of the properties of arithmetic, students understand and reason

### Mathematics. Mathematics MATHEMATICS. 298 2015-16 Sacramento City College Catalog. Degree: A.S. Mathematics AS-T Mathematics for Transfer

MATH Degree: A.S. AS-T for Transfer Division of /Statistics & Engineering Anne E. Licciardi, Dean South Gym 220 916-558-2202 Associate in Science Degree Program Information The mathematics program provides

### Larson, R. and Boswell, L. (2016). Big Ideas Math, Algebra 2. Erie, PA: Big Ideas Learning, LLC. ISBN

ALG B Algebra II, Second Semester #PR-0, BK-04 (v.4.0) To the Student: After your registration is complete and your proctor has been approved, you may take the Credit by Examination for ALG B. WHAT TO

A-E Strand(s): Algebra and Probability/Statistics. Sample Courses: Middle School Course 1, Middle School Course 2, Middle School One-Year Advanced Course, Integrated 3, Algebra I, and Algebra II. Topic/Expectation

### FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

### Multiplying Polynomials 5

Name: Date: Start Time : End Time : Multiplying Polynomials 5 (WS#A10436) Polynomials are expressions that consist of two or more monomials. Polynomials can be multiplied together using the distributive

### Pre-Engineering INDIVIDUAL PROGRAM INFORMATION 2014 2015. 866.Macomb1 (866.622.6621) www.macomb.edu

Pre-Engineering INDIVIDUAL PROGRAM INFORMATION 2014 2015 866.Macomb1 (866.622.6621) www.macomb.edu Pre Engineering PROGRAM OPTIONS CREDENTIAL TITLE CREDIT HOURS REQUIRED NOTES Associate of Science Pre

### Linear Equations and Inequalities

Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................

### ALGEBRA I / ALGEBRA I SUPPORT

Suggested Sequence: CONCEPT MAP ALGEBRA I / ALGEBRA I SUPPORT August 2011 1. Foundations for Algebra 2. Solving Equations 3. Solving Inequalities 4. An Introduction to Functions 5. Linear Functions 6.

### MATHEMATICS MATHEMATICS

MATHEMATICS MATHEMATICS 1 443 This course stresses the development of arithmetic skills and emphasizes concepts as well as computation. Proficiency is developed with each of the fundamental operations.

### What are the place values to the left of the decimal point and their associated powers of ten?

The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

### Vertical Alignment Colorado Academic Standards 6 th - 7 th - 8 th

Vertical Alignment Colorado Academic Standards 6 th - 7 th - 8 th Standard 3: Data Analysis, Statistics, and Probability 6 th Prepared Graduates: 1. Solve problems and make decisions that depend on un

### Math 1050 Khan Academy Extra Credit Algebra Assignment

Math 1050 Khan Academy Extra Credit Algebra Assignment KhanAcademy.org offers over 2,700 instructional videos, including hundreds of videos teaching algebra concepts, and corresponding problem sets. In

### Cabrillo College Catalog 2015-2016

MATHEMATICS Natural and Applied Sciences Division Wanda Garner, Division Dean Division Office, Room 701 Jennifer Cass, Department Chair, (831) 479-6363 Aptos Counselor: (831) 479-6274 for appointment Watsonville

### Understanding Basic Calculus

Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

### MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 3 EQUATIONS This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.

### Number Who Chose This Maximum Amount

1 TASK 3.3.1: MAXIMIZING REVENUE AND PROFIT Solutions Your school is trying to oost interest in its athletic program. It has decided to sell a pass that will allow the holder to attend all athletic events

### EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

### In this chapter, you will learn improvement curve concepts and their application to cost and price analysis.

7.0 - Chapter Introduction In this chapter, you will learn improvement curve concepts and their application to cost and price analysis. Basic Improvement Curve Concept. You may have learned about improvement

### Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework

Provider York County School Division Course Syllabus URL http://yorkcountyschools.org/virtuallearning/coursecatalog.aspx Course Title Algebra I AB Last Updated 2010 - A.1 The student will represent verbal

### Project Management. Individual Program Information 2013 2014. 866.Macomb1 (866.622.6621) www.macomb.edu

Individual Program Information 2013 2014 866.Macomb1 (866.622.6621) www.macomb.edu Credential Associate of Business Administration Title Program Options Credit Hours Required 62 Notes Designed for transferring

MATH ADVISEMENT GUIDE Recommendations for math courses are based on your placement results, degree program and career interests. Placement score: MAT 001 or MAT 00 You must complete required mathematics

### Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)

New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct

### South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know