SCHOOLOFCOMPUTERSTUDIES RESEARCHREPORTSERIES UniversityofLeeds Report95.4



Similar documents
timeout StoR!msg0 RtoS?ack0



With content marketing, you can move beyond measuring success in terms of impressions, awareness, or perception.

Working Paper Series Department of Economics Alfred Lerner College of Business & Economics University of Delaware

NEGLIGENT INFLICTION OF EMOTIONAL DISTRESS IS STILL ALIVE IN TEXAS

The Greatest Common Factor; Factoring by Grouping

Basic CAD/CAM. CHAPTER 5: Geometric Transformation

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu

Catalogue 4. Arctic Arctique. Nautical Charts and Publications Cartes et publications nautiques

Child Care Resource Kit celebrate relationships!

Manual for Vegetable Production in Botswana

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování

Pain-Free Injections

State Survey Results MULTI-LEVEL LICENSURE TITLE PROTECTION


How To Rate Plan On A Credit Card With A Credit Union

THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties:

DDR4 Module Part Numbering System The part numbering system is available at

NormalizingIncompleteDatabases

ha ha OFF ZapfCreation D-96472ROEDENTAL GERMANY 2x1.5V MADE IN CHINA

Carrier Locator: Interstate Service Providers

Monitoring Call Center Applications with Application Response

ON THE ORDER OF PRIMITIVE GROUPS* (IV)

Auburn University Style Guide & Identification Standards Manual

Chapter 2 Premiums and Reserves in Multiple Decrement Model


U.S. Department of Housing and Urban Development: Weekly Progress Report on Recovery Act Spending


andsrinathusedamaximumlikelihoodformulationtoestimatethesub-pixelshifts[12].forrestoration,srinivas

Athene Annuity (DE) Rates

Manual for SOA Exam MLC.

New York Workers Compensation Trends

Your Touchstone Energy Cooperative. Mountrail-Williams Electric Cooperative

Actuarial mathematics 2

Risk Management GUIDE GUIDE. for PHYSICIAN. Austin, TX

Manual for SOA Exam MLC.

Factoring finite abelian groups

1.5 Equations of Lines and Planes in 3-D

CallForwarding: ASimpleInterproceduralOptimizationTechnique. fordynamicallytypedlanguages

Ad muted. Undo We'll do our best to show you more relevant ads in the future. Help us show you better ads by updating your ads preferences.

Life Settlements Source List

Waveguide to Coax Adapters Description

THREE DIMENSIONAL GEOMETRY

Fundamentele Informatica II

New York Public School Spending In Perspec7ve

Summary of State Laws Related to Auto Insurance

TITLE POLICY ENDORSEMENTS BY STATE

Factoring - Factoring Special Products

Table 1. Quick reference data Symbol Parameter Conditions Min Typ Max Unit Per diode V F forward voltage I F =10mA

Lesson 9: Radicals and Conjugates

Exploratory Data Analysis Using Radial Basis Function Latent Variable Models

State Corporate Income Tax-Calculation

Stronger Security Bounds for OMAC, TMAC and XCBC

Valuation of American Options

Stephen du Toit Mathilda du Toit Gerhard Mels Yan Cheng. LISREL for Windows: SIMPLIS Syntax Files

Federation of State Boards of Physical Therapy Jurisdiction Licensure Reference Guide Topic: Continuing Competence

FACTORING ANGLE EQUATIONS:


recent)algorithmcalledbdm.bdmskipscharactersusinga\suxau-

esign Borrower Experience

Download at

TABLE 1. Didactic/Clinical/Lab SEMESTER TWO (Apply for admission to Nursing Program during Semester Two)

An Introduction to... Equity Settlement

A ~A--~--44-~--~- -~

Federation of State Boards of Physical Therapy Jurisdiction Licensure Reference Guide Topic: Continuing Competence

Odd induced subgraphs in graphs of maximum degree three

Regional Electricity Forecasting

Production Supervision Incorporated With Network Technology-A Solution For Controlling In-Process Inventory

PassMark - CPU Mark High End CPUs - Updated 10th of June 2014

3/17/13 Credit Report

Equity in Education Volume 1

A Practical Guide to. Assessing the Competency of Low-Volume Providers

Standardized Pharmacy Technician Education and Training

IMPROVING PRODUCTIVITY OF MANUFACTURING DIVISION USING LEAN CONCEPTS AND DEVELOPMENT OF MATERIAL GRAVITY FEEDER A CASE STUDY

Select cell to view, left next event, right hardcopy

NHIS State Health insurance data

National Student Clearinghouse. CACG Meeting

Actuarial Science with


Dental Therapist Initiatives, Access, and Changing State Practice Acts The ADHA Perspective: An Update

Admitting Foreign Trained Lawyers. National Conference of Bar Examiners Chicago, May 2, 2015

Transcription:

SCHOOLOFCOMPUTERSTUDIES RESEARCHREPORTSERIES UniversityofLeeds Report95.4 AcquisitionsandApplications Generic3-DShapeModel: DivisionofArticialIntelligence XShen&DCHogg by February1995

sequencesandrepresentedbythecontrolpointsofab-splinesurface.the genericmodelisderivedbyprincipalcomponentanalysisonthealignedtrainingshapes.usingtheacquiredgenericmodels,3-dshaperecovery,trackinvidualshapesinthetrainingsetareextractedautomaticallyfromtheimage fromatrainingsetofshapesdepictedinacorpusofimagesequences.indi- Thepaperdescribesamethodforgeneratingagenericdeformablemodel Abstract 1Introduction thedomainofvehiclesappearingintracscenes. andobjectidenticationareimplementedwithinoneprocedure.experimental 3-Dshapemodelsareextensivelyusedfortrackingandrecognisingknownobjects resultsarepresentedbothforgenerationandapplicationofthemodelwithin shapesofobjectsfrom2-dimages.themodelobtainedinthisworkisspecicto (e.g.[1,2,3]).intheworkreportedin[4,5],amethodisproposedforrecovering3-d ofobjectsisoftenmoreusefulinmanypracticalapplicationswheretheobjectsofthe sameclassarenotidenticalinshape(e.g.vehicles,people).wewishtoproducesuch amodelbygeneralisationfromthespecicshapesofobjectsinatrainingset. characterisinganyshapeinstanceinthemodelledclass.physically-basedmodels[6,7] eachpresentedobject.however,agenericshapemodelbeingabletorepresentaclass achievethisbyintroducingdynamicaldeformationstoaccommodatevariationsin shape.theyhavebeensuccessfullyusedintheapplicationssuchasshaperecovery andtracking[8,5,9].asignicantprobleminutilisingthesemodelsisthatthe scopeofthegenericmodelaccommodatesallshapeswithinthesolutionspaceofthe Anecessarypropertyofsuchagenericmodelisthatitshouldbecapableof dynamicalsimulation,butisnotrestrictedtoaspecictargetclassofobjects.as clutter,andtherefore,mayfailtodetectandtrackatargetshapecorrectly. aresult,theassociatedmethodsareoftensensitivetoimagenoiseandbackground Bajcsy[10]usesuperquadricsasagenericshapemodel.Arestrictedsolutionspace accommodatesseveralshapevariationsincludingtaperingandbending. canbeobtainedbyspecifyingtherangeofadmissibleshapeparameters.thismodel toasubspaceofthetotalcongurationspace.ideally,thissubspaceshouldbelearned Onesolutionistoaddvariableparameterstorigidgeometricmodels.Solinaand fromexamples.thisistheapproachadoptedbycootesetal.[11]whopresenta Analternativeapproachistoconstrainthedeformationofaexibleshapemodel 1

describingmodelsas2-dsplinecurves,and(2)acquiringtrainingshapeinstances automaticallyfromimagesandthereforeautomatingtheentireprocedureofmodel methodtoproducea2-dgenericshapemodel(\pointdistributionmodel")representedbyasetoflandmarks.baumbergandhogg[12]extendtheirmethodby(1) construction. modeliscomposedofameanshapeandaorthonormalbasisextractedbyanalysing recognition.forexperimentalpurposes,theobjectsweareinterestedinarevehicles, althoughthemethodcanalsobeappliedtootherclassesofobject.thegeneric shapemodel,representingagivenclassofobjects,directlyfromsequencesof2- Dimages,anddemonstratesitsapplicationsto3-Dshaperecovery,trackingand Inthispaper,wepresentamethodforautomaticallyproducingageneric3-D eigenvectorsdescribingthemostsignicantvariancesintheshape.theseeigenvectors thenformaorthonormalbasisdeningthespaceofadmissibleshapes.theproduced thevariancesofshapesinasetoftrainingshapesobtainedusingthemethodproposed modelisexibleinthevariancesofshape,andisalsorestrictedtoaspecicclass in[5].eachtrainingshapeisrstrepresentedbyashapevectorwhichconsistsof ofobjects.applicationsin3-dshaperecovery,trackingandrecognitioncanthenbe scalingandtranslation.principlecomponentanalysisisusedtoobtainasetofunit thesetofcontrolpointsofab-splinesurface.theshapevectorsarealignedby 2AcquisitionofGenericModel whichinturnareusedtoidentifytheobject. easilyachievedwithinoneprocedurebyttingthemodeltotheobjectineachimage inordertoestimatetheposeparametersofthemodel,andtheshapeparameters 2.13-Dshaperecovery In[5],amethodforrecoveringthe3-Dshapesofobjectsfrom2-Dimagesequences groundplane.withthismethod,instancesofvariousshapesinagenericclassof isproposed,assumingtheobjectisrigidandmirrorsymmetrical,andmovesona shapescanbeobtained.figure1showssomeresultsfromthiswork.therecovered shapemodelisaclosedsurfacewithtwopoleswhichisrepresenteddiscretelyby PQsamplepointsr(p;q)onthesurface r(p;q)=264u(p;q) V(p;q) W(p;q)375;r(p;0)=r(p;Q) r(p 1;0)=r(P 1;q);p=0;1;:::;P 1 r(0;0)=r(0;q) 2 q=0;1;:::;q (1)

Figure1:Recoveryof3-Dvehicleshapesfromimages.Eachtargetobjectisshown inaframefromthecorrespondingsequence.belowthisframeisshowntheobtained shapemodel. Toconciselyrepresenttheshapesinchosentrainingset,ashapevectorisextracted 2.2Extractingashapevector r(p;0)andr(p;hq2i),p=0;1;:::;p 1. Themodelismirrorsymmetricalaboutaverticalplanethroughthesamplepoints 0i<Mand0j<N,whichdenesabicubicB-splinesurfaceS(u;v)= qq.thesplines(u;v)isexpressedas[13] fromeachshapeinstance.theshapevectorconsistsofasetofcontrolpoints,xij, fsx(u;v);sy(u;v);sz(u;v)gtapproximatingthemodelr(p;q),0p<pand0 where,bi(u)andbj(v)arethe4thorderbasisfunctionsdenedonthefollowing knotvectorsrespectively: S(u;v)=M 1 Xi=0N 1 u=[0;0;0;0;1;2;;m 3;M 3;M 3;M 3] Xj=0XijBi(u)Bj(v) (2) weletx00=x0jandxm 1;0=XM 1;j,forj=0;1;:::;N 1,toensuretheclosed takenasbn k(n+v)toensurethesurfaceisclosedalongthecoordinatesv.also, surfacehastwopoles. Forthesituation0v<3,thebasisfunctionsBN k(v),1k<3 [v],aresimply v=[0;1;2;;n 1;N;N+1;N+2] 3

approximationleadstothefollowingequations: Theparametervaluesupqandvpqarecomputedasfollowing: Minimisingthesquarederrorbetweenthegeneratedsurfacer(p;q)andthespline upq=8><>:0 r(p;q)=m 1 (M 3)Ppi=1jr(i;q) r(i 1;q)j Xi=0N 1 PP 1 i=0jr(i;q) r(i 1;q)jforp>0 Xj=0XijBi(upq)Bj(vpq) forp=0 (4) (3) Writingequation(3)inmatrixform,wehave vpq=8><>:0 (N 1)Pqj=1jr(p;j) r(p;j 1)j PQ 1 j=0jr(p;j) r(p;j 1)jforq>0 =B forq=0 (6) (5) ofthefollowingforms: where,andarek3andl3(k=(p 2)Q+2,andl=(M 2)N+2)matrices, =264U00U10U11U1;Q 1UP 2;Q 1UP 1;0 =264X00X10X11X1;N 1XM 2;N 1XM 1;0 W00W10W11W1;Q 1WP 2;Q 1WP 1;0375T V00V10V11V1;Q 1VP 2;Q 1VP 1;0 Z00Z10Z11Z1;N 1ZM 2;N 1ZM 1;0375T Y00Y10Y11Y1;N 1YM 2;N 1YM 1;0 (8) (7) wherem=hj 1 Bisaklmatrix, Bij(upq;vpq)=8><>:B0(upq) Bm(upq)Bn(vpq)otherwise BM 1(upq) forj=0 tion(6).however,thecomputationofmatrixbanditsinverseisexpensive.barsky Foreachtrainingshape,thecontrolpointsXijcanbecalculatedbysolvingequa- Ni+1,andn=(j 1)modN. forj=l 1 (9) andgreenberg[14]proposeamethodtosolvetheequationwithoutcomputingtheinverseofb,byinvestigatingthepropertyofthematrixb.here,weuseanalternative waybasedonthatproposedbybaumbergandhogg[12]for2-dcase. 4

spondtothexeduniformlyspacedparametervalues: Foreachtrainingshape,wecalculatePQnewdatapointsr0(p;q)whichcorre- Thedatar0(p;q)canbecomputedbyiterativelyapplyinglinearinterpolationsalong pcoordinatesfollowedbylinearinterpolationsalongqcoordinatesusing u0pq(m 3)p U0(i;q) U(i 1;q) u0i;q ui 1;q=U(i;q) U(i 1;q) v0pq(n 1)q Q 1 P 1 natesareanalogous.inourexperiments,theaboveiterativeinterpolationsalways withu0(0;q)=u(0;q)andu0(p;0)=u(p;0).interpolationsforvandwcoordi- U0(p;j) U(p;j 1) v0pj vp;j 1 =U(p;j) U(p;j 1) uiq ui 1;q;ui 1;q<u0iquiq;0<i<M succeededinproducingtherequirednewdatapointsr0(p;q),althoughaformalproof oftheconvergenceneedstobedeveloped. upj up;j 1;vp;j 1<v0pjvpj;0<j<N controlpointsofthesplineconsistsoftheshapevectorg, forallofthetrainingshapes,andonlyneedstobecomputedonce.thecomputed Usingthesenewdatapoints,thematrixB(andtherefore,itsinverse)isxed Fortheconvenienceofthefollowingdiscussion,thecoordinatetriplesintheshape vectorareindexedas(xi;yi;zi),i=0,1,:::,k 1. 2.3Aligningshapevectors G=hX00Y00Z00X10:::ZM 2;N 1XM 1;0YM 1;0ZM 1;0iT(10) scalingandtranslation.foragivenshape,thistransformationcanbeestimated Havingproducedasetofshapes,thenextstepistoaligneachshapewithareference shape.inourimplementation,thersttrainingshapeisusedasthereferenceshape. Duetothemirrorsymmetryoftheshape,alignmentofeachshapeinvolvesonly byscalingandtranslatingtheshapetobealigned,g,i.e. usingalinearleastsquaresapproximation. Let^Gbethevectorofthereferenceshape,andG0betheshapevectorobtained 264X0i Y0 Z0i375=264Xi+tx i 5Zi+ty375 Yi+ty (11)

where,isthescaleparameter,andtx,ty,andtzarethetranslationparameters.to andtzwhichminimisethefollowingerror: aligntheshapevectorgwiththereferenceshapevector^g,wechoosethe,tx,ty, Usingthestandardmethod,weobtainthefollowingequationsfromwhichthesolution isderived: 264a1a2a3a4 a2a500 Error=(^G G0)T(^G G0) (12) where, a400a5 a30a50 3 75264tx ty tz 3 75=264b1 a1=k 1 Xi=0(X2i+Y2 i+z2i);a2=k 1 Xi=0Xi b2 b3 b4 3 75 (13) b1=k 1 a3=k 1 Xi=0(^XiXi+^YiYi+^ZiZi);b2=K 1 Xi=0Yi;a4=K 1 Xi=0Zi;a5=K 2.4Principlecomponentsanalysis b3=k 1 Xi=0^Yi;b4=K 1 Xi=0^Zi Xi=0^Xi asfollows: componentanalysis[15].nisthetotalnumberofshapesinthetrainingset. Thecontrolpointsintheshapevectoraretreatedasthelandmarkpointsinthe \pointdistributionmodel"(cootes,etal[11]).forthealignedshapesinthetraining set,thedeviationsfromthemeanshapeg=1npni=1giareanalysedusingprinciple A3K3KcovariancematrixCisthencalculatedusing ForeachalignedshapevectorG,itsdeviation,dG,fromthemeaniscomputed where,e()istheexpectedvalue. C=E(dGdGT) dg=g G (14) shownthattheeigenvectorcorrespondingtothelargesteigenvaluedescribesthemost thencorrespondtothemodesofvariationsofthetrainingshapes.ithasalsobeen Theuniteigenvectors,ei(eTiei=1,i=1;2;:::;3K)ofthecovariancematrix (15) 6

thesmostsignicantmodesofvariations.sisdeterminedusingfollowingcriterion: signicantmodeofvariation,andthattheproportionofthetotalvarianceexplained byeacheigenvectorisequaltothecorrespondingeigenvalue[15].toproducea concise,yeteectivegenericshapemodel,wechooseseigenvectorscorrespondingto (e.g.95%)tothetotalvariation.thegenericshapemodelisthenexpressedasfollows: where,iisthei'theigenvalueofc,ii+1,andsisapre-selectedproportion G=G+ew P3K Psi=1i>s (16) w2ws]tisavectorofweights(calledshapeparameters)foreacheigenvector. shapes.shapemodelsoftheobjectsinthesameclassasthetrainingonescanthen where,e=[e1e2es]isthematrixconsistingoftherstseigenvectors;w=[w1 Theseigenvectorsthenformaorthonormalbasisforthespaceofadmissible (17) areacceptable. begeneratedbyvaryingtheparameterswiwithinsuitablelimits.sincethevariance ofwioverthetrainingsetisi,wechoosewiusingthefollowingcriterion: 2.5Experimentalresults whichmeansthatshapesdistributedwithinthreestandarddeviationsofthemean 3qiwi3qi (18) variationsareshowninfig.2.theresultsshowthattherstmodecharacterisesthe variationfromavantoacar,andthesecondmodecharacterisesthevariationfrom accountedforover95%ofthevarianceofthetrainingshapes.someofthemodesof Wehaveappliedtheabovemethodtoasetof15vehicleswhoseimagesequences arecapturedbymonitoringaparkingspace.threeoftheseobjectsareshownin Fig.1.Eachshapevectorconsistsof162controlpoints.Wefoundtherst6modes ahatchbacktoasaloon.analysisonothermodesisanalogous. 3Applications Usingagenericshapemodel,wecanachieve3-Dshaperecovery,trackingandrecognitionwithinoneprocedurewhichcanbeimplementedinthefollowingway.Beginning withthemeanmodelfortherstimageinthesequence,themodelisrsttransformedtoastatewhichismostconsistentwiththeobjectin3-d.theshapeofthe 7

Figure2:Eectsofvarying(a)therstshapeparameter,(b)thesecondshape (b) thebestapproximationtotheobjectshapetodate,andisfedtothesameoperations thedistancebetweentheobjectproleandtheproleofthemodeldenedbythese objectisthenestimatedbyndingshapeparameterswiwhichminimiseameasureof parameters.themodelcharacterisedbytheseestimatedshapeparametersisthen parameter,and(c)thefourthshapeparameterby2:0standarddeviations. appliedtothenextimage.shapeparametersestimatedattheendofthesequenceare usedtodenetherecoveredshapeoftheobject.recognitionoftheobjectisachieved bycomparingtheseshapeparameterswiththoseofthemodelsinthedatabase. 3.1Estimatingthetransformation Sincetherigidobjectisassumedtomoveonagroundplane,thetransformationfrom themodeltotheobjectischaracterisedbythescale,orientation,andtranslation (px;py;pz)(pzisxed)inthefollowingtransformationmatrix: Theorientationoftheobjectisagainestimatedbyback-projectingtheimagemotiontrajectorytothegroundplane[5].Othertransformationparametersarethen sincos0py estimatedbyminimisingameasureofdistancebetweentheobjectproleandthe 0 001 0pz 3 75 264cos sin0px projecttothemodelprole.deneameritfunctionoftheunknowntransformation impliedmodelproleforthatorientation. LetXj,j=1;2;:::;NbetheNpointsintheshapevectorwhichapproximately 8

prole. parameters(;px;py)asfollows: Figure3:Determinationofcorrespondencepointsbetweenmodelproleandobject x j x j x x standardeuclideannorm.ifthereismorethanoneintersectionpoint,thefarthest where,x0jistheintersectionwiththeobjectproleoftherayfromx0,theprojection ofthemodelcenter,passingthroughxj,theprojectionofxj(fig.3)1.kkisthe 1(;px;py)=NXj=1kx0j xjk c 0 (19) object region profile areoutsidetheobjectregion,thenxc,thecentroidoftheobjectregionissubstituted onefromx0isused.inthecasewhenboththeprojectionofthemodelcenterandxj forx0. 3.2Estimatingshapeparameters optimisationmethod[16]isthenusedtoestimate(;px;py).theinitialestimatefor theparametersaretakenasthevaluesforthepreviousimage. perspectiveprojectionbetweenthexjandxjmeans Theaimistondtheparameters(;px;py)whichminimisethefunction 1isnon-linear.Anon-linear 1.The wi,similarlydenedasfollows: Oncethetransformationisdetermined,theobjectshapeisestimatedbynding Estimationofthewiisachieved,againbyminimisingameritfunctionofunknowns theindependentshapeparameterswiwhichdenethebestttotheobjectshape. Inordertoensurethattheestimatedshapeisplausible,theshapeparametersare constrainedtoliewithinahyper-ellipsoid[17].foreachimage,theshapeparametersareupdatedwiththeaboveestimate,andthengloballyconstrainedusingthe 1Thecalibrationmatrixwhichallowstheprojectionfromtheworldcoordinatestoimage(pixel) 2(w1;w2;:::;ws)=NXj=1kx0j xjk (20) coordinatesisassumedtobeknown(see[5]fordetails) 9

followingscheme: Thisglobalconstraintalsopreventstheshaperecoveryfrombeingsensitivetoerrors d2=sxi=1w2i intheextractionoftheobjectprole. w0i=8<:(dmax=d)wid>dmax wi i otherwise (21) 3.3Recognition (22) Theestimatedshapeparameterscanbeusedtoformameasureforobjectrecognition orclassication.pentlandandsclaro[7]usecorrelationoftwovectorsdescribing changesintheshape,andoftenhavelargerabsolutevaluesthanotherparameters. parametertothedescriptionoftheobjectshapeisnotequal.shapeparameters twoobjectsasameasureforcomparison.inourcase,thecontributionofeachshape Simplyusingcorrelationmayignoretheeectoftheparameterscorrespondingto correspondingtothemostsignicantmodesofvariationdescribethemostcommon thelesssignicantmodesofvariationwhich,onthecontrary,arenormallycrucial indiscriminatingthedierentobjects.wethereforeusethefollowingmeasureto comparetwoobjectswithshapeparametersw1andw2: = spsi=1w1i spsi=1w1i i2+spsi=1w2i i w2i theisintheinterval[0;1].fortwosimilarshapes,theapproachesto0. Theeigenvaluesinthemeasureareusedtonormalisetheeectofeachshapeparameter.Thismeasureisproportionaltothedistancebetweentwovectors.Thevalueof i2 (23) recoveredobjectshapesfrom6sequencesrespectively.theobjectsshownin(a),(b) 3.4Experimentalresults Weappliedtheabovemethodtoseveralimagesequenceswheretheobjectsmayor and(c)arealsousedinthetrainingset.therecoveredshapefortheobject(f)is Therecoveredshapeisthemostsimilarshapetothisobjectamongtheshapesinthe trainingset. maynotbewithinthetrainingset(butbelongtothesameclass).fig.4showsthe notcorrect.thisisbecausethetrainingsetdoesnotincludethiskindofobject. 10

(a) (b) (c) otherpairsofobjectsisanalogous.amongallpairsofobjects,(b)and(d)arethe Figure4:Recoveredobjectshapesusinggenericshapemodel. mostsimilar. (e)thanothers,andobject(b)ismoresimilartoobject(d)thanothers.analysison Theresultsaregivenintable1.Itcanbeseenthatobject(a)ismoresimilartoobject Therecoveredshapesarecomparedeachotherbycomputingthemeasure(23). (d) (f) 4Conclusion Wehaveproposedamethodforproducingageneric3-Dshapemodelbystatistically analysingasetoftrainingshapesrecoveredautomaticallyfrom2-dimagesequences. 11

b0.740.000.680.450.890.54 d0.770.450.580.000.820.61 a0.000.740.820.770.510.88 c0.820.680.000.580.680.61 e0.510.890.680.820.000.97 abcdef f0.880.540.610.610.970.00 constraint,themodelcanprovideasensiblesolutionspacewhichwebelievesupports robustmodel-basedapplications.applicationsofutilisingthismodelfor3-dshape ThemodelisrepresentedbyasetofcontrolpointsofaB-splinesurface,andconsists ofameanshapeandaorthonormalbasisdeningtheshapespace.withaglobal Table1:Resultsofrecognition haveshownthatthemethodgivesveryencouragingresults. recovery,trackingandrecognitionhavebeendemonstrated.experimentalresults References [3]D.G.Lowe.RobustModel-basedMotionTrackingThroughtheIntegrationof [2]R.T.ChinandC.R.Dyer.Model-basedRecognitioninRobotVision.ACM [1]P.J.BeslandR.C.Jain.Three-dimensionalObjectRecognition.ACMComputingSurveys,17(1):75{145,March1985. ComputingSurveys,18(1):67{108,March1986. SearchandEstimation.InternationalJournalofComputerVision,8(2):113{122, [5]X.ShenandD.Hogg.3-DShapeRecoveryUsingADeformableModel.Image [4]X.ShenandD.Hogg.ShapeModelsfromImageSequences.InJan-OlofEklundh, 1994. 1992. [6]D.Terzopoulos,J.Platt,A.Barr,andK.Fleischer.ElasticallyDeformable andvisioncomputingjournal,1995.toappear. editor,computervision{eccv'94,volumei,pages225{230.springer-verlag, Models.ACMComputerGraphics,21(4):205{214,July1987. 12

[8]D.Terzopoulos,A.Witkin,andM.Kass.ConstraintsonDeformableModels: [7]A.PentlandandS.Sclaro.Closed-formSolutionforPhysicallyBasedShape ModellingandRecognition.IEEETransactionsonPatternAnalysisandMachineIntelligence,PAMI-13(7):715{729,July1991. [10]F.SolinaandR.Bajcsy.RecoveryofParametricModelsfromRangeImages: [9]D.TerzopoulosandD.Metaxas.TrackingNonrigid3DObjects.InA.Blake anda.yuille,editors,activevision,pages75{89.mitpress,1992. Recovering3DShapeandNonrigidMotion.ArticialIntelligence,36(1):91{123, TheCaseforSuperquadricswithGlobalDeformations.IEEETransactionson 1988. [11]T.F.Cootes,C.J.Taylor,D.H.Cooper,andJ.Graham.TrainingModels 1992.Springer-Verlag. BritishMachineVisionConference1992,pages9{18,Leeds,UK,September ofshapefromsetsofexamples.indavidhoggandrogerboyle,editors, PatternAnalysisandMachineIntelligence,PAMI-12(2):131{147,February1990. [13]R.H.Bartels,J.C.Beatty,andB.A.Barsky.AnIntroductiontoSplinesfor [12]A.BaumbergandD.Hogg.LearningFlexibleModelsfromImageSequences.In 308.Springer-Verlag,1994. Jan-OlofEklundh,editor,ComputerVision{ECCV'94,volumeI,pages299{ [15]I.T.Jollie.PrincipleComponentsAnalysis.Springer-Verlag,1986. [14]B.A.BarskyandD.P.Greenberg.DeterminingaSetofB-SplineControl VerticestoGenerateanInterpolatingSurface.ComputerGraphicsandImage Processing,14:203{226,1980. useincomputergraphicsandgeometricmodelling.morgankaufmann,1987. [17]T.F.CootesandC.J.Taylor.ActiveShapeModels{`SmartSnakes'.InDavid [16]L.E.Scales.IntroductiontoNon-linearOptimization.Macmillan,1985. 266{275,Leeds,UK,September1992.Springer-Verlag. HoggandRogerBoyle,editors,BritishMachineVisionConference1992,pages 13