andsrinathusedamaximumlikelihoodformulationtoestimatethesub-pixelshifts[12].forrestoration,srinivas

Size: px
Start display at page:

Download "andsrinathusedamaximumlikelihoodformulationtoestimatethesub-pixelshifts[12].forrestoration,srinivas"

Transcription

1 ReconstructionofaHighResolutionImagefromMultipleDegraded DepartmentofElectricalEngineeringandComputerScience Mis-RegisteredLowResolutionImages McCormickSchoolofEngineeringandAppliedScience BrianC.TomandAggelosK.Katsaggelos Evanston,IL NorthwesternUniversity anddisplacedbysub-pixelshiftswithrespecttoareferenceframe.therefore,theproblemcanbedividedinto imagesofsuchhighresolutionbyjustusinghardware(highprecisionopticsandchargecoupleddevices(ccds)). Instead,imageprocessingapproachescanbeusedtoconstructahighresolutionimagefrommultiple,degraded,low threesub-problems:registration(estimatingtheshifts),restoration,andinterpolation.noneofthemethodswhich appearedintheliteraturesolvetheregistrationandrestorationsub-problemssimultaneously.thisissub-optimal, resolutionimages.itisassumedthatthelowresolutionimageshavebeensubsampled(thusintroducingaliasing) Inapplicationsthatdemandhighlydetailedimages,itisoftennotfeasibleorsometimespossibletoacquire Abstract sincetheregistrationandrestorationstepsareinter-dependent.basedonpreviousrestorationandidentication conditionalmean(restoredimages)simultaneously.inaddition,theregistrationandrestorationsub-problemsare workusingtheexpectation-maximization(em)algorithm,theproposedapproachestimatesthesub-pixelshiftsand castinamulti-channelframeworktotakeadvantageofthecross-channelinformation.experimentalresultsshow Keywords:Expectation-Maximizationalgorithm,sub-pixelregistration,multi-channelrestoration,multiresolution thevalidityofthismethod. tobe50m[1].thisboundisduetothepresenceofshotnoisethatisunavoidableintheimagingsystem.in[14] bydecreasingthepixelsizeontheccd,thereisalowerboundprescribinghowsmallthepixelscanbe,considered greaterthanthatofhdtv)cannotbeaccommodatedbycurrentccdtechnology.whileresolutioncanbeincreased havingtoolowansnrtobeuseful. itisarguedthattheassociatedsignal-to-noiseratio(snr)ofadetectorisproportionaltothesizeofthedetector,if apoissonnoiseprocessisassumed.therefore,decreasingthesizeofthepixelspastacertainpointwillyieldimages Inthenearfuture,thedemandforveryhighdenition(VHD)resolutions(suchasthatof35mmlm,whichis 1.INTRODUCTION theblursarenotknown,thentheycanbeestimatedbyslightlymodifyingtheproposedalgorithm.thenalstep, showninfig.1.letgilr;i=1:::p,betheobserved,degraded,misregistered,lowresolutionimages,wherepisthe (registration,restoration,andinterpolation)canbesolvedindependently.fortheregistrationsub-problem,mort sub-pixeldisplacementsmustbeaccuratelyestimated(registration).additionally,theseimagesmustberestored.if interpolation,usesalloftheresultingimages,filr;i=1:::ptoobtainthedesiredsamplinglattice. associatedwiththem,wherethesubscriptsdenotethedirectionofdisplacement(eitherthexorydirections).these numberofframesavailable.lettherstframebethereferenceframe.allotherframeshaveashift,(ix;iy);i6=1, Inordertosolvethehighresolutionproblem(obtainingfHRfromgiLR;i=1;:::;P),thethreesub-problems Insuchcases,imageprocessingtechniquesmaybeused.Towardsthisend,threesub-problemsmustbesolved, andsrinathusedamaximumlikelihoodformulationtoestimatethesub-pixelshifts[12].forrestoration,srinivas andsrinathusedamulti-channelformulationinordertousethecrosscorrelationtermsanddegradations[13]. Theyalsousedaparametricmodelforthecorrelations,inordertoincorporatetheshifts(assumedknown)intothe covariancematrix.

2 However,theapproachisnotoptimalbecausethesub-problemsareinterdependent.Asecondapproachisto combinetwo(orevenallthree)sub-problemstogether.theearliestcomprehensiveworkwasdonebytsaiand Huang[18],wheretheylookedatallthreesub-problems.However,theimagesweredegradation-andnoise-free, sothatrestorationwasnotnecessary.morerecently,kimandbose[10]solvedtherestorationandinterpolation sub-problemstogether,usingarecursivealgorithm,assumingthedisplacementshiftswereknown.in[15]thehigh resolutionproblemwassolvedbyextendingtwopreviouslyproposedapproachesinordertoaccountforsensornoise, butagain,theshiftsareassumedtobeknown(orestimatedbyanotheralgorithm). Adistinguishingfeatureoftheproposedalgorithmfromallofthepreviouscomprehensiveapproachesisthat thersttwosub-problemsaresolvedsimultaneously(seefig.1).thecombinationofthersttwosub-problems ismotivatedbythefactthattherestorationandregistrationsub-problemsareinter-dependent.clearly,accurate estimatesoftheshiftsdependupontheimageshavingaslittledegradationandnoiseaspossible,whileatthesame time,goodrestorationresultsdependupontheshiftsbeingaccuratelyknown.inordertosimultaneouslyregister andrestoretheimages,theexpectation-maximization(em)algorithmwillbeused,basedonpreviouswork[11,17]. Oneadvantageofthisalgorithmisthatamulti-channelframeworkisused.Suchaframeworkusesthecrosschannel informationcontainedinthecorrelationsanddegradations,andyieldsbetterresultsthanindependentlyrestoring eachimage[3,13]. Thispaperisorganizedasfollows.InSec.2,theproblemofsimultaneouslyperformingtheregistrationand restorationstepswillbeformulatedandsolvedusingtheemalgorithm.insec.3,theinterpolationstepwillbe covered.insec.4,experimentalresultsandpracticalconsiderationswillbediscussed,andsec.5concludesthis paper.2.registrationandrestorationusingtheemalgorithm Considerthedegradationmodel glr=dflr+v; (1) wheredrepresentstheblurmatrix,vtheadditivenoise,andglrandflrarerespectivelytheobservedand originallowresolutionimages,resultingfromthestackingofp-channelimages.eachobservedlowresolutionframe, gilr;i=1;:::;p,islexicographicallyordered,andthemthcomponentofglrisap1vector,withelementsbeing gilr(m).[11,9].assumingthattheblurisknownandthattheobservedlowresolutionframesaredisplacedby sub-pixelshiftswithrespecttoareferenceframe,thetaskathandisto1)ndanimageascloseaspossibletoflr insomesense,and2)estimatethesub-pixelshifts.inthispaper,amaximumlikelihood(ml)approachwillbe used,baseduponourpreviousworkofmulti-channelimagerestorationandbluridentication[17].flrisassumed tobegaussian,uncorrelatedwithv.glrisalsogaussianwithprobabilitydensityfunction fg(g)=2?dfdh+v?12exp?12gt?dfdh+v?1g; (2) wherevandfarethecovariancematricesofthenoiseprocessandtheoriginalimage,respectively,andthe subscriptslrhavebeendropped.takingthelogarithmofeq.(2)andignoringconstantterms,themaximization ofthelog-likelihoodfunctionbecomestheminimizationofthefunctionl('),givenby L(')=logDFDH+V+gT?DFDH+V?1g; (3) where'isthesetofvariablesofinterest.byusingtheexpectation-maximization(em)algorithmforthelinear Gaussiancase[2,11],thefunctiontobeminimizedbecomes L(';'(k))=logjFj+logjVj+trn??1 F+DH?1 VD(k) Fjgo +(k)h Fjg??1 F+DH?1 VD(k) Fjg?gH?1 VD(k) Fjg+(k)H FjgDH?1 Vg+gH?1 Vg; (4)

3 wheretr(a)denotesthetraceofa,thesuperscript(k)denotesthekthiteration,ahisthehermitianofa,fjgis theconditionalcovariance,andfjgistheconditionalmean,whichyieldstherestoredimage. [4,13]willbeused,givenby Inordertoincorporatethesub-pixelshiftsintothelikelihoodfunction,theseparablecovarianceimagemodel (k) (k) Fjg=(k) FD(k)HD(k)(k) F?(k) FD(k)HD(k)(k) FD(k)H+(k) cov(f(i;j);f(k;l))=2fji?kj FD(k)H+(k) 1jj?lj V?1g V?1D(k)(k) F; (6) (5) where2f;1;2arethevarianceoftheimageandthecorrelationcoecientsinthexandydirections,respectively. Eachlowresolutionframeismodeledas Theparametersetnowbecomes'=nfi covariancematrixcanbewrittenas LR(m;n)=f1 LR(m+ix;n+iy);i=1;:::;P;m;n=0;:::;N?1: LR;1;2;2f;ix;iyoforallframesi=1;:::;P.UsingEqs.(7)and(8),the (8) wherew=wwip,wherewisthetransformationmatrixofsizennconstructedfrom2ddftkernels, withthe(i;j)thelementsofr1;r2;sequaltoi?j andipistheidentitymatrixofsizepp. semi-blockcirculant,andcanbediagonalizedusingkroneckerproductformulasof[4],sothat F=2fR1R2S; F=WFW?1; 1;i?j 2;ix?jx 1iy?jy 2,respectively.ItcanbeveriedthatXis (10) (9) rowofr1,or where1=wr1w?1isthecorrespondingdiagonalmatrixofr1,whoseentriesaregivenbythedftoftherst UsingtheKroneckerproductformulasandEq.(10),Eq.(9)canbewritteninthefrequencydomainas F=2f?WR1W?1?WR2W?1S =2f12S; 1(m)=N?1 Xn=0n1wmn N; (11) wherej(m;n)=logjv(m;n)j+trn?2f1(m)2(n)s?1 wherewn=exp??j2 L(';'(p))=PN2log?2f+PNlogj1j+PNlogj2j+N2logjSj+N?1 N,andsimilarly2=WR2W?1.Eq.(4)cannowbewritteninthefrequencydomainas Xm=0N?1 Xn=0J(m;n); (13) (12) +HD(m;n)?1 V(m;n)D(m;n)(p) Fjg(m;n)o+1 +1 N2GH(m;n)?1 M(p)H Fjg(m;n)HD(m;n)?1 V(m;n)D(m;n)M(p) V(m;n)D(m;n)M(p) V(m;n)G(m;n) Fjg(m;n)M(p)H Fjg(m;n)+ Fjg(m;n)o N22ftrnh(1(m)2(n)S)?1 N2GH(m;n)?1 V(m;n)G(m;n); (14)

4 whereg;mfjgarethedftsofg;fjg,respectively,andv;fjg;dareobtainedbydiagonalizingv;fjg;d, channelcase V(m;n)=264210:::0 1?1 2S?1Fjg+1 00:::2P375: 02:::0. 2fN?1 Xm=0N?1 1?N1+N?1 1(m) Xm=0wmN 1?1wmN#+N2 (17) N2MFjg(m;n)MHFjg(m;n): (18) casewhenp=2.instead,numericalmethodsmustbeusedtoestimate'(k+1).inthispaper,thesteepestdescent explicitequationsfor'(k+1),theaboveequationsaresetequaltozeroandsolved.unfortunately,whileclosedform approachisused.theiterativeequationfortheparametersetis unchangedfrom[17],duetothefactthattheyaredecoupledfromtherestoftheparameterset.inordertoobtain expressionscanbeobtainedfor2f;2i,eqs.(17)and(18)cannotbesolvedfor1;ix,respectively,eveninthesimple ThepartialsofLwithrespecttoeachofthenoisevariances,21;:::;2P,arenotshown,becausetheyremain (19) whereisthestepsize,givenby '(k+1)='(k)?rl; =rlhrl rlhhrl; (20) tobefound,sincehissymmetric,andthenoisevariancesarecompletelydecoupledfromtherestoftheparameter byinterchangingixwithiy,1with2,and2with1ineq.(18).likewise,bymakingthesamesubstitutions, set. @'2). @iycanbefound (21) highresolutionimage.firstofall,theformationofthelowresolutionimagesfromthehighresolutionimagecanbe modeledasfllr(m;n)=xn1xn2fhr(n1;n2)sinwx?lx+mt0x?n1tx Finally,therestoredlowresolutionimagesgivenbytheconditionalmeanneedtobeinterpolateduptothedesired 3.INTERPOLATION Wx(lx+mT0x?n1Tx)sinWy?ly+nT0y?n2Ty Wy?ly+nT0y?n2Ty; (22)

5 andwyaredenedby where(t0x;t0y)and(tx;ty)arethesamplingintervalsinthexandydirections,respectivelyforeachframe,andwx Byusingthesameorderingof[9],Equation(22)canbewritteninmatrixvectorformas Wx=2 flr=()fhr; Tx;Wy=2 Ty: (23) where fhr=fhr(0)fhr(1):::fhr(n2?1); flr=flr(0)flr(1):::flr(n2?1) (25) (24) InEq.(24),()istheinterpolationoperatorbetweenthelowandhighresolutiongrids,givenby fhr(m)[fhr(4lxlym)fhr(4lxlym+1):::fhr(4lxlym+4lxly?1)]t: flr(m)f1lr(m)f2lr(m):::fp(m)t ()=2640;00;1:::0;N2?1 N2?1;0N2?1;1:::N2?1;N2?1375PN24LxLyN2; 1;01;1:::1;N2? (26) and=[1x;1y;:::;px;py]. Eachsub-blockof()isi;j=264 1i;j(0) 2i;j(0) 1i;j(1)::: 2i;j(1)::: 1i;j(4LxLy?1) 2i;j(4LxLy?1) (27) where ìj(k)=sinc2`x+in2lx?jn2lx?k sinc2?ỳ+mod(i;n)2ly?mod(j;n)2ly?mod(k;2ly) Pi;j(0). Pi;j(1):::... Pi;j(4LxLy?1)375P4LxLy;. 2Ly : (28) InEq.(29),bxcdenotesthegreatestintegerofx,andmod(x;y)xmoduloy.Furthermore,therelationships wherebistheparametercontrollingconvergenceaswellastherateofconvergence,andatdenotesthetransposeof betweenthesamplingperiodofthelowresolutionframeandthatofthehighresolutionframeweretakentobe A.Inthispaper,Qistakentobethe2DLaplacian.Theregularizationparameter,,istheinverseofthevariance iterationisused iterativeapproach,similartotheonein[6,8],isalsofollowedhereinsolvingeq.(24).inotherwords,thefollowing Tx=2Lx,T0y T0x ofthehigh-passedlowresolutionimage,qflr,sincethehigh-passedimagebehavesmorelikeagaussianthanthe TheinversionofEq.(24)isanill-posedproblem,duetothelargesizeandtheerrorsin().Aregularized Ty=2Ly. originalimage[5]. f(k+1) HR=f(k) HR+bT()fLR??T()()+QTQf(k) HR; (30)

6 fourlowresolutionimageswereextracted,eachofsize128128,andeachdisplacedbydierentamounts.the (normalized)sub-pixelshiftswere(0:0;0:25);(0:75;0:0);(0:5;0:75),wheretherstframewastakenashavingzero a55gaussianpsf,andgaussiannoiseaddedtoeachframe,suchthateachframehadansnrof40db.these theleft.thesefourlowresolutionframeswerethenblurredindependently(i.e.,nocrosschanneldegradations)with displacement(thereferenceframe).figure2depictsthesefourframes,withthereferenceframebeingtheimageon blurredimagesareshowninfig.3.throughouttheseexperiments,itisassumedthattheblursareknown.figure Inthefollowingexperimentalresults,theoriginalairplaneimage(size512512)wasused.Fromthisimage, 4.EXPERIMENTALRESULTS wordsontheplaneremainindecipherable. factthatmanyoftheexistingregistrationalgorithmsassumeoriginal(thoughpossiblynoisy),unblurredimages. 4showsthe(undegraded)rstframeofthissequencebilinearlyinterpolatedupto Notethatallofthe Therestorationwasdonebyusing[17],wherenoknowledgeaboutthesub-pixelshiftswasused.Eachlowresolution becametheiterativewienerlter.forcomparisonpurposes,itisassumedthattheshiftsareknownexactlyforthe wasrestoredindependently,sothatnocross-correlationtermswereused.sincetheblurswereassumedknown,this interpolationstep,thus,oeringa\bestcase"scenariofortheirrapproach.intheeventthattheshiftsarenot neouslyrestoringandregistering(srr)theimagesusingthealgorithmpresentedinsec.2.theestimatedandtrue known,registrationalgorithmssuchastheonein[12]maybeused. Forindependentregistrationandrestoration(IRR),therestorationstepwasperformedrst.Thisisduetothe valuesfortheshiftsareshownintable1.thetopfourframesoffigure5showtherestoredframeswithindependent improvedbyincorporatingthesub-pixelshifts.generallyspeaking,thebottomfourframesareconsistentlysharper proposedalgorithm,theimprovementinsnr(isnr)fortheithframe,denotedbyi,isdenedby registrationandrestoration(irr),whilethebottomfourframesarethoseimagesrestoredbythesrrapproach. thantheircounterparts(thetopframes).thisiscanbeseeninthe\f16"ontheplane'stail.inaddition,the ringingaroundtheplaneismorenoticeableinthetopframes.inordertoobtainaquantitativeevaluationonthe Bycomparingthewordsontheairplane,itisevidentthattherestorationofthelowresolutionframesisgreatly Theseindependentlyrestoredandregistered(IRR)resultswerecomparedwiththeresultsobtainedbysimulta- where^filristheithframeoftherestored(lexicographicallyordered)lowresolutionimage.table2liststheisnrs forallfourframes. (iterativewienerlter)frames.theseresultsconrmthepremisethattheregistrationandrestorationstepsare inter-dependentproblems.themaindierencebetweentheirrandsrrframesisthatthesrrrestoredimages NotethattheISNRfortheSRRframeswasconsistentlybetween1.5to2.0dBhigherthanthatoftheIRR i=kfilr?gilrk areslightlysharper,attheexpenseofhavingmorenoisepresent.themainadvantage,however,isthatthewordson kfilr?^filrk; (31) theairplanearesharper,whichwewillseeyieldsamuchsharperinterpolatedimage.inthesrralgorithm,thetrue andsrrapproaches,respectively,goingfromlefttoright.inobtainingthesrrimage,thetruesub-pixelshifts valuesforthenoisevariancesforeachofthefourframeswere0:1602;0:1599;0:1575;0:1645,andthecorresponding givenintable1wereused.inalloftheaboveexperiments,lambdawassetto0.00,sincetheimageswerenotvery ,isshowninFig.6.ThenexttwoimagesinFig.7correspondtotheinterpolatedframesusingtheIRR estimatedvarianceswere0:1971;0:1941;0:1943;0:1992. noisy(40dbsnr).incaseswherenoiseismoresignicant,regularizationshouldbeused. interpolated,usingtheexactvaluesfortheshifts.afterthreeiterations,theresultanthighresolutionimage,size Eq.30.Theinitialvaluesforf(0) Next,thelowresolutionrestoredframesareinterpolateduptothedesiredhighresolutionsamplinglatticeusing HRweresettozero,andb=0:8.First,thefouroriginalframesfromFig.2were separablecovariancemodel,thesub-pixelshiftscouldbetakenintoaccountinthelikelihoodfunction.however, Inthispaper,thetwosub-problems,restorationandregistration,havebeensolvedsimultaneously.Byusingthe 5.CONCLUSION

7 theinitialconditions(0) theyappearinthelikelihoodfunctionsimilarly. algorithm,theinitialconditionsplayasignicantroleindeterminingtheresults.onepointtoconsideristhatif previousworkusingtheemalgorithmneededtobemodiedtomaximizethisfunctionwithrespecttotheshifts. Inparticular,asteepestdescentmethodwasemployedtoperformthemaximization(M)step.Withanydescent sincemoreinformation(intheformoftheadditionallowresolutionframes)wasincorporatedintotheinterpolation step.inaddition,therestoredimagesusingthesrrapproachoeredalmost1.5dbimprovementovertheirr areexpectedifallthreesub-problemsaresolvedsimultaneously.thisisthesubjectofcurrentresearch. case.itshouldbekeptinmind,however,thathighlyaccurateestimatesofthedisplacementsareverydicultto ndfromtheobserveddataalone.whilethispapercombinedthersttwosub-problemstogether,improvedresults Experimentalresultsdemonstratedthattheapproachoersmoreresolutionthanbilinearinterpolationalone, 1=(0) 2,and(0) x=(0) y,thenthenalestimatesofxandywillbeexactlythesame,since [1]K.Aizawa,T.Komatsu,andT.Saito,\ASchemeforAcquringVeryHighResolutionImagesUsingMultiple ThisworkwassupportedinpartbytheSpaceTelescopeScienceInstitute. 6.ACKNOWLEDGEMENTS [2]M.FederandE.Weinstein,\ParameterEstimationofSuperimposedSignalsUsingtheEMAlgorithm,"IEEE [3]N.P.GalatsanosandR.T.Chin,\DigitalRestorationofMultichannelImages,"IEEETrans.Acoust.,Speech, Cameras,"IEEEProc.ICASSP-92,SanFrancisco,vol.III,pp ,1992. Trans.Acoust.,Speech,SignalProcessing,vol.ASSP-36,pp ,April1988. SignalProcessing,vol.ASSP-37,No.3,pp ,March REFERENCES [6]A.K.Katsaggelos,\IterativeImageRestorationAlgorithms,"OpticalEngineering,vol.28,no.7,pp , [5]M.G.Kang,AdaptiveIterativeImageRestorationAlgorithm,Ph.D.thesis,NorthwesternUnivsity,June1994. [4]A.K.Jain,FundamentalsofDigitalImageProcessing,PrenticeHall,1988. [10]S.P.Kim,N.K.Bose,andH.M.Valenzuela,\RecursiveReconstructionofHighResolutionImageFromNoisy [9]A.K.Katsaggelos,K.T.Lay,andN.P.Galatsanos,\AGeneralFrameworkforFrequencyDomanMulti-Channel [7]A.K.Katsaggelos,\AMultipleInputImageRestorationApproach,"J.VisualCommun.ImageRepresent., [8]A.K.Katsaggelos,J.Biemond,R.M.Mersereau,andR.W.Schafer,\ARegularizedIterativeImageRestoration SignalProcessing,"IEEETrans.ImageProcessing,vol.2,no.3,pp ,July1993. Algorithm,"IEEETrans.SignalProcessing,vol.39,no.4,pp ,April,1991. July1989. UndersampledMultiframes,"IEEETrans.Acoust.,Speech,SignalProc.,vol.38,no.6,pp ,June vol.1,pp ,sept [12]M.S.MortandM.D.Srinath,\MaximumLikelihoodImageRegistrationwithSubpixelAccuracy,"SPIE,vol. [11]K.T.Lay,\MaximumLikelihoodIterativeImageIdenticationandRestoration,"Ph.D.thesis,Departmentof [13]C.SrinivasandM.D.Srinath,\AStochasticModel-BasedApproachforSimultaneousRestorationofMultiple [14]H.StarkandP.Oskoui,\High-resolutionImageRecoveryfromImage-PlaneArrays,UsingConvexProjections," EECS,NorthwesternUniversity, [15]A.M.Tekalp,M.K.Ozkan,M.I.Sezan,\High-ResolutionImageReconstructionFromLower-ResolutionImage 974,pp.38-45,1988. [16]A.TikhonovandV.Arsenin,SolutionofIll-PosedProblems,JohnWileyandSons,1977. MisregisteredImages,"SPIE,vol.1360,pp , SequencesandSpace-VaryingImageRestoration,"IEEEProc.ICASSP-92,SanFrancisco,vol.3,pp , J.Opt.Soc.Amer.A,vol.6,no.11,pp ,Nov.1989.

8 [17]B.C.TomandA.K.Katsaggelos,\Multi-ChannelImageIdenticationandRestorationUsingtheExpectation- [18]R.Y.TsaiandT.S.Huang,\MultiframeImageRestorationandRegistration,"inAdvancesinComputerVision andregistration,vol.1,imagereconstructionfromincompleteobservations,t.s.huang,ed.,pp ,jai MaximizationAlgorithm,"SPIE,vol.2298,July1994. Press,1984. Table1:TrueandEstimatedValuesfor(ix;iy),SimultaneousRegistrationandRestoration (2x;2y)(0.00,0.25)(0.1435,0.4166) (3x;3y)(0.75,0.00)(0.7934,0.1887) (4x;4y)(0.50,0.75)(0.6527,0.8527) TrueValueEstimatedValue Table2:ImprovementSNR(dB)fororiginalandmodiedEM frameioriginalemmodiedem

9 g1lrg2lrg3lr- CombinedRegistration&Restoration gplr-. Determinethe shiftsofeach Find(ix;iy)- frame.-andnoisefrom Restoration Removethe degradation eachframe f1lr- fplr- f2lr- f3lr-. resolutionimage Interpolateup Interpolation toahigh fhr fhr - Figure1:Blockdiagramofconstructingahighresolutionframefrommultiplelowresolutionframes Figure2:Subsampled128128frames Figure3:Degradedlowresolutionframes

10 Figure4:Frame#1ofFig.2,bilinearlyinterpolatedto Figure5:Restoredlowresolutionframes,IRR(top)andSRR(bottom)

11 Figure6:Interpolatedimagefromtheoriginallowresolutionframes Figure7:InterpolatedimagesfromtheIRR&SRRrestoredlowresolutionframes

Ďě Ž ť č ď ť ď ú ď ť ě Ě ň Ě ě ú ň ž ú ú Ú ú ú Ě ň é é ž ú ž Ť Ť Ť ú ň Ď ú ň ď Ě ú É ž ř ú ě ň ý Ě ň ý ň ň Ť ř ď ř ň ú Ť ě ř ě ý Š Ú Ú ň ň ú Ó Ú ň Ň Ů ž ú ň Č ř ř ú É ě ň ú Ž ý ú ú Ú Ú ť ž ž ď ý ž ď ž

More information

Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.

Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set. Section 2.5 Cardinality (another) Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a bijection from A to B. If there is an injection

More information

Rouch, Jean. Cine-Ethnography. Minneapolis, MN, USA: University of Minnesota Press, 2003. p 238

Rouch, Jean. Cine-Ethnography. Minneapolis, MN, USA: University of Minnesota Press, 2003. p 238 Minneapolis, MN, USA: University of Minnesota Press, 2003. p 238 http://site.ebrary.com/lib/uchicago/doc?id=10151154&ppg=238 Minneapolis, MN, USA: University of Minnesota Press, 2003. p 239 http://site.ebrary.com/lib/uchicago/doc?id=10151154&ppg=239

More information

I N S T R U C T I O N S A N D I N F O R M A T I O N

I N S T R U C T I O N S A N D I N F O R M A T I O N T h e G l o u c e s t e r T o w n s h i p P o l i c e E m e r g e n c y N e e d s P r e p a r e d n e s s R e g i s t r y I N S T R U C T I O N S A N D I N F O R M A T I O N T h e G l o u c e s t e r T

More information

A Quick Guide to Colleges. Offering Engineering Degrees

A Quick Guide to Colleges. Offering Engineering Degrees Qk gs ffg gg Dgs Fby 2007 www.dgs.g Qk gs ffg gg Dgs Ts qk f g ps sy sg (by s) f U.S. gs ss ffg b s (4-y) gs gg 363 ss, spg 50 ss ps Ds f b R. Ts sy s s gg g pgs by f gg Tgy (T, gz f g sy pgs pp s, pg,

More information

An Important Issue in Data Mining-Data Cleaning

An Important Issue in Data Mining-Data Cleaning An Important Issue in Data Mining-Data Cleaning Qi Xiao Yang Institute of High Performance of Computing 89B Science Park Drive#01-05/08 the Rutherford Singapore 118261 [email protected] tel: (65)7709265

More information

The Greatest Common Factor; Factoring by Grouping

The Greatest Common Factor; Factoring by Grouping 296 CHAPTER 5 Factoring and Applications 5.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

More information

Factoring - Factoring Special Products

Factoring - Factoring Special Products 6.5 Factoring - Factoring Special Products Objective: Identify and factor special products including a difference of squares, perfect squares, and sum and difference of cubes. When factoring there are

More information

Introduction to image coding

Introduction to image coding Introduction to image coding Image coding aims at reducing amount of data required for image representation, storage or transmission. This is achieved by removing redundant data from an image, i.e. by

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis

More information

Draft Lambeth Local Plan 2013. Location of Betting Shops, Pawnbrokers and Money Lenders in Lambeth

Draft Lambeth Local Plan 2013. Location of Betting Shops, Pawnbrokers and Money Lenders in Lambeth Draft Lambeth Local Plan 2013 Location of Betting Shops, Pawnbrokers and Money Lenders in Lambeth April 2013 Contents Page No. Map 1 Table 1 1. Introduction 1 Selected A2 Uses in Lambeth 2 Betting Shops,

More information

timeout StoR!msg0 RtoS?ack0

timeout StoR!msg0 RtoS?ack0 c1997kluweracademicpublishers,boston.manufacturedinthenetherlands. FormalMethodsinSystemDesign,,?{??(1997) SymbolicVericationofCommunication ProtocolswithInniteStateSpacesusingQDDs queues.itiswell-knownthatmostinterestingvericationproblems,suchasdeadlockdetection,

More information

Examples of Physical Quantities

Examples of Physical Quantities 8/17/2005 Examples of Physical Quantities.doc 1/6 Examples of Physical Quantities A. Discrete Scalar Quantities can be described with a single numeric value. Examples include: 1) My height (~ 6 ft.). 2)

More information

Recursive Algorithms. Recursion. Motivating Example Factorial Recall the factorial function. { 1 if n = 1 n! = n (n 1)! if n > 1

Recursive Algorithms. Recursion. Motivating Example Factorial Recall the factorial function. { 1 if n = 1 n! = n (n 1)! if n > 1 Recursion Slides by Christopher M Bourke Instructor: Berthe Y Choueiry Fall 007 Computer Science & Engineering 35 Introduction to Discrete Mathematics Sections 71-7 of Rosen cse35@cseunledu Recursive Algorithms

More information

3 Life Insurance and Differential Equations

3 Life Insurance and Differential Equations 3 Life Insurance and Differential Equations 3.1 Model specification Ourmodelwasspecifiedbytheassumptionthattheremaininglifetimeatage xwasa randomvariable T x withacontinuousdistribution.thatdistributioniscompletelydescribed

More information

SCHOOLOFCOMPUTERSTUDIES RESEARCHREPORTSERIES UniversityofLeeds Report95.4

SCHOOLOFCOMPUTERSTUDIES RESEARCHREPORTSERIES UniversityofLeeds Report95.4 SCHOOLOFCOMPUTERSTUDIES RESEARCHREPORTSERIES UniversityofLeeds Report95.4 AcquisitionsandApplications Generic3-DShapeModel: DivisionofArticialIntelligence XShen&DCHogg by February1995 sequencesandrepresentedbythecontrolpointsofab-splinesurface.the

More information

A Martingale System Theorem for Stock Investments

A Martingale System Theorem for Stock Investments A Martingale System Theorem for Stock Investments Robert J. Vanderbei April 26, 1999 DIMACS New Market Models Workshop 1 Beginning Middle End Controversial Remarks Outline DIMACS New Market Models Workshop

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 5 Life annuities Extract from: Arcones Manual for the SOA Exam MLC Fall 2009 Edition available at http://wwwactexmadrivercom/ 1/94 Due n year temporary annuity Definition 1 A due n year term annuity

More information

Jacobi s four squares identity Martin Klazar

Jacobi s four squares identity Martin Klazar Jacobi s four squares identity Martin Klazar (lecture on the 7-th PhD conference) Ostrava, September 10, 013 C. Jacobi [] in 189 proved that for any integer n 1, r (n) = #{(x 1, x, x 3, x ) Z ( i=1 x i

More information

Programming a truss finite element solver in C

Programming a truss finite element solver in C CHAPTER 4 Programming a truss finite element solver in C In this section, some C functions are developed that allow to compute displacements and internal efforts of a two-dimensional truss structure. 4.1

More information

Let H and J be as in the above lemma. The result of the lemma shows that the integral

Let H and J be as in the above lemma. The result of the lemma shows that the integral Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;

More information

Chapter 6. Work and Energy

Chapter 6. Work and Energy Chapter 6 Work and Energy ENERGY IS THE ABILITY TO DO WORK = TO APPLY A FORCE OVER A DISTANCE= Example: push over a distance, pull over a distance. Mechanical energy comes into 2 forms: Kinetic energy

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,

More information

jorge s. marques image processing

jorge s. marques image processing image processing images images: what are they? what is shown in this image? What is this? what is an image images describe the evolution of physical variables (intensity, color, reflectance, condutivity)

More information

Masters Mens Physique 45+

Masters Mens Physique 45+ C G x By, F, hysq, Bk Chpshps Ap, Cv Cy, Cf Mss Ms hysq + Fs Ls Css Ov Css s G MC Chpk M+ W M+/MC y Bs 9 8 9 9 8 B O'H 8 9 8 S Rs 8 8 9 h K 9 D Szwsk 8 9 8 9 9 G M+ h D Ly Iz M+ 8 M R : : C G x By, F,

More information

Actuarial mathematics 2

Actuarial mathematics 2 Actuarial mathematics 2 Life insurance contracts Edward Furman Department of Mathematics and Statistics York University January 3, 212 Edward Furman Actuarial mathematics MATH 328 1 / 45 Definition.1 (Life

More information

The Assignment Problem and the Hungarian Method

The Assignment Problem and the Hungarian Method The Assignment Problem and the Hungarian Method 1 Example 1: You work as a sales manager for a toy manufacturer, and you currently have three salespeople on the road meeting buyers. Your salespeople are

More information

The Australian Journal of Mathematical Analysis and Applications

The Australian Journal of Mathematical Analysis and Applications The Australian Journal of Mathematical Analysis and Applications Volume 7, Issue, Article 11, pp. 1-14, 011 SOME HOMOGENEOUS CYCLIC INEQUALITIES OF THREE VARIABLES OF DEGREE THREE AND FOUR TETSUYA ANDO

More information

3. Regression & Exponential Smoothing

3. Regression & Exponential Smoothing 3. Regression & Exponential Smoothing 3.1 Forecasting a Single Time Series Two main approaches are traditionally used to model a single time series z 1, z 2,..., z n 1. Models the observation z t as a

More information

1 Review of Newton Polynomials

1 Review of Newton Polynomials cs: introduction to numerical analysis 0/0/0 Lecture 8: Polynomial Interpolation: Using Newton Polynomials and Error Analysis Instructor: Professor Amos Ron Scribes: Giordano Fusco, Mark Cowlishaw, Nathanael

More information

Feature Selection vs. Extraction

Feature Selection vs. Extraction Feature Selection In many applications, we often encounter a very large number of potential features that can be used Which subset of features should be used for the best classification? Need for a small

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

MATD 0390 - Intermediate Algebra Review for Pretest

MATD 0390 - Intermediate Algebra Review for Pretest MATD 090 - Intermediate Algebra Review for Pretest. Evaluate: a) - b) - c) (-) d) 0. Evaluate: [ - ( - )]. Evaluate: - -(-7) + (-8). Evaluate: - - + [6 - ( - 9)]. Simplify: [x - (x - )] 6. Solve: -(x +

More information

Perpendicular and Parallel Line Segments Worksheet 1 Drawing Perpendicular Line Segments

Perpendicular and Parallel Line Segments Worksheet 1 Drawing Perpendicular Line Segments HPTER10 Perpendicular and Parallel Line Segments Worksheet 1 Drawing Perpendicular Line Segments Fill in the blanks with perpendicular or parallel. D Line is parallel to line D. 1. R P S Line PQ is 2.

More information

MATH PROBLEMS, WITH SOLUTIONS

MATH PROBLEMS, WITH SOLUTIONS MATH PROBLEMS, WITH SOLUTIONS OVIDIU MUNTEANU These are free online notes that I wrote to assist students that wish to test their math skills with some problems that go beyond the usual curriculum. These

More information

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have 8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents

More information

Florida Workers Comp Market

Florida Workers Comp Market Florida Workers Comp Market 10/5/10 Lori Lovgren 561-893-3337 [email protected] Florida Workers Compensation Rates 10-1-03 1-1-11 to 1-1-11* Manufacturing + 9.9% 57.8% Contracting + 7.3% 64.4 % Office

More information

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α

More information

BEZIER CURVES AND SURFACES

BEZIER CURVES AND SURFACES Department of Applied Mathematics and Computational Sciences University of Cantabria UC-CAGD Group COMPUTER-AIDED GEOMETRIC DESIGN AND COMPUTER GRAPHICS: BEZIER CURVES AND SURFACES Andrés Iglesias e-mail:

More information

Epidemiology of Adverse Events in Air Medical Transport. Russell D. MacDonald, MD, MPH, Brie Ann Banks, BSc, MD, Merideth Morrison

Epidemiology of Adverse Events in Air Medical Transport. Russell D. MacDonald, MD, MPH, Brie Ann Banks, BSc, MD, Merideth Morrison Egy Av Ev A M T R D. MD, MD, MPH, B A Bk, BS, MD, Mh M A Ojv: Th v y qy - v v gy g y. Mh: R y g y w vw g h w h y v- v- v v. Tw vw y v v gz h g h xy. Dv w v v, wh qy,000 gh,000 h w. R: Bw Jy, 2002, J 30,

More information

Pain-Free Injections

Pain-Free Injections T N S Bk P-F Ij I P Bk DV Dv Iv D D - I 8 8 9 1 D v C U C Y N D j I W U v v I k I W j k T k z D M I v 965 1 M Tk C P 1 2 v T I C G v j V T D v v A I W S DD G v v S D @ v DV M I USA! j DV - v - j I v v

More information

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression Logistic Regression Department of Statistics The Pennsylvania State University Email: [email protected] Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max

More information

BLENDER INTRO BLENDER TIPS

BLENDER INTRO BLENDER TIPS AIG-3D.ps Page 1 AIG-3D.ps Page 2 AIG-3D.ps Page 3 AIG-3D.ps Page 4 AIG-3D.ps Page 5 AIG-3D.ps Page 6 AIG-3D.ps Page 7 AIG-3D.ps Page 8

More information

CURRICUMUM VITAE. Vanderbilt University, Nashville, TN 2012-present Assistant Professor, Owen Graduate School of Management

CURRICUMUM VITAE. Vanderbilt University, Nashville, TN 2012-present Assistant Professor, Owen Graduate School of Management CURRICUMUM VITAE TAE-YOUN PARK Owen Graduate School of Management Vanderbilt University 401 21 st Avenue South Nashville, Tennessee 37203 Phone: +1-615-322-4852 Fax: +1-615-343-7177 E-mail: [email protected]

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2014 Timo Koski () Mathematisk statistik 24.09.2014 1 / 75 Learning outcomes Random vectors, mean vector, covariance

More information

Address Taken FIAlias, which is equivalent to Steensgaard. CS553 Lecture Alias Analysis II 2

Address Taken FIAlias, which is equivalent to Steensgaard. CS553 Lecture Alias Analysis II 2 Alias Analysis Last time Alias analysis I (pointer analysis) Address Taken FIAlias, which is equivalent to Steensgaard Today Alias analysis II (pointer analysis) Anderson Emami Next time Midterm review

More information

Chapter 7 Numerical Differentiation and Integration

Chapter 7 Numerical Differentiation and Integration 45 We ave a abit in writing articles publised in scientiþc journals to make te work as Þnised as possible, to cover up all te tracks, to not worry about te blind alleys or describe ow you ad te wrong idea

More information

LECTURE 4. Last time: Lecture outline

LECTURE 4. Last time: Lecture outline LECTURE 4 Last time: Types of convergence Weak Law of Large Numbers Strong Law of Large Numbers Asymptotic Equipartition Property Lecture outline Stochastic processes Markov chains Entropy rate Random

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

Configuring and Troubleshooting Identity and Access Solutions with Windows Server 2008 Active Directory Course 6426C: Three days

Configuring and Troubleshooting Identity and Access Solutions with Windows Server 2008 Active Directory Course 6426C: Three days CÔNG TY CỔ PHẦN TRƯỜNG CNTT TÂN ĐỨC TAN DUC INFORMATION TECHNOLOGY SCHOOL JSC LEARN MORE WITH LESS! Configuring and Troubleshooting Identity and Access Solutions with Windows Server 2008 Active Directory

More information

SGN-1158 Introduction to Signal Processing Test. Solutions

SGN-1158 Introduction to Signal Processing Test. Solutions SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:

More information

Statistics and Probability Letters. Goodness-of-fit test for tail copulas modeled by elliptical copulas

Statistics and Probability Letters. Goodness-of-fit test for tail copulas modeled by elliptical copulas Statistics and Probability Letters 79 (2009) 1097 1104 Contents lists available at ScienceDirect Statistics and Probability Letters journal homepage: www.elsevier.com/locate/stapro Goodness-of-fit test

More information

ME 111: Engineering Drawing

ME 111: Engineering Drawing ME 111: Engineering Drawing Lecture 4 08-08-2011 Engineering Curves and Theory of Projection Indian Institute of Technology Guwahati Guwahati 781039 Eccentrici ty = Distance of the point from the focus

More information

Certificate of Compliance

Certificate of Compliance No. 0V151007.CFMTW07 Brushless Dc motor FL42BLS01(CE), FL16, FL20, FL22, FL24, FL28, FL32, FL33, FL36, FL42, FL45 EN 61000-6-3:2007+A1:2011, EN 61000-6-1:2007, EN 55014-2:1997+A1:2001+A2:2008, No. 0V151007.CFMTW08

More information

I. I N T R O D U C T I O N

I. I N T R O D U C T I O N Author manuscript, published in "International Conference on Cloud Computing, Indus Track, United States (2013)" D y n a m i c S c a l a b i l i t y o f a C o n s o l i d a t i o n S e r v i c e A h m

More information

Finding the Measure of Segments Examples

Finding the Measure of Segments Examples Finding the Measure of Segments Examples 1. In geometry, the distance between two points is used to define the measure of a segment. Segments can be defined by using the idea of betweenness. In the figure

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 5. Life annuities. Section 5.7. Computing present values from a life table Extract from: Arcones Manual for the SOA Exam MLC. Spring 2010 Edition. available at http://www.actexmadriver.com/ 1/30

More information

AP CALCULUS AB 2007 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2007 SCORING GUIDELINES (Form B) AP CALCULUS AB 2007 SCORING GUIDELINES (Form B) Question 3 The wind chill is the temperature, in degrees Fahrenheit ( F, ) a human feels based on the air temperature, in degrees Fahrenheit, and the wind

More information

DRUM ROLLER. FAR-1, Article No. B69-6300-A DRUM CART FOR 200 LITER STEEL DRUMS. Model FK 1029-1 FK 1029-3 FK 1029-2 FK 1029-4

DRUM ROLLER. FAR-1, Article No. B69-6300-A DRUM CART FOR 200 LITER STEEL DRUMS. Model FK 1029-1 FK 1029-3 FK 1029-2 FK 1029-4 DRUM ROLLER Suitable for drums up to 200 liter capacity Made from fire-galvanized sheet steel ø 610 mm, with 4 polyamide swiveling castors ø 75 mm Model FAR-1: closed version with welded leak-proof base,

More information

Positive Psychological Assessment Welcome!

Positive Psychological Assessment Welcome! Positive Psychological Assessment Welcome! [email protected] www.aaronjardenc.o.nz Workshop Outline Positive Introductions About Aaron Jarden Workbook Tests An overview of the psychological assessment

More information

Steps to Solving Newtons Laws Problems.

Steps to Solving Newtons Laws Problems. Mathematical Analysis With Newtons Laws similar to projectiles (x y) isolation Steps to Solving Newtons Laws Problems. 1) FBD 2) Axis 3) Components 4) Fnet (x) (y) 5) Subs 1 Visual Samples F 4 1) F 3 F

More information

NAME: East Grade Big Fill Big Trestle Abatement LOCATION: Golden Spike National Historic Site, Utah DATE: Fall 1985 LOCATION OF NEGATIVE: National

NAME: East Grade Big Fill Big Trestle Abatement LOCATION: Golden Spike National Historic Site, Utah DATE: Fall 1985 LOCATION OF NEGATIVE: National vv* NAME: East Grade Big Fill Big Trestle Abatement LOCATION: Golden Spike National Historic Site, Utah DATE: Fall 1985 LOCATION OF NEGATIVE: National Park Service, Rocky Mountain Regional Office, Denver,

More information

State Survey Results MULTI-LEVEL LICENSURE TITLE PROTECTION

State Survey Results MULTI-LEVEL LICENSURE TITLE PROTECTION MULTI-LEVEL LICENSURE TITLE PROTECTION Prior AK MN TN MO AL MO KY VA AZ MS MO DC NYC NE HI ME OR IA RI PA IL TX VA KS WA LA WI MA WV Prior AK ME OR TN AL MI PA HI CO MS FL DC NC MN IA NE UT IL NV WA IN

More information

By reversing the rules for multiplication of binomials from Section 4.6, we get rules for factoring polynomials in certain forms.

By reversing the rules for multiplication of binomials from Section 4.6, we get rules for factoring polynomials in certain forms. SECTION 5.4 Special Factoring Techniques 317 5.4 Special Factoring Techniques OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor

More information

Image Compression and Decompression using Adaptive Interpolation

Image Compression and Decompression using Adaptive Interpolation Image Compression and Decompression using Adaptive Interpolation SUNILBHOOSHAN 1,SHIPRASHARMA 2 Jaypee University of Information Technology 1 Electronicsand Communication EngineeringDepartment 2 ComputerScience

More information

Development of The Next Generation Document Reader -Eye Scanner-

Development of The Next Generation Document Reader -Eye Scanner- Development of The Next Generation Document Reader -Eye Scanner- Toshiyuki Amano *a, Tsutomu Abe b, Tetsuo Iyoda b, Osamu Nishikawa b and Yukio Sato a a Dept. of Electrical and Computer Engineering, Nagoya

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 5 Life annuities Extract from: Arcones Manual for the SOA Exam MLC Fall 2009 Edition available at http://wwwactexmadrivercom/ 1/70 Due n year deferred annuity Definition 1 A due n year deferred

More information

Microsoft Online Portal. Basic Administration Guide

Microsoft Online Portal. Basic Administration Guide Basic Administration Guide Table of Contents Introduction... 3 Audience... 3 Document Location... 3 Special information... 3 1. Login... 4 2. Install Microsoft products... 4 3. Reset/change passwords...

More information

www.ms-biotech.wisc.edu

www.ms-biotech.wisc.edu S M A T - S TR ATEGY T MS I k W - k T S Y C 2005 P M H I INNOVAT ION T MS T - z k k k M F-S C 2008 S P D S C D I T M S k - z q k S - x M S U W- M D D MS k I / Y k Y x z x T MS N A qk R T MS 30 T k x x

More information

Hydraulic cylinder Mill type. CDL2 type. Contents. Features. RE 17326 Version: 2013-06 Replaces: 12.12. Series L2 Component series 1X

Hydraulic cylinder Mill type. CDL2 type. Contents. Features. RE 17326 Version: 2013-06 Replaces: 12.12. Series L2 Component series 1X Hydraulic cylinder Mill type CDL2 type RE 17326 Version: 2013-06 Replaces: 12.12 Series L2 Component series 1X 2 pressure ranges: Nominal pressure 160 bar [16 MPa] Nominal pressure 250 bar [25 MPa] Features

More information

Merrill Lynch Affluent Insights Quarterly

Merrill Lynch Affluent Insights Quarterly Merrill Lynch Affluent Insights Quarterly Market-by-Market Comparison Merrill Lynch Affluent Insights Quarterly is a Merrill Lynch Wealth Management survey focused on the values, financial priorities and

More information

Table 12: Availability Of Workers Compensation Insurance Through Homeowner s Insurance By Jurisdiction

Table 12: Availability Of Workers Compensation Insurance Through Homeowner s Insurance By Jurisdiction AL No 2 Yes No See footnote 2. AK No Yes No N/A AZ Yes Yes Yes No specific coverage or rate information available. AR No Yes No N/A CA Yes No No Section 11590 of the CA State Insurance Code mandates the

More information

Ant Colony Optimization Resource Allocation for Software Release Planning

Ant Colony Optimization Resource Allocation for Software Release Planning Ant Colony Optimization Resource Allocation for Software Release Planning Jasmine Sabeena, K.Sree Divya, K.Santhi Department of CSE, S V College of Engineering, Tirupathi,India Abstract- Release planning

More information

1 3 4 = 8i + 20j 13k. x + w. y + w

1 3 4 = 8i + 20j 13k. x + w. y + w ) Find the point of intersection of the lines x = t +, y = 3t + 4, z = 4t + 5, and x = 6s + 3, y = 5s +, z = 4s + 9, and then find the plane containing these two lines. Solution. Solve the system of equations

More information

www.pioneermathematics.com

www.pioneermathematics.com Problems and Solutions: INMO-2012 1. Let ABCD be a quadrilateral inscribed in a circle. Suppose AB = 2+ 2 and AB subtends 135 at the centre of the circle. Find the maximum possible area of ABCD. Solution:

More information

YEAR 10, 11 AND 12 SEMESTER ONE 2016 EXAMINATION TIMETABLE 2½hr (3hr) 3hr 3hr (3hr) 2½hr (3hr) (3hr) Practical 2hr 2½hr 2hr) (2hr) (2hr) 1hr 2½hr) 3hr 2½hr 1½hr 1½hr 2hr 2hr 3hr 3hr 2½hr 3hr 2½hr 3hr 3hr

More information

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

INFORMATION FOR UNDERGRADUATE STUDENTS: 2015-16. FINANCE ELECTIVES AND CAREER CHOICES Revised April 15, 2015

INFORMATION FOR UNDERGRADUATE STUDENTS: 2015-16. FINANCE ELECTIVES AND CAREER CHOICES Revised April 15, 2015 INFORMATION FOR UNDERGRADUATE STUDENTS: 2015-16 FINANCE ELECTIVES AND CAREER CHOICES Revised April 15, 2015 What is Finance about? The DeGroote Business School s offerings in Finance are intended to help

More information

Algebra 1 Chapter 08 review

Algebra 1 Chapter 08 review Name: Class: Date: ID: A Algebra 1 Chapter 08 review Multiple Choice Identify the choice that best completes the statement or answers the question. Simplify the difference. 1. (4w 2 4w 8) (2w 2 + 3w 6)

More information

Geometric Transformations

Geometric Transformations Geometric Transformations Moving objects relative to a stationary coordinate system Common transformations: Translation Rotation Scaling Implemented using vectors and matrices Quick Review of Matrix Algebra

More information

TechnischeUniversitatChemnitz-Zwickau

TechnischeUniversitatChemnitz-Zwickau TechnischeUniversitatChemnitz-Zwickau DFG-Forschergruppe\SPC"FakultatfurMathematik DomainDecompositionand PreconditioningOperators MultilevelTechniquesfor SergejV.Nepomnyaschikh SiberianBranchofRussianAcademyofSciences

More information

AP Calculus BC Exam. The Calculus BC Exam. At a Glance. Section I. SECTION I: Multiple-Choice Questions. Instructions. About Guessing.

AP Calculus BC Exam. The Calculus BC Exam. At a Glance. Section I. SECTION I: Multiple-Choice Questions. Instructions. About Guessing. The Calculus BC Exam AP Calculus BC Exam SECTION I: Multiple-Choice Questions At a Glance Total Time 1 hour, 45 minutes Number of Questions 45 Percent of Total Grade 50% Writing Instrument Pencil required

More information

Actuarial Science with

Actuarial Science with Actuarial Science with 1. life insurance & actuarial notations Arthur Charpentier joint work with Christophe Dutang & Vincent Goulet and Giorgio Alfredo Spedicato s lifecontingencies package Meielisalp

More information

Options on an Asset that Yields Continuous Dividends

Options on an Asset that Yields Continuous Dividends Finance 400 A. Penati - G. Pennacchi Options on an Asset that Yields Continuous Dividends I. Risk-Neutral Price Appreciation in the Presence of Dividends Options are often written on what can be interpreted

More information