Olga Botner, Uppsala. Photo: Sven Lidström. Inspirationsdagar, 2015-03-17



Similar documents
Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Science Standard 4 Earth in Space Grade Level Expectations

The Sun and Solar Energy

Gamma Rays from Molecular Clouds and the Origin of Galactic Cosmic Rays. Stefano Gabici APC, Paris

Neutron Stars. How were neutron stars discovered? The first neutron star was discovered by 24-year-old graduate student Jocelyn Bell in 1967.

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

The Expanding Universe

Ay Fall The Sun. And The Birth of Neutrino Astronomy. This printout: Many pictures missing, in order to keep the file size reasonable

Activity: Multiwavelength Bingo

CSSAR Space Science Cooperation

Modeling Galaxy Formation

Cosmic Rays: A Century of Mysteries

Discovery of neutrino oscillations

The Universe. The Solar system, Stars and Galaxies

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

8.1 Radio Emission from Solar System objects

The Universe Inside of You: Where do the atoms in your body come from?

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

Big Data Analytics in Astrophysics. Katharina Morik, Informatik 8, TU Dortmund

Origins of the Cosmos Summer Pre-course assessment

WHERE DID ALL THE ELEMENTS COME FROM??

Interstellar Cosmic-Ray Spectrum from Gamma Rays and Synchrotron

Nuclear Physics and Radioactivity

Chapter 15.3 Galaxy Evolution

Exploring the Universe Through the Hubble Space Telescope

1 A Solar System Is Born


Carol and Charles see their pencils fall exactly straight down.

Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions

Class 2 Solar System Characteristics Formation Exosolar Planets

The chameleons of space

The Birth of the Universe Newcomer Academy High School Visualization One

The VHE future. A. Giuliani

ESCI-61 Introduction to Photovoltaic Technology. Solar Radiation. Ridha Hamidi, Ph.D.

Cosmic Ray Astrophysics with AMS-02 Daniel Haas - Université de Genève on behalf of the AMS collaboration

Basics of Nuclear Physics and Fission

thermal history of the universe and big bang nucleosynthesis

NASA LAUNCHPAD Educational Product Educators & Students Grades NP LaRC

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.

Chapter 15 Cosmology: Will the universe end?

Astronomy & Physics Resources for Middle & High School Teachers

Stellar Evolution: a Journey through the H-R Diagram

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Solar Energy Production

Test Natural Sciences 102, Professors Rieke --- VERSION B March 3, 2010

Topic 3. Evidence for the Big Bang

THE STOCKHOLM EDUCATIONAL AIR SHOWER ARRAY

Build Your Own Universe

Introduction to the Solar System

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE

TWO DIMENSIONAL ANALYSIS OF INCOMPLETE PARAMETERISED ARCHIVAL DATA FROM THE WHIPPLE 10 METRE IMAGING ATMOSPHERIC CHERENKOV TELESCOPE

Solar neutrinos: from their production to their detection

Use the following image to answer the next question. 1. Which of the following rows identifies the electrical charge on A and B shown above?

Performance Studies for the KM3NeT Neutrino Telescope

Multiple Choice Identify the choice that best completes the statement or answers the question.

Evolution of the Universe from 13 to 4 Billion Years Ago

HTRA Instrumentation I

Measurement of Muon Lifetime and Mass Using Cosmic Ray Showers

FXA UNIT G485 Module Structure of the Universe. Δλ = v λ c CONTENTS OF THE UNIVERSE. Candidates should be able to :

Experimental Particle Physics PHYS6011 Southampton University Lecture 1

Masses in Atomic Units

Swarthmore College Newsletter

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.

Objectives 404 CHAPTER 9 RADIATION

Transcript 22 - Universe

Pretest Ch 20: Origins of the Universe

Cross section, Flux, Luminosity, Scattering Rates

The accurate calibration of all detectors is crucial for the subsequent data

Physics 30 Worksheet # 14: Michelson Experiment

Chapter 8 Formation of the Solar System. What theory best explains the features of our solar system? Close Encounter Hypothesis

Your years of toil Said Ryle to Hoyle Are wasted years, believe me. The Steady State Is out of date Unless my eyes deceive me.

Nuclear Physics. Nuclear Physics comprises the study of:

Searching for the Building Blocks of Matter

(3) Interaction of high energy photons with matter

Astro 301/ Fall 2005 (48310) Introduction to Astronomy

13 Space Photos To Remind You The Universe Is Incredible

Study Guide: Solar System

Chapter 8 Welcome to the Solar System

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

Please note that only the German version of the Curriculum is legally binding. All other linguistic versions are provided for information only

Materials: Internet connection and browser for displaying the lesson; Reading Guide (appended at the end of this lesson plan).

Top 10 Discoveries by ESO Telescopes

Probes of Star Formation in the Early Universe

Big bang, red shift and doppler effect

Low- and high-energy neutrinos from gamma-ray bursts

Chapter 8 Formation of the Solar System Agenda

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars

NASA s Future Missions in X-ray Astronomy

REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Name Class Date. true

Final. Mark Scheme. Additional Science / Physics (Specification 4408 / 4403) PH2FP. Unit: Physics 2

Flavor Ratios of Extragalactical Neutrinos and Neutrino Shortcuts in Extra Dimensions [arxiv: ]

Summary: Four Major Features of our Solar System

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Physics for the 21 st Century. Unit 1: The Basic Building Blocks of Matter. Bonnie Fleming and Mark Kruse

The Sun: Our nearest star

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets?

The Electromagnetic Spectrum

07 - Cherenkov and transition radiation detectors

Transcription:

Olga Botner, Uppsala Photo: Sven Lidström Inspirationsdagar, 2015-03-17

OUTLINE OUTLINE WHY NEUTRINO ASTRONOMY? WHAT ARE NEUTRINOS? A CUBIC KILOMETER DETECTOR EXTRATERRESTRIAL NEUTRINOS WHAT NEXT? CONCLUSIONS LHC Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 XX

Observation of the Sky, engraving in "Selenografia sive Lunae Descriptio", Johannes Hevelius 1647 Bibliotheque Nationale de France, Paris, France.

ASTRONOMY WITH PHOTONS optical astronomy pioneered by Ibn al-haytham El Basri (Alhazen) born c. 965 in present day Iraq traditional astronomy relies on capture of light in diverse ranges of the electromagnetic spectrum each tells a different story LHC? OPTICAL RADIO INFRARED X-RAY Crab nebula: SNR & pulsar (http://chandra.harvard.edu) Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 4

ASTRONOMY WITH PHOTONS according to quantum mechanics the basic unit (the quantum) of light is a photon at very high energies the universe is NOT transparent to photons! photons interact electromagnetically in the interior of stars with starlight with inter-stellar matter LHC with the CMBR AN ENERGY-DEPENDENT PHOTON HORIZON Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 5

γ-rays (0.01-1 Mpc) Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 6

ENERGY SCALES OF THE UNIVERSE 10 21 ZeV (Zeta)??? 10 18 EeV (Exa) Active Galactic Nuclei Gamma Ray Bursts 10 15 PeV (Peta) Supernova 10 12 TeV (Tera) LIMIT OF HUMAN TECHNOLOGY Current Particle Accelerator 10 9 GeV (Giga) 10 6 MeV (Mega) Early accelerators 10 3 KeV (Kilo) Lab X-ray e 1 ev Battery 1 volt Neutriner från rymden fångade i Antarktis is/ Olga Botner Mar 2015 XX

COSMIC RAYS the Earth is bombarded by Cosmic Rays charged particles from outer space mostly protons (~90%) alphas (He nuclei, ~9%) heavier nuclei RADIO LHC LHC RADIO CMB VISIBLE γ-ray LIMITS CRs γ RAYS M. Turner&T. Ressell, Comments in Astrophys. 14 (1990) 323 discovered by Victor Hess 1912 Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 8

COSMIC RAYS 1912: Hess discovers CR ascends to 5000 m demonstrates that ionization increases from 1000m up - not natural radioactivity penetrating radiation from space 1938: Pierre Auger registers ~10 15 ev CR in the Alps, two cloud chambers ~1 km apart 1962: a 10 20 ev CR registered Victor Hess, Nobel Prize 1936 Volcano Ranch giant detector array, New Mexico Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 9

COSMIC RAY SPECTRUM The highest observed energies in cosmic rays are 10 19 to 3 10 20 ev!! That is 50 Joule! Same energy as in a tennis ball hit by e.g. Björn Borg!! Knee 1 m -2 yr -1 a fast serve 68g at 200km/h ~100J What is accelerating these particles???? LHC Ankle 1 km -2 yr -1 Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 10

THE WORLDS MOST POWERFUL ACCELERATOR LHC AT CERN the Sun accelerates cosmic rays coronal mass ejection 10 10 ev protons Neutriner från rymden fångade i Antarktis is / Olga Botner 11

THE LARGE HADRON COLLIDER circumference 27 km 100 m below the surface super conducting magnets (8 Tesla) proton beams max energy 7 10 12 ev per beam moving at 0.999999991 the speed of light at top energy LHC Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 12

Energy of an accelerator is proportional to radius times magnetic field What radius is needed to get 3 10 20 ev when using LHC super conducting magnets? R P [GeV] = 0.3 B [T] R [m] LHC Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 13

1.3 10 8 km ~ the Earth distance to the Sun

Supernova remnants Active Galactic Nuclei Gamma Ray Bursts powered by gravitational energy realease Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 15

Cassiopeia A supernova remnant in X-rays shock fronts From F. Halzen acceleration when particles cross high magnetic fields

active galaxy particle flows near supermassive black hole Possible source of high-energy cosmic rays???

γ-rays (0.01-1 Mpc) cosmic ray protons E < 10 19 ev protons with E > 10 19 ev interact with the cosmic microwave background (CMB) within 30 Mpc Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 18

NEUTRINO THE IDEAL MESSENGER FROM SPACE Moisey Markov Bruno Pontecorvo Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 19 LHC M.Markov,1960: We propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation.

WHAT IS A NEUTRINO? postulated by Pauli in 1930 to ensure energy conservation in nuclear β decay Wolfgang Ernst Pauli (1900 1958) was an Austrian-Swiss physicist, one of the pioneers of quantum physics, and recipient of the Nobel Prize for Physics in 1945. I have done a terrible thing, I have postulated a particle that cannot be detected. detecting the poltergeist, 1956 Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 20 LHC Frederick Reines (1918 1998), left, recipient of the Nobel Prize for Physics in 1995, and Clyde L. Cowan, Jr. (1919 1974)

WHAT IS A NEUTRINO? a fundamental matter particle electrically uncharged twin of the electron (and its cousins) tiny mass travels close to the velocity of light interacts only weakly (and gravitationally) MATTER ATOM ELECTRON NUCLEUS PROTON NEUTRON QUARKS THE NEUTRINO CAN GO THROUGH ENORMOUS AMOUNT OF MATTER WITHOUT BEING STOPPED. THREE LHC KINDS OF NEUTRINOS electron neutrino (ν e ) electron (e - ) muon neutrino (ν µ ) muon (µ - ) tau neutrino (ν τ ) tau (τ - ) Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 21

SOME NEUTRINO NUMBERS every second the Sun emits (2 10 38 ) neutrinos from the nuclear reactions 200.000.000.000.000.000.000.000.000.000.000.000.000 about 60.000.000.000 neutrinos/cm 2 /second at Earth in the universe there are 330 million neutrinos per m 3 (energy 0.0004 ev) (but only ~ half a proton per m 3 ) 340 million neutrinos are created in your body every day due to 40 K decays when a Supernova explodes 99% of the energy is carried away by neutrinos! a solar neutrino will go through many light years of solid lead before it is stopped.. LHC Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 22

SOURCES OF ULTRA HIGH ENERGY COSMIC RAYS PRODUCE NEUTRINOS! γ-rays (0.01 1 Mpc) neutrinos cosmic ray protons E < 10 19 ev protons with E > 10 19 ev interact with the cosmic microwave background (CMB) within 30 Mpc Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 23

SEEING THE NEUTRINO ν µ µ cascade shortlived particles the ν is detected by observing the charged particles created when it interacts with matter ν µ µ ν e e ν τ τ ν x ν x LHC Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 24

CHERENKOV RADIATION a shock front of Cherenkov light generated when a charged particle travels faster than light in a medium (ex. water or ice) CHERENKOV EFFECT 1 cos θ = β n β = v n( water) = 1. 33 c β =1 θ = 42 NASA's "Astronomy Picture of the Day" Archive optical sensors can capture LHC the Cherenkov radiation generated by the muon (electron, tauon) and map it Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 25

NEUTRINO DETECTION size of detector dependent on flux and interaction probability need large detectors: the more matter for the ν to interact with, the more interactions observed with time typical large tank filled with fluid Sudbury Neutrino Observatory, Canada 1000t D 2 O for detection of solar ν s (E ~ 10 7 ev) number of expected cosmic ν s (E > 10 14 ev) decreases rapidly with increasing energy need HUGE instrumented volumes (~ 10 9 t) LHC DETECTOR MEDIUM ABUNDANT IN NATURE Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 26

Cherenkov light from a nuclear reactor Electrons with speeds higher to catch than the high-energy speed neutrinos need lots of material transparent to blue light of light in the water create the Cherenkov light in ice, blue light travels 100 200 m 10-05-28 Science day Malmö 27

the icecube project transforms a billion tons of ice into a neutrino detector

125 m 10-05-28 Science day Malmö 29

ICECUBE THE WORLD S LARGEST NEUTRINO OBSERVATORY 5160 DOM s in ice 1km 3 = 1 Gt instrumented volume started full operations in May 2011 electronics 20 Mt low-energy ext. threshold: 10 GeV PMT DIGITAL OPTICAL MODULE Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 31

hot water generators IceCube Site IceTop tanks drill tower 5 megawatt hot water drilling system

start 05-06 1 million pounds of cargo C-130 planes: > 50 flights LHC Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 34

2 days per hole 3.5 cm/second 35

Photo: Mark Krasberg two DOMs disappearing down the hole (water level ~ 50 m below surface). Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 36

Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 38 LHC

Recent results from IceCube / Olga Botner Jan 2014 1

DATA COLLECTION WITH ICECUBE events collected since 2005 events selected by triggers server farm to preprocess & filter data ~ 100 GB/day sent North over satellite 2 WO scientists ensure uptime > 99% ~ 100 TB/y for science ~ 3000 atmospheric µ s/sec 10 11 / year > 200 upgoing atm. ν s/day 10 5 / year estimated astrophysical ν s 10-100 / year Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 40

Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 42

ICECUBE HIGH ENERGY NEUTRINOS two ways to identify high energy neutrinos look for up-going tracks Earth is used as a filter LHC look for events starting inside IceCube detector-based veto Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 43

HIGH-ENERGY NEUTRINO EVENTS neutrino induced muon entering IceCube from below LHC TWO neutrino events starting in IceCube color code: early times - RED Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 44

LOOKING FOR A NEEDLE IN A HAYSTACK for each muon from a neutrino reaction there is ~ a million muons from cosmic ray reactions in the atmosphere these background muons penetrate through the ice down to the detector atmospheric µ rate ~ 10 3 Hz atmospheric ν rate ~ 10-3 Hz ASTROPHYSICAL ν rate ~ 10-6 Hz LHC REDUCE BACKGROUNDS BY REQUIRING VERY HIGH ENERGY EVENTS! Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 45

BREAKTHROUGH DETECTION OF A FLUX OF ASTROPHYSICAL ν S Bert 1.04 PeV Aug. 2011 Ernie 1.14 PeV Jan. 2012 Big Bird 2 PeV Dec. 2012 the highest energy ν s ever observed 10 6 x higher energies than Solar ν s starting event analysis dominated by cascades ~ 50% atmospheric background 28 events/2 yrs (2013) 54 events/4 yrs (2014) isotropic directions, probably from many extragalactic sources Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 53

ASTROPHYSICAL ν S CONFIRMATION! flux of muon neutrinos through the Earth neutrinos of all flavors interacting inside IceCube Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 55

HIGH ENERGY STARTING EVENTS SKYMAP compatible with isotropy shower events only p-value = 7.2 % too few events to identify sources [IceCube PRL 113 (2014)] ~ 40% of the events are expected to originate in the atmosphere (bckg) Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 56

LHC [Slide: Markus Ahlers NeuTel2015] Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 57

NEUTRINO STARS? to look for neutrino stars need more events search for clustering decrease the energy threshold atmospheric ν s dominate atmospheric µ s dominate LHC equatorial skymap ~40 000 events [Astrophys.J. 732 (2011) 18] Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 58

FUTURE ICECUBE-GEN2 HIGH-ENERGY ALTERNATIVE BUILD A LARGER DETECTOR Opening the Southern sky with a surface veto! Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 59

OUTLINE CONCLUSIONS a new window to the universe has been cracked open IceCube has observed a flux of neutrinos from cosmos but where are the neutrino stars? need more data at high energy Sweden is at the forefront of this research LHC Neutriner från rymden fångade i Antarktis is / Olga Botner 2015-03-17 XX