HW10.nb 1. It is basically quadratic around zero and is very steep. One may guess that the harmonic oscillator is a pretty good approximation.



Similar documents
Simple Interest Loans (Section 5.1) :

Recurrence. 1 Definitions and main statements

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Lecture 3: Force of Interest, Real Interest Rate, Annuity

Section 5.3 Annuities, Future Value, and Sinking Funds

Implementation of Deutsch's Algorithm Using Mathcad

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

Faraday's Law of Induction

Hedging Interest-Rate Risk with Duration

Support Vector Machines

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek

BERNSTEIN POLYNOMIALS

1. Math 210 Finite Mathematics

Section 2 Introduction to Statistical Mechanics

Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION

The Mathematical Derivation of Least Squares

Chapter 31B - Transient Currents and Inductance

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Thursday, December 10, 2009 Noon - 1:50 pm Faraday 143

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

INVESTIGATION OF VEHICULAR USERS FAIRNESS IN CDMA-HDR NETWORKS

This circuit than can be reduced to a planar circuit

Chapter 12 Inductors and AC Circuits

Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence

5.74 Introductory Quantum Mechanics II

Regression Models for a Binary Response Using EXCEL and JMP

Mean Molecular Weight

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS

FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals

where the coordinates are related to those in the old frame as follows.

Calculation of Sampling Weights

EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR

Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money

1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)

An Alternative Way to Measure Private Equity Performance

ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors

Introduction to Statistical Physics (2SP)

PERRON FROBENIUS THEOREM

Finite Math Chapter 10: Study Guide and Solution to Problems

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis

1 De nitions and Censoring

7.5. Present Value of an Annuity. Investigate

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification

Product-Form Stationary Distributions for Deficiency Zero Chemical Reaction Networks

8 Algorithm for Binary Searching in Trees

Production. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem.

Chapter 9. Linear Momentum and Collisions

Calculating the high frequency transmission line parameters of power cables

The OC Curve of Attribute Acceptance Plans

Least Squares Fitting of Data

HÜCKEL MOLECULAR ORBITAL THEORY

What is Candidate Sampling

A frequency decomposition time domain model of broadband frequency-dependent absorption: Model II

Rotation Kinematics, Moment of Inertia, and Torque

Portfolio Loss Distribution

4 Cosmological Perturbation Theory

PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB.

Section 5.4 Annuities, Present Value, and Amortization

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

CHAPTER 14 MORE ABOUT REGRESSION

substances (among other variables as well). ( ) Thus the change in volume of a mixture can be written as

Texas Instruments 30X IIS Calculator

Lecture 2: Single Layer Perceptrons Kevin Swingler

Inter-Ing INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, November 2007.

A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression

SIMPLE LINEAR CORRELATION

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.

How To Calculate The Accountng Perod Of Nequalty

The quantum mechanics based on a general kinetic energy

Formulating & Solving Integer Problems Chapter

Do Hidden Variables. Improve Quantum Mechanics?

Global stability of Cohen-Grossberg neural network with both time-varying and continuous distributed delays

Loop Parallelization

Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching)

Chapter 11 Torque and Angular Momentum

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.

The issue of June, 1925 of Industrial and Engineering Chemistry published a famous paper entitled

MOLECULAR PARTITION FUNCTIONS

University Physics AI No. 11 Kinetic Theory

Forecasting the Direction and Strength of Stock Market Movement

The Application of Fractional Brownian Motion in Option Pricing

Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006

A Probabilistic Theory of Coherence

Heuristic Static Load-Balancing Algorithm Applied to CESM

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008

Analysis of Reactivity Induced Accident for Control Rods Ejection with Loss of Cooling

Kinetic Energy-Based Temperature Computation in Non-Equilibrium Molecular. Dynamics Simulation. China. Avenue, Kowloon, Hong Kong, China

Software Alignment for Tracking Detectors

SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW.

Kinetic Energy-Based Temperature Computation in Non-Equilibrium Molecular Dynamics Simulation

Transcription:

HW0.nb HW #0. Varatonal Method Plot of the potental The potental n the problem s V = 50 He -x - L. V = 50 HE -x - L 50 H- + -x L Plot@V, 8x, -, <D 40 30 0 0 - -0.5 0.5 Ü Graphcs Ü It s bascally quadratc around zero and s very steep. One may guess that the harmonc oscllator s a pretty good approxmaton. Intal guess Seres@V, 8x, 0, 3<D 50 x - 50 x 3 + O@xD 4 If we try to dentfy the frst term wth the harmonc oscllator potental ÅÅÅÅ m w x, we fnd w = 0 because m =. Then one may hope that t would gve the ground-state energy ÅÅÅÅ w = 5. However, ths hope s not qute fulflled. Usng the groundstate wave functon of the harmonc oscllator, y = J ÅÅÅÅÅÅÅÅÅ m w ê4 p N E -m w x êh L - m x w ÅÅÅÅÅÅÅÅÅÅÅÅÅ H ÅÅÅÅÅÅ m w ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ Lê4 p ê4 ÅÅÅÅÅ

HW0.nb y = y ê. 8m Ø, w Ø 0, Ø < -5 x J ÅÅÅÅÅÅÅ 0 Nê4 p K = ÅÅÅÅÅÅÅÅÅ - Integrate@y D@y, 8x, <D, 8x, -, <D ê. 8 Ø, m Ø < m 5 ÅÅÅÅ P = Integrate@y V, 8x, -, <D Unque::usym : 5ê s not a symbol or a vald symbol name. The error s 50 H - ê40 + ê0 L Ebar = K + P 5 ÅÅÅÅ + 50 H - ê40 + ê0 L N@%D 5.703 % - 39 ê 8 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅ 39 ê 8 0.07 and s bgger than 5%, but s pretty good, accurate wthn 7.%. Therefore, we are motvated to try a Gaussan as a tral functon. Gaussan tral functon y = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅ p ê4 D ê E-x êh D L - ÅÅÅÅÅÅÅÅÅ x D ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ pê4 è!!! D K = ÅÅÅÅÅÅÅÅÅ - Integrate@y D@y, 8x, <D, 8x, -, <, Assumptons Ø D > 0D ê. 8 Ø, m Ø < m Unque::usym : 5ê s not a symbol or a vald symbol name. ÅÅÅÅÅÅÅÅÅ 4 D P = Integrate@y V, 8x, -, <, Assumptons Ø D > 0D Unque::usym : êh4*d^l s not a symbol or a vald symbol name. 50 J - D ÅÅÅÅÅÅ 4 + D N

HW0.nb 3 Ebar = K + P ÅÅÅÅÅÅ 50 J - D 4 + D N + ÅÅÅÅÅÅÅÅÅ 4 D FndMnmum@Ebar, 8D, 0 -ê <D 85.089, 8D Ø 0.304036<< %@@DD - 39 ê 8 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 39 ê 8 0.0684949 It has mproved, but not yet wthn 5%. Lnear tmes Gaussan One way to mprove t further s the followng. Note that the potental s not party symmetrc, and hence the groundstate wavefuncton s not expected to be an even functon. Because the potental s lower on the rght, we expect the wave functon s skewed towards the rght. Therefore, we can try y = H + k xl E -x êh D L - ÅÅÅÅÅÅÅÅÅÅ x D H + k xl It s not normalzed at ths pont, and we calculate ts norm norm = Integrate@y, 8x, -, <, Assumptons Ø D > 0D Unque::usym : êh4*d^l s not a symbol or a vald symbol name. è!!! ÅÅÅÅ p D H + k D L K = ÅÅÅÅÅÅÅÅÅ - Integrate@y D@y, 8x, <D, 8x, -, <, Assumptons Ø D > 0D ê. 8m Ø, Ø < m Unque::usym : êh4*d^l s not a symbol or a vald symbol name. è!!! p H + 3 k D L ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅ 8 D P = Integrate@y V, 8x, -, <, Assumptons Ø D > 0D Unque::usym : á30à s not a symbol or a vald symbol name. 5 è!!! p D ÅÅÅÅÅÅÅ J - 4 D 4 + D ÅÅÅÅÅÅÅ + 4 D 4 k D - 4 D k D + k D ÅÅÅÅÅÅ - D 4 k D + D k D ÅÅÅÅÅÅ - D 4 k D 4 + D k D 4 N

HW0.nb 4 Ebar = K + P ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ norm j è!!! p H + 3 k j D L ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅ + 5 è!!! ÅÅÅÅÅÅÅ p D J - 4 D 4 + k k 8 D D ÅÅÅÅÅÅÅ + 4 D 4 k D - 4 D k D + k D ÅÅÅÅÅÅÅ - D 4 k D + D k D ÅÅÅÅÅÅ - D 4 k D 4 + D k D 4 N y z y z ì H è!!! p D H + k D LL soluton = FndMnmum@Ebar, 8D, 0 -ê <, 8k, 0<D 84.965, 8D Ø 0.3309, k Ø 0.76493<< soluton@@dd - 39 ê 8 ÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅ 39 ê 8 0.00498 Ths s correct at the % level! The wave functon s therefore y ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ è!!!!!!!!!!!!! ÅÅÅÅÅ norm ê. soluton@@dd.8473-4.5579 x H + 0.76493 xl y PlotA ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅ è!!!!!!!!!!!! norm ê. soluton@@dd, 8x, -, <E. 0.8 0.6 0.4 0. - -0.5 0.5 Ü Graphcs Ü As expected, t s more or less a Gaussan, but skewed to the rght. Obvously, there are many ways to mprove Gaussan. I hope you found one successfully. The analytc soluton Ths problem s actually a specal case of the Morse potental V = D HE -a u - L D H- + -a u L

HW0.nb 5 Ths potental s a form of the nter-atomc potental n datomc molecules proposed by P.M. Morse, Phys. Rev. 34, 57 (99). The varable u s the dstance between two atoms mnus ts equlbrum dstance u = r - r 0. The Schrödnger equaton can be solved analytcally. Expandng t around the mnmum, Seres@V, 8u, 0, 4<D a D u - a 3 D u 3 + 7 ÅÅÅÅÅÅÅ a4 D u 4 + O@uD 5 Harmonc oscllator approxmaton gves w = "########### a D ÅÅÅÅÅÅÅÅÅÅÅÅÅ. The correct energy egenvalues are known to be m E n = whn + ÅÅÅÅ L - a ÅÅÅÅÅÅÅÅÅÅÅÅ m Hn + ÅÅÅÅ L, where the second term s called the anharmoncanharmonc correcton. For large n, the second term wll domnate and the energy appears to become negatve. Clearly, the bound state spectrum does not go forever, and ends at a certan value of n, qute dfferent from the harmonc oscllator. But ths s expcted because the potental energy asymptotes to D for u Ø + and hence states for E > D must be unbound and hence have a contnuous spectrum. The ground-state wave functon s known to have the form -d E-a u -b a uê y = E E -d -a u - ÅÅÅÅÅÅÅÅÅÅÅ a b u where b = d -, d = è!!!!!!!!!!!! D m ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ. Let us see that t satsfes the Schrödnger equaton. a I- ÅÅÅÅÅÅ m SmplfyA D@y, 8u, <D + D HE-a u - L ym ÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅ y è!!! a H-4 è!!!!!!! D m + a L - ÅÅÅÅÅÅÅ ÅÅÅÅÅÅ 8 m ê. 8b Ø d - < ê. 9d -> è!!!!!!!!!! D m ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ =E a The frst term s ÅÅÅÅ w = a "######## ÅÅÅÅÅÅÅ D m and the zero-pont energy wth the harmonc oscllator approxmaton. The second term - a ÅÅÅÅÅÅÅÅÅÅÅÅ s the anharmonc correcton. 8 m The normalzaton s norm = Integrate@y, 8u, -, <, Assumptons Ø a > 0 && d > 0D Unque::usym : êh4*d^l s not a symbol or a vald symbol name. -b d -b Gamma@bD ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅ a Actually, ths wave functon could have been guessed f one pays a careful attenton to the asymptotc behavors. For u Ø, the potental asymptotes to a constant D, and hence the wave functon must damp exponentally e -k u wth k = è!!!!!!!!!!!!!!! m» E» ë. For u Ø -, the potental rses extremely steeply as D e - a u. It suggests that the energy egenvalue becomes quckly rrelevant, and the behavor of the wave functon must be gven purely by the rsng behavor of the potental. By droppng the energy egenvalue and lookng at the Schrödnger equaton, - ÅÅÅÅÅÅÅÅ d y ÅÅÅÅÅÅÅÅÅÅ + D e - a u y = 0, m d u and change the varable to y = e -a u, we fnd - ÅÅÅÅÅÅÅÅ m I d y ÅÅÅÅÅÅÅÅÅÅ + ÅÅÅÅ ÅÅÅÅÅÅÅ d y d y y d y M + D y = 0. The second term n the parentheses s neglble for y Ø. Therefore the wave functon has the behavor y e -è!!!!!!!!!!! m D yê a. Combnng the behavor on both ends, the wave functon has precsely the exact form gven above. Ths s the lesson: the one-dmensonal potental problem s so smple that there are many ways to study the behavor of the wave functon. On the other hand, the real-world problem nvolves many more degrees of freedom. In many cases, the Hamltonan tself must be guessed.

HW0.nb 6 Back to the Morse potental. The case of the homework problem corresponds to D = 50, a =, m =, =. Therefore the groundstate energy s E 0 = ÅÅÅÅ a "######## ÅÅÅÅÅÅÅ D m - a ÅÅÅÅÅÅÅÅÅÅÅÅ 8 m = 5 - ÅÅÅÅ 8 = ÅÅÅÅÅÅ 39 8. SmplfyA y ê. 8b Ø d - < ê. 9d Ø è!!!!!!!!!!!! norm 800000000-0 -u - ÅÅÅÅÅÅÅÅÅ 9 u ÅÅÅÅÅÅÅÅÅ 567 è!!!!!!!!!! 43 9 u ÅÅÅÅÅÅÅÅÅ è!!!!!!!!!! D m ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ a PlotA 800000000-0 -u - ÅÅÅÅÅÅÅÅÅ 567 è!!!!!!!!!!, 8u, -, <, PlotPonts Ø 50E 43 = ê. 8D Ø 50, a Ø, m Ø, Ø <E. 0.8 0.6 0.4 0. - -0.5 0.5 Ü Graphcs Ü The varatonal lnear tmes Gaussan wave functon was -4.55799805370` x PlotA.847346074584307` H + 0.7649393579979` xl, 8x, -, <, PlotPonts Ø 50E. 0.8 0.6 0.4 0. - -0.5 0.5 Ü Graphcs Ü

HW0.nb 7 Show@%, %%D. 0.8 0.6 0.4 0. - -0.5 0.5 Ü Graphcs Ü Qute close.. Neutrno Oscllaton (a) The untarty matrx s 88, 0, 0<, 80, Cos@q 3 D, Sn@q 3 D<, 80, -Sn@q 3 D, Cos@q 3 D<< êê MatrxForm 0 0 y 0 Cos@q 3 D Sn@q 3 D j z k 0 -Sn@q 3 D Cos@q 3 D 88Cos@q 3 D, 0, Sn@q 3 D E -I d <, 80,, 0<, 8-Sn@q 3 D E I d, 0, Cos@q 3 D<< êê MatrxForm Cos@q 3 D 0 -Â d Sn@q 3 D y 0 0 j z k - Â d Sn@q 3 D 0 Cos@q 3 D 88Cos@q D, Sn@q D, 0<, 8-Sn@q D, Cos@q D, 0<, 80, 0, << êê MatrxForm Cos@q D Sn@q D 0 y -Sn@q D Cos@q D 0 j z k 0 0 U = 88, 0, 0<, 80, Cos@q 3 D, Sn@q 3 D<, 80, -Sn@q 3 D, Cos@q 3 D<<. 88Cos@q 3 D, 0, Sn@q 3 D E -I d <, 80,, 0<, 8-Sn@q 3 D E I d, 0, Cos@q 3 D<<. 88Cos@q D, Sn@q D, 0<, 8-Sn@q D, Cos@q D, 0<, 80, 0, << 88Cos@q D Cos@q 3 D, Cos@q 3 D Sn@q D, -Â d Sn@q 3 D<, 8-Cos@q 3 D Sn@q D - Â d Cos@q D Sn@q 3 D Sn@q 3 D, Cos@q D Cos@q 3 D - Â d Sn@q D Sn@q 3 D Sn@q 3 D, Cos@q 3 D Sn@q 3 D<, 8- Â d Cos@q D Cos@q 3 D Sn@q 3 D + Sn@q D Sn@q 3 D, - Â d Cos@q 3 D Sn@q D Sn@q 3 D - Cos@q D Sn@q 3 D, Cos@q 3 D Cos@q 3 D<<

HW0.nb 8 Udagger = Transpose@U ê. 8d Ø -d<d 88Cos@q D Cos@q 3 D, -Cos@q 3 D Sn@q D - - d Cos@q D Sn@q 3 D Sn@q 3 D, - - d Cos@q D Cos@q 3 D Sn@q 3 D + Sn@q D Sn@q 3 D<, 8Cos@q 3 D Sn@q D, Cos@q D Cos@q 3 D - - d Sn@q D Sn@q 3 D Sn@q 3 D, - - d Cos@q 3 D Sn@q D Sn@q 3 D - Cos@q D Sn@q 3 D<, 8  d Sn@q 3 D, Cos@q 3 D Sn@q 3 D, Cos@q 3 D Cos@q 3 D<< Smplfy@Udagger.UD 88, 0, 0<, 80,, 0<, 80, 0, << For the two-by-two case, the untarty matrx s U3 = U ê. 8q Ø 0, q 3 Ø 0< 88, 0, 0<, 80, Cos@q 3 D, Sn@q 3 D<, 80, -Sn@q 3 D, Cos@q 3 D<< % êê MatrxForm 0 0 y 0 Cos@q 3 D Sn@q 3 D j z k 0 -Sn@q 3 D Cos@q 3 D The man pont n the calculaton s that the Hamltonan can be wrtten as H = UIc p + m c ÅÅÅÅÅÅÅÅÅÅ 3 Å p M U, and hence the tme evoluton operator s e - H tê = U e -Hc p+m c 3 ê pl tê U e - m c 3 tê p 0 0 = e - c p tê U 0 e - m c 3 tê p 0 U j k 0 0 e - m 3 c 3 tê p z The ampltude of our nterest s y A = E -I c p tê I80,, 0<.U3.DagonalMatrxA9E -I m c 3 têh p L, E -I m c 3 têh p L, E -I m 3 c 3 têh p L =E. -  c p t ÅÅÅÅÅÅÅÅÅÅÅÅÅ Transpose@U3D.880<, 8<, 80<<M@@DD j -  c 3 ÅÅÅÅ p Cos@q 3 D + -  c3 3 p Sn@q 3 D y z k Astar = A ê. 8t Ø -t< ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ Â c p t j  c3 k p Cos@q 3 D +  c3 3 p Sn@q 3 D y z Psurv = Smplfy@ExpToTrg@Expand@A AstarDDD Cos@q 3 D 4 + CosA c3 t Hm - m 3 L ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ E Cos@q p 3 D Sn@q 3 D + Sn@q 3 D 4

HW0.nb 9 Ths can be rewrtten as P surv = cos 4 q 3 + cos q 3 sn q 3 coshm - m 3 L c 3 t ÅÅÅÅÅÅÅÅÅÅ p + sn4 q 3 = Hcos q 3 + sn q 3 L - cos q 3 sn q 3 + cos q 3 sn q 3 coshm - m 3 L c 3 = - cos q 3 sn q 3 I - coshm - m 3 L c 3 t ÅÅÅÅÅÅÅÅÅÅÅ p M = - 4 cos q 3 sn q 3 sn Hm - m 3 L c 3 t ÅÅÅÅÅÅÅÅÅÅÅ 4 p = - sn q 3 sn Hm -m 3 L c 3 t ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 4 p. Ths s nothng but Eq. (5) n the problem. (b) t ÅÅÅÅÅÅÅÅÅÅÅ p For p = GeV, m 3 - m =.5ä0-3 ev ê c, and usng = 6.58 ä0 - MeV sec = 6.58 ä0-6 ev sec and c = 3.00 ä0 0 cm sec -, the argument of sn.5ä0 s -3 ev êc c 3 t ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = ÅÅÅÅÅÅÅÅÅÅÅÅ 950 t = ÅÅÅÅÅÅÅÅÅÅÅÅÅ 950 c t = 37 L L ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = 3.7 c 4 0 9 ev 6.58 0-6 ev sec sec c sec 0 0 ä0-3 ÅÅÅÅÅÅÅ cm km. Takng q 3 = ÅÅÅÅÅÅÅÅ è!!!! and hence sn q 3 =, we fnd P surv = - sn H3.7 ä0-3 ÅÅÅÅÅÅÅ L km L = cos H3.7 ä0-3 ÅÅÅÅÅÅÅ L km L. PlotACos@3.7 0-3 LD, 8L, 0, 0000<E 0.8 0.6 0.4 0. Ü Graphcs Ü 000 4000 6000 8000 0000 The oscllaton occurs on the dstances of thousands of klometers. Ths s what had been observed by the SuperKamokande experment, Phys. Rev. 93, 080 (004), even though the data shows nearly washed-out oscllaton due to the so-so resoluton n energy and dstance. A very macroscopc quantum phenomenon. (c) For the three-state case, we keep all angles, and we calculate the oscllaton probablty from n m to n e,

HW0.nb 0 Amue = E -I c p tê I8, 0, 0<.U.DagonalMatrxA9E -I m c 3 têh p L, E -I m c 3 têh p L, E -I m 3 c 3 têh p L =E.Udagger. -  c p t ÅÅÅÅÅÅÅÅÅÅÅÅÅ 880<, 8<, 80<<M@@DD j - d-  c3 3 ÅÅÅ p Cos@q 3 D Sn@q 3 D Sn@q 3 D + k -  c3 p Cos@q D Cos@q 3 D H-Cos@q 3 D Sn@q D - - d Cos@q D Sn@q 3 D Sn@q 3 DL + -  c3 p Cos@q 3 D Sn@q D HCos@q D Cos@q 3 D - - d Sn@q D Sn@q 3 D Sn@q 3 DL y z Amuestar = % ê. 8t Ø -t, d Ø -d< ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ Â c p t j  d+  c3 3 k  c3 p Cos@q 3 D Sn@q 3 D Sn@q 3 D + p Cos@q D Cos@q 3 D H-Cos@q 3 D Sn@q D -  d Cos@q D Sn@q 3 D Sn@q 3 DL +  c3 p Cos@q 3 D Sn@q D HCos@q D Cos@q 3 D -  d Sn@q D Sn@q 3 D Sn@q 3 DL y z and from n e to n m, Pmue = ExpToTrg@Expand@Amue AmuestarDD Cos@q D Cos@q 3 D Cos@q 3 D Sn@q D - CosA c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p E Cos@q D Cos@q 3 D Cos@q 3 D Sn@q D - CosAd - c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p + c3 p E Cos@q D Cos@q 3 D Cos@q 3 D Sn@q D Sn@q 3 D Sn@q 3 D + CosAd - c3 p + c3 p E Cos@q D Cos@q 3 D Cos@q 3 D Sn@q D Sn@q 3 D Sn@q 3 D + Cos@dD Cos@q D 3 Cos@q 3 D Cos@q 3 D Sn@q D Sn@q 3 D Sn@q 3 D - CosAd + c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p E Cos@q D 3 Cos@q 3 D Cos@q 3 D Sn@q D Sn@q 3 D Sn@q 3 D - Cos@dD Cos@q D Cos@q 3 D Cos@q 3 D Sn@q D 3 Sn@q 3 D Sn@q 3 D + CosAd - c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p + c3 p E Cos@q D Cos@q 3 D Cos@q 3 D Sn@q D 3 Sn@q 3 D Sn@q 3 D + Cos@q 3 D Sn@q 3 D Sn@q 3 D - CosA c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p E Cos@q D Cos@q 3 D Sn@q 3 D Sn@q 3 D + Cos@q D 4 Cos@q 3 D Sn@q 3 D Sn@q 3 D - CosA c3 p E Cos@q 3 D Sn@q D Sn@q 3 D Sn@q 3 D + CosA c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p E Cos@q D Cos@q 3 D Sn@q D Sn@q 3 D Sn@q 3 D + Cos@q 3 D Sn@q D 4 Sn@q 3 D Sn@q 3 D

HW0.nb Aemu = E -I c p tê I80,, 0<.U.DagonalMatrxA9E -I m c 3 têh p L, E -I m c 3 têh p L, E -I m 3 c 3 têh p L =E.Udagger. -  c p t ÅÅÅÅÅÅÅÅÅÅÅÅÅ 88<, 80<, 80<<M@@DD j  d-  c3 3 ÅÅÅ p Cos@q 3 D Sn@q 3 D Sn@q 3 D + k -  c3 p Cos@q D Cos@q 3 D H-Cos@q 3 D Sn@q D -  d Cos@q D Sn@q 3 D Sn@q 3 DL + -  c3 p Cos@q 3 D Sn@q D HCos@q D Cos@q 3 D -  d Sn@q D Sn@q 3 D Sn@q 3 DL y z Aemustar = % ê. 8t Ø -t, d Ø -d< ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ Â c p t j - d+  c3 3 k  c3 p Cos@q 3 D Sn@q 3 D Sn@q 3 D + p Cos@q D Cos@q 3 D H-Cos@q 3 D Sn@q D - - d Cos@q D Sn@q 3 D Sn@q 3 DL +  c3 p Cos@q 3 D Sn@q D HCos@q D Cos@q 3 D - - d Sn@q D Sn@q 3 D Sn@q 3 DL y z Pemu = ExpToTrg@Expand@Aemu AemustarDD Cos@q D Cos@q 3 D Cos@q 3 D Sn@q D - CosA c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p E Cos@q D Cos@q 3 D Cos@q 3 D Sn@q D - CosAd + c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p E Cos@q D Cos@q 3 D Cos@q 3 D Sn@q D Sn@q 3 D Sn@q 3 D + CosAd + c3 p E Cos@q D Cos@q 3 D Cos@q 3 D Sn@q D Sn@q 3 D Sn@q 3 D + Cos@dD Cos@q D 3 Cos@q 3 D Cos@q 3 D Sn@q D Sn@q 3 D Sn@q 3 D - CosAd - c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p + c3 p E Cos@q D 3 Cos@q 3 D Cos@q 3 D Sn@q D Sn@q 3 D Sn@q 3 D - Cos@dD Cos@q D Cos@q 3 D Cos@q 3 D Sn@q D 3 Sn@q 3 D Sn@q 3 D + CosAd + c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p E Cos@q D Cos@q 3 D Cos@q 3 D Sn@q D 3 Sn@q 3 D Sn@q 3 D + Cos@q 3 D Sn@q 3 D Sn@q 3 D - CosA c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p E Cos@q D Cos@q 3 D Sn@q 3 D Sn@q 3 D + Cos@q D 4 Cos@q 3 D Sn@q 3 D Sn@q 3 D - CosA c3 p E Cos@q 3 D Sn@q D Sn@q 3 D Sn@q 3 D + CosA c3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p E Cos@q D Cos@q 3 D Sn@q D Sn@q 3 D Sn@q 3 D + Cos@q 3 D Sn@q D 4 Sn@q 3 D Sn@q 3 D Smplfy@Pmue - PemuD 4 Cos@q 3 D Sn@dD SnA c3 t Hm - m L ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ E 4 p SnA c3 t Hm - m 3 L ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ E SnA c3 t Hm - m 3 L ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ E Sn@ q 4 p 4 p D Sn@q 3 D Sn@ q 3 D Indeed, when d 0, two probabltes are dfferent.

HW0.nb (d) As we dd n the class, the tme-reserval nvarance states that Xa» e - H tê» b\ = Xb è» e - H tê» a è \, and hecepha Ø bl = PHb è Ø a è L. Here, a è s the tme-reversed state of a, and b è s the tme-reversed state of b. In our case, the tme-reversed state has the opposte momentum. (If you worry about the helcty, both the momentum and the spn flp, and remans the same, namely left-handed.) However, the Hamltonan depends only on the magntude of the momentum and hence the oscllaton probabltes also depend only on the magntude of the momentum. Therefore PHb è Ø a è L = PHb Ø al. Choosng n e and n m of the same momenta to be the ntal and fnal states, we fnd that the tme reversal nvarance would predct PHn m Ø n e L = PHn e Ø n m L. The fact that the tme-reversal volaton requres d 0makes sense because the tme-reversal opeator nvolves the complex conjugaton, and d s the only complex parameter n the Hamltonan.