Frost. On Air-Cooling Evaporators. refrigeration applications at temperatures below freezing. These heat exchangers



Similar documents
Comparing Air Cooler Ratings Part 1: Not All Rating Methods are Created Equal

How To Understand Evaporator

Total Heat Versus Sensible Heat Evaporator Selection Methods & Application

Experimental study on frost growth and dynamic performance of air source heat pump system

M SERIES REFRIGERANT COIL MODULE REFRIGERANT COILS for R-22, R-407C, R-410A

SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS

Glossary of Heating, Ventilation and Air Conditioning Terms

KINGDOM OF SAUDI ARABIA SAUDI ARABIAN STANDARDS ORGANIZATION SASO. SAUDI STANDARD DRAFT No. 3457/2005

Evaporative Cooling for Residential and Light-Commercial

Refrigeration Basics 101. By: Eric Nelson

Design Considerations for Underfloor Heating Systems. What is Frost Heave Protection?

HVAC Calculations and Duct Sizing

Dr. Michael K. West, PE 1 Dr. Richard S. Combes, PE 2 Advantek Consulting / Melbourne, Florida

Answers to Your Questions from the Webinar

CONDENSATION IN REFRIDGERATED BUILDINGS

Improving Data Center Energy Efficiency Through Environmental Optimization

Energy Efficient Building Design College of Architecture Illinois Institute of Technology, Chicago. Relative Humidities RH%

Characteristics of Evaporators

How To Improve Energy Efficiency Through Raising Inlet Temperatures

USER S GUIDE For all Packaged Systems (Air Conditioners and Heat Pumps)

Air Conditioning Clinic

Dehumidification Frequently Asked Questions

CURBING THE COST OF DATA CENTER COOLING. Charles B. Kensky, PE, LEED AP BD+C, CEA Executive Vice President Bala Consulting Engineers

Chilled Water HVAC Systems

Optimization of Water - Cooled Chiller Cooling Tower Combinations

APPLICATION GUIDE. Comparison of Latent Cooling Performance of Various HVAC systems in a Classroom Application

A discussion of condensate removal systems for clarifier and thickener drives for water and wastewater facilities.

Presentation Outline. Common Terms / Concepts HVAC Building Blocks. Links. Plant Level Building Blocks. Air Distribution Building Blocks

85 F 80 F 50% 75 F 70 F 73.0/ F 10% Figure 1

Ventilation Standard For Health Care Facilities

Green Building Handbook for South Africa Chapter: Heating, Ventilation and Cooling Luke Osburn CSIR Built Environment

CHAPTER 4 VENTILATION

Energy Recovery Ventilation Equipment

By Tom Brooke PE, CEM

Wet Bulb Temperature and Its Impact on Building Performance

Innovent LASER Packaged Fresh Air Conditioning Units

Tom Brooke, PE, MBA, CEM

Absolute and relative humidity Precise and comfort air-conditioning

LIQUID DESICCANT AIR CONDITIONING Saves energy, Controls humidity, Cleans air. Trevor Wende Vice President, Marketing Advantix Systems, Inc.

Heat Recovery In Retail Refrigeration

Evaluation Of Hybrid Air- Cooled Flash/Binary Power Cycle

Rating Water-Source Heat Pumps Using ARI Standard 320 and ISO Standard

Trends in Data Center Design ASHRAE Leads the Way to Large Energy Savings

Environmental Data Center Management and Monitoring

Data Center Design Guide featuring Water-Side Economizer Solutions. with Dynamic Economizer Cooling

STULZ Water-Side Economizer Solutions

Controlling Wrap-Around Heat Pipes for Systems with Strict Space Humidity Requirements. By Michael O. Davis, PE, November 2015

HVAC Systems: Overview

MODELLING AND OPTIMIZATION OF DIRECT EXPANSION AIR CONDITIONING SYSTEM FOR COMMERCIAL BUILDING ENERGY SAVING

Defining Quality. Building Comfort. Heating and Cooling Coils

How To Design A Refrigeration System

Measuring The Right Thing For Humidity Control It s the Dew Point Stupid!

COMMERCIAL HVAC CHILLER EQUIPMENT. Air-Cooled Chillers

Fog and Cloud Development. Bows and Flows of Angel Hair

DEFROSTING. Service Engineers Section Technical Bulletin No 3

Selecting the Supply Air Conditions for a Dedicated Outdoor Air System Working in Parallel with Distributed Sensible Cooling Terminal Equipment

UNIT 2 REFRIGERATION CYCLE

Molds and mildew are fungi that grow

Multi Drum Heat Storage By John Canivan

Analysis of data centre cooling energy efficiency

Troubleshooting Your Refrigerator

LIQUID DESICCANT AIR CONDITIONING Saves energy, Controls humidity, Cleans air

Defining Quality. Building Comfort. Precision. Air Conditioning

THE PSYCHROMETRIC CHART: Theory and Application. Perry Peralta NC State University

- White Paper - Data Centre Cooling. Best Practice

Troubleshooting an Air Conditioning system. R D Holder Eng. Roger D Holder MSME

Makeup Air For Exhaust Systems In Tight Houses. Tony Jellen Engineering Projects

In Row Cooling Options for High Density IT Applications

APC APPLICATION NOTE #112

Performance Test of Solar Assisted Solid Desiccant Dryer

DATA CENTER COOLING INNOVATIVE COOLING TECHNOLOGIES FOR YOUR DATA CENTER

A Comparison of an R22 and an R410A Air Conditioner Operating at High Ambient Temperatures

Energy Efficiency. Energy Efficient Home Cooling:

Refrigeration Manual. Part 3 - The Refrigeration Load

AIR CONDITIONING TECHNOLOGY

Data Centers WHAT S ONTHEHORIZON FOR NR HVAC IN TITLE ? SLIDE 1

Automobile Air Conditioning Primer

newsletter engineers energy-saving strategies for Water-Source Heat Pump Systems volume 36 2 providing insights for today s hvac system designer

Data Realty Colocation Data Center Ignition Park, South Bend, IN. Owner: Data Realty Engineer: ESD Architect: BSA LifeStructures

Venice Library Humidity Study. for Williams Building Diagnostics, LLC th Street West Bradenton, FL Report April 13, 2015

APPLICATION GUIDE. Moisture Management in Waterborne Climate Systems

Freezer Floor Heaving and Solution

Data Center 2020: Delivering high density in the Data Center; efficiently and reliably

Troubleshooting HVAC/R systems using refrigerant superheat and subcooling

Chapter 3.4: HVAC & Refrigeration System

Design of Cold Storage Structure For Thousand Tonne Potatoes

Using Time-of-Day Scheduling To Save Energy

MAXIMUM HEAT LOAD TEMPERATURE TESTING ( Differential Temperature Testing )

Benefits of. Air Flow Management. Data Center

Environmental and Safety Impacts of HFC Emission Reduction Options for Air Conditioning and Heat Pump Systems

HVAC Basic Science - System Capacity

Pool Dehumidification Basics

GEOTHERMAL HEATING AND COOLING INTRODUCTION

DOE FEMP First Thursday Seminar. Learner Guide. Core Competency Areas Addressed in the Training. Energy/Sustainability Managers and Facility Managers

IMPROVING DATA CENTER EFFICIENCY AND CAPACITY WITH AISLE CONTAINMENT

LH and GH/GL Series UNIT COOLERS. Technical Bulletin: LHGH_001_ Products that provide lasting solutions.

Hospital Application Guide. Cost-effective climate control for hospitals

Are these noise cancelling devices needed to make your chiller quiet??

A NEW DESICCANT EVAPORATIVE COOLING CYCLE FOR SOLAR AIR CONDITIONING AND HOT WATER HEATING

COIL INPUT SCREENS. ITEM NUMBER: Always use a 1 through? In this field you might also use a dash and place quantity of coils here.

Transcription:

The following article was published in ASHRAE Journal, February 2009. Copyright 2009 American Society of Heating, Refrigerating and Air- Conditioning Engineers, Inc. It is presented for educational purposes only. This article may not be copied and/or distributed electronically or in paper form without permission of ASHRAE. Frost On Air-Cooling Evaporators By Douglas T. Reindl, Ph.D, P.E., and Todd B. Jekel, Ph.D, P.E. In this article, we focus on the operation of air-cooling evaporators in industrial refrigeration applications at temperatures below freezing. These heat exchangers are generally applied to control the environmental conditions in holding freezers, dynamic blast freezers, stationary blast cells, refrigerated docks, as well as other lower temperature conditioned spaces found in food manufacturing and distribution facilities. We review the factors that influence the formation of frost on the evaporator surfaces and discuss how frost accumulation impacts coil performance. Air-cooling evaporators are refrigerantto-air heat exchangers widely used in industrial refrigeration, commercial refrigeration, and heat pump systems. Known as forced-circulation air coolers 1 or aircooling evaporators, these heat exchangers use tubes to carry refrigerant with fins applied to the tube exterior. Individual tubes of the heat exchanger are arranged in multiple rows of parallel circuits to achieve increased thermal performance. Refrigerant evaporates inside the tubes as it absorbs heat from air flowing over the outside surface of the finned tubes. When air-cooling evaporators operate with both coil surface temperatures below 32 F (0 C) and entering air dew-point temperatures above the coil surface temperature, moisture from the air being cooled will accumulate on the fins and tubes of the coil in the form of frost. The formation and growth of frost on the evaporator will decrease the coil s cooling capability. What is the root cause of capacity decrease from frosted coil? a. Increased air-side pressure drop; thereby, decreasing airflow through the coil. b. Increased resistance to heat transfer between the air and the About the Authors Douglas T. Reindl, Ph.D., P.E., is a professor and director and Todd B. Jekel, Ph.D., P.E., is assistant director at the University of Wisconsin- Madison s Industrial Refrigeration Consortium in Madison, Wis. February 2009 ASHRAE Journal 27

refrigerant due to the insulating effects of the frost. c. Both of the above. d. None of the above. If you answered c, you are correct. A number of papers highlighting this phenomena have been published. 2,3,4 Aljuwahel, et al, 5 confirmed that the single greatest factor reducing evaporator capacity due to frost accumulation is the decrease in airflow rate due to its effect on air-side pressure drop as originally suggested by Stoecker. 2 Factors Influencing Coil Capacity During Frosting What are the factors that control how fast my evaporator s capacity will decrease due to frosting? A number of factors influence the rate of frost accumulation on a coil resulting in increased air-side pressure drop and reduced airflow rate through the coil. Fin spacing. Sometimes referred to as fin pitch, the density of fins applied to an evaporator will have a dramatic effect on the susceptibility of coil frosting and the resulting capacity loss due to blocking airflow. Although increased fin density (decreased fin spacing) may be desirable because it increases the surface area available for heat transfer, the reduced spacing between fins will result in a decrease of the open area available for air to flow as frost accumulates on the coil. A coil design with narrow fin spacing will plug with frost more rapidly, requiring more frequent defrosts. A balance between fin spacing that provides adequate coil heat transfer surface area, but that does not lead to a rapid buildup of frost, is required. In low-temperature freezing systems, some coil designs have fin spacing that varies from the air-entering side of the coil to the air-leaving side of the coil to more effectively manage the effects of frost accumulation. Figure 1 shows an evaporator for a low-temperature blast freezer where the first two rows of the coil are bare tubes (no fins). Because moisture is being extracted from the airstream as it moves from the entering to the leaving side of the evaporator, successive rows in this coil have increased fin density to provide surface area while mitigating the plugging effects of the frost accumulation. Table 1 Figure 1: An evaporator coil with the first two tube rows fin free. provides some basic guidance for typical fin spacing on coils over a range of operating conditions. Table 1 provides some basic guidance for typical fin spacing on coils over a range of operating conditions. It is important to work with your evaporator manufacturer to select an appropriate coil once you understand the operating environment for that coil. Coil Location. Coils located in regions with supersaturated moisture will experience a much higher rate of frost accumulation and plugging. Figure 2 shows an example of warm, moist air from a dock infiltrating into a freezer. Because the infiltrating air is more buoyant, it rises to the ceiling. The rapid cooling of the supersaturated moist infiltrating air causes crystals of ice to form in the air rather than on the coil surface. If an evaporator is located immediately above the door opening, it will see a significant load of supersaturated moisture and will quickly plug the face of the coil with frost. The accelerated rate of frost accumulation on the entering side of the coil surface is due to impaction and interception of the ice crystals onto the coil surface. If the moist dock air had an opportunity to blend with the colder drier freezer air, the rate of frost-induced plugging on the coil would be reduced. Moisture Load. In applications with significant moisture loading, the rate of frost accumulation can rise dramatically, accelerating the capacity loss. The severity of the moisture load can be characterized in terms of the sensible heat ratio (SHR). The sensible heat ratio represents the ratio of the space sensible load to the space total load as given by: The term Q sensible represents that portion of a heat load that causes the air temperature to rise while Q latent is the portion of the heat load attributable to a space moisture increase. As the moisture or latent load in a temperature-controlled space increases, the sensible heat ratio decreases and operating evaporators will experience increased difficulty removing the moisture needed to meet the latent load. This is especially (1) Operating Temperature Range Moisture/Frost Load Typical Fin Pitch (Fins per in.) Comments 25 F ( 32 C) and Colder Heavy Moderate 0 3 Consider a Variable Fin Pitch Coil Heavy 0 3 Consider a Variable Fin Pitch Coil 25 F ( 32 C) to +10 F ( 12 C) Moderate Light 2 3 +10 F ( 12 C) to +35 F (2 C) Heavy Moderate 3 Light 4 +35 F (2 C) to +50 F (10 C) Heavy Light 4 6 Avoid using the high fin density coils in applications with airborne particulates (e.g., packaging areas). Table 1: Review of typical evaporator fin spacing over a range of space operating conditions. 28 ASHRAE Journal ashrae.org February 2009

relevant for those evaporators operating in low-temperature environments (below 32 F [0 C]). A number of past investigators have characterized envelopes of operating conditions that lead to moisture and frost problems in conditioned spaces. Figure 3 shows a series of three process lines on a section of a lowtemperature psychrometric chart. The situation is typical of what happens when higher temperature and humidity air from a dock space infiltrates to a lower temperature and humidity storage freezer space in an airflow pattern similar to that shown in Figure 2. The psychrometric processes involved with this situation are illustrated in three separate situations shown in Figure 3. In each case the infiltrating air from the dock is at a constant dry-bulb temperature of 50 F (10 C), while the relative humidity varies from 60% (Case 1) to 30% (Case 3), which mixes with a freezer with a space temperature of 10 F ( 12 C). The lowest surface temperature in the freezer space is the evaporator coil, which operates at 10 F ( 23 C) a point commonly referred to as the apparatus dew-point temperature (ADP). When the air from the dock enters into the freezer, a mixing process occurs. As the warmer dock air blends with the colder air within the freezer, the mixed-air condition progressively moves down the tie line that connects the dock condition to the freezer condition. Case 1 illustrates an unfavorable process line due to portions of the process line that connects the mixed-air condition to the coil ADP Case 3: Favorable Process Line being above the saturation curve, which leads to a supersaturated moisture condition where ice crystals will form in the air. Smith 6,7 identified the unfavorable frost condition and noted how the presence of this condition adversely affected evaporator performance, as well as causing significant icing effects on other cold surfaces within the freezer. Case 1 would be reflective of entering air condition for an evaporator located in close proximity to the dock-freezer doors where the coil s entering air (a mixed-air condition) is closer to the dock condition due to the relatively narrow opportunity of the infiltrating air to fully mix with the freezer air. In Case 2, the dock relative humidity is lower (approximately 40%), and the coil entering air is much closer to the freezer condition, indicating that a more thorough mixing process has occurred as would be the case for evaporators located further away from the dock-freezer doors. In this case, the process line is approaching, but not crossing, the saturation curve leading to Case 1: Unfavorable Process Line Case 2: Borderline Favorable Process Line ADP 10 F Loading Dock Mixed Air Saturation Line 0.000 20 10 0 10 20 30 40 50 60 Dry-Bulb Temperature ( F) February 2009 ASHRAE Journal 29 Fog 0 F 10 F 20 F Frost Accumulation Cold Outflow Figure 2: Airflow patterns from a dock to a freezer. 14 Warm Inflow 30 F Ice Crystals Freezer 40 F Iced Floor Figure 3: Psychrometric chart showing process lines that range from unfavorable to favorable conditions for frosting. 3 Dock Condition 0.8 0.6 0.4 0.2 0.012 0.010 0.008 0.006 0.004 0.002 a borderline favorable coil frosting condition. Case 3 is a lower dock humidity condition (30%) with a similar dock-freezer air mixing ratio as Case 2. In this case, the process line stays below the saturation curve yielding a favorable frost condition. We should note that the assumed freezer set temperature of 10 F ( 12 C) and the temperature difference between the freezer and coil refrigerant temperature (approximately the ADP) of 20 F (11 C) are both quite high. These conditions were used to illustrate the concepts of unfavorable and favorable frosting conditions. Set temperatures for freezers range from 5 F ( 20 C) to 20 F ( 29 C), while a 10 F (6 C) temperature difference is more typical. How can I minimize or avoid conditions that lead to unfavorable frosting? Obviously, the source of the moisture should be identified and minimized. In cases where moisture originates from infiltrating Humidity Ratio

air, appropriate techniques to reduce that infiltration rate should be pursued. This may require repairing seals, maintaining door control, reducing openings (e.g., for conveyors), and ensuring an appropriate pressure balance between spaces at differing conditions. Further information on these strategies can be found in several papers. 3,8,9 If the source of moisture is from products that are being processed, consider alternative means that can reduce moisture loss. Strategies for reducing product moisture loss can include: packaging prior to cooling/freezing; pre-cooling product; and crust-freeze product using a cryogenic fluid prior to finish-freezing with a mechanical freezing system (flash freezing will create a crust on the product surface to minimize desiccation). Techniques to reduce moisture loss have the Process Line With Lower Dock Set Temperature ADP 10 F Unfavorable Process Line 0 F 10 F 20 F Saturation Line Figure 4: Psychrometric chart showing process lines for a lower dock set temperature to improve favorability of the freezer coil frosting condition. 0.012 0.010 0.8 0.008 0.6 0.006 Original Dock Condition 0.4 0.004 Revised Dock Temperature 0.2 0.002 0.000 20 10 0 10 20 30 40 50 60 30 F Dry-Bulb Temperature ( F) 40 F added benefit of increasing product yield. Yield savings almost certainly will far outweigh energy cost benefits from reduced moisture loads on evaporators. For many low-temperature freezing systems, the extent of unfavorable frost conditions can be minimized but not eliminated. For spaces such as holding freezers, one common approach Humidity Ratio Advertisement formerly in this space. 30 ASHRAE Journal February 2009

for avoiding unfavorable frost conditions is to lower the setpoint temperature of the dock to increase the level of moisture removal at a higher evaporator temperature (when compared to the freezer). Reducing the dock setpoint temperature to something in the range of 35 F (2 C), will permit air defrosting while providing significantly more moisture removal when compared to a 50 F (10 C) space setpoint. In some cases, hot-gas reheat is added at the dock evaporator to further increase the space sensible heat ratio. Figure 4 shows a dock maintained at a 35 F (2 C) dry-bulb temperature with a relative humidity of 60%. A process line from the entering coil condition to the ADP shows it to be just favorable as it approaches but does not cross the saturation curve. Adding reheat at the dock door can further increase the dry-bulb temperature of infiltrating air, driving the process to an increasingly favorable frost condition process line. Cleland 3 offers other strategies for avoiding unfavorable frosting conditions but rightly places a particular emphasis on preventing the infiltration using door protection devices. Frost Type. Somewhat related to discussions in the previous section, the type of frost has an influence on the rate of coil Figure 5: Low density frost forming on an evaporator due to high coil temperature difference and presence of supersaturated air. capacity decrease due to airflow blockage. Unfavorable frosting conditions leads to the formation of ice crystals directly in the airstream. There is a tendency for these ice crystals to precipitate onto cold surfaces within the space; however, they will ride along on air currents created by operating evaporator fans. The frost crystals will readily adhere to the coil surface by physical impaction or interception; thereby, blocking airflow. Figure 5 shows the structure of unfavorable frost adhering to the surfaces of a variably finned, low-temperature evaporator freezing unpacked product and operating with a moderately high TD (difference in temperature between the entering air and the evaporating refrigerant). In this case, the structure of Advertisement formerly in this space. Advertisement formerly in this space. February 2009 ASHRAE Journal 31

the frost is extremely light and fluffy with minimal bonding to the coil surface. We postulate that, in this case, the coil plugged where the fins started and that the light, fluffy frost grew after the coil blockage. As mentioned previously, this type of frost degrades coil performance more rapidly than a higher density frost as shown in Figure 6. The higher density frost forming on the coil shown in Figure 6 occurs in spaces with favorable frosting conditions. Due to the lack of supersaturated air, as well as an operating coil TD of 10 F (6 C), moisture from the air forms on the coil by a diffusion process creating a much more dense frost structure. The higher frost density allows the coil to accumulate significantly more mass of moisture (frost) before adversely affecting coil capacity due to airflow blockage. Measuring Coil Capacity Decrease Due to Frosting How significant is the rate of capacity loss due to frosting? As mentioned previously, the loss of coil capacity under frosting operation is due to reduced airflow, as well as increased resistance to heat transfer. The more significant of these two factors is the capacity loss due to blockage of airflow. 2,5,10,11,12 The effects of frost presenting an increased resistance to heat transfer are significantly less important. 2,13 Aljuwahel 5 monitored the performance of a single 37 ton (130 kw) evaporator located in a penthouse in a low-temperature storage freezer. Additional details on the coil are given in Table 2. The in situ performance of the unit was determined using an extensive configuration of air-side instrumentation arranged to measure entering and leaving conditions (air temperature and moisture content), as well as the average velocity of air flowing through the coil. In addition, data was collected to determine the volume flow rate of air being conveyed by the unit s five fans. Figure 7 shows the average face velocity of air across the coil during frosting operation over a 41 hour period. The average velocity of air across the frost-free coil is approximately 560 ft/ min (2.85 m/s) but that average velocity decreases by nearly 50% to 315 ft/min (1.6 m/s) at the end of its operating cycle. Figure 8 shows the average dry-bulb temperature of air entering and leaving the evaporator during frosting operation. The average entering air temperature (i.e., space temperature) is relatively constant at 17.5 F ( 28 C) while the leaving temperature decreased from 24 F ( 31 C) to 26 F ( 33 C) as the coil accumulated frost. The drop in leaving air temperature is a byproduct of the decreased airflow rate through the coil, which allows longer dwell time to give up its heat to the refrigerant. Unfortunately, that decreased coil leaving air temperature is not sufficient enough to overcome the drop in airflow rate. Consequently, the coil s refrigeration capacity decreases over time as frost accumulates on the coil. The actual measured gross capacity of the coil is shown in Figure 9. The average clean coil capacity over four separate runs is 33 tons (116 kw) and the capacity of the unit decreases to 27 tons (95 kw) after 41 hours of operation, representing a capacity loss of nearly 20%. Two other observations were made regarding the measured coil capacity. First, the field-measured capacity is 8% less than the unit s rated capacity. Second, the measured evapora- Figure 6: Higher density frost forming on an evaporator. Parameter Fin Pitch Value 3 fins/in. (0.85 cm) Face Area 88.6 ft 2 (8.23 m 2 ) Tube Diameter 3/4 in. (19.05 mm) Tube Length 18 ft (5.5 m) Number of Fans 5 Fan Power at 30 F ( 34 C) Air Temperature Rated cfm 3.125 HP (2.33 kw) 60,000 cfm (1,699 m 3 /min) Number of Tube Rows 10 Saturated Evaporator Temperature Coil Temperature Difference Rated Coil Capacity Fin and Tube Material Evaporator Coil Type 30 F ( 34.4 C) 10 F (5.6 C) 37 tons (130 kw) Aluminum CPR-fed Liquid Overfeed Table 2: Geometry and operating conditions of the experimentally monitored air-cooling evaporator. tor capacity is gross because it does not include fan heat gains. The net effect is that an evaporator s capacity, while operating under frosting conditions will decrease and the system s operating efficiency suffers as a result. To counter these effects, the accumulated frost must be removed from the evaporator surface on either a continuous or intermittent basis. Alternative Approaches Are there other approaches that can further reduce or eliminate the need for defrosting evaporators? The short answer to this question is not really. Some alternative approaches use a liquid desiccant media such as glycol, which is sprayed directly onto the evaporator surface to preferentially absorb the moisture into the freezing point depressed working fluid. As moisture from the air goes into the liquid solution, the concentration of glycol will be reduced and reconcentration becomes necessary to avoid freeze-ups. In this case, the equivalent to a hot gas defrost for a typical evaporator occurs remotely from the unit as heat is added to drive off the accumulated water; thereby, re-concentrating the glycol for reuse. Another alternative that has been promoted to reduce latent loads is the use of solid desiccants. The solid desiccant system 32 ASHRAE Journal ashrae.org February 2009

approach can reduce latent loads in temperature controlled spaces but the added cost of the desiccant system operation must be carefully evaluated to understand whether or not the total cost of operation will be lowered. Conclusions With the exception of sprayed desiccant units, evaporators operating at lower temperature conditions will result in frost formation on the coil surface. Many factors influence the rate and nature of frost formation including: evaporator unit fin spacing, coil location, latent (moisture) load, and frost type or structure. The accumulation of frost on a coil causes its capacity to decrease due to blockage of airflow, as well as the insulating effects of the frost layer itself. As a result, periodic removal of the accumulated frost layer is required to maintain system capacity and efficiency. References 1. 2006 ASHRAE Handbook Refrigeration, Chapter 42, Forced-Circulation Air Coolers. 2. Stoecker, W.F. 1957. How frost formation on coils affects refrigeration systems. Refrigerating Engineering, 65(2):44 45. 3. Cleland, D.J. 2005. Implications of coil frosting on system designs for low-temperature applications. ASHRAE Transactions, 111 (1):336 345. 4. Mago, P.J. and S.A. Sherif. 2005. Coil frosting and defrosting issues at low freezer temperatures near saturation conditions. ASHRAE Transactions, 111(1):3 17. 5. Aljuwayhel, N.F., D.T. Reindl, S.A. Klein, G.F. Nellis. 2008. Experimental investigation of the performance of industrial evaporator coils operating under frosting conditions. International Journal of Refrigeration, 31(1):98 106. 6. Smith, G.R. 1989. Theoretical cooling coil calculations at freezer temperatures to avoid unfavorable coil frost. ASHRAE Transactions, 95(2):1138 1148. 7. Smith, G.R. 1992. Latent heat, equipment-related load, and applied psychrometrics at freezer temperatures. ASHRAE Transactions, 98(2):649 657. 8. Reindl, D.T. and T.B. Jekel. 2008. Infiltration rate determination for low temperature freezing systems. ASHRAE Transactions, 114(2):264 272. 9. IRC. 2005. Air balance issues in refrigerated facilities. Cold Front. Industrial Refrigeration Consortium, University of Wisconsin-Madison, 5(4):1 8. 10. Barrow, H. 1985. A note on frosting of heat pump evaporator surfaces. Heat Recovery Systems, 5(3):195 201. 11. Seker, D., H. Karatas, and N. Egrican. 2004. Frost formation on fin-and-tube heat exchangers. Part I modeling of frost formation on fin-and-tube heat exchangers. International Journal of Refrigeration, 27: 367 374. 12. Yao, Y., Y. Jiang, S. Deng, and Z. Ma. 2004. A study on the performance of the airside heat exchanger under frosting in an air source heat pump water heater/chiller unit. International Journal of Heat and Mass Transfer. Air Velocity (m/s) 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 Region of Experiment Uncertainty Run #1 Run #2 Run #3 Run #4 Run #5 0.00 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 Time (min) Figure 7: Average face velocity of air across the coil during frosting operation. Average Air Temperature ( C) Figure 8: Average coil inlet and outlet temperatures during frosting operation. Cooling Load (kw) 24 25 Run #2 Run #4 11 13 26 27 28 29 30 Average Inlet Air Temperature Average Outlet Air Temperature Run #3 Run #5 Model Prediction 15 17 19 21 23 31 32 25 Run #2 Run #4 33 Run #3 Run #5 27 Model Prediction 34 0 250 500 750 1000 1250 1500 1750 2000 2250 29 2500 Time (min) 126 108 90 72 54 Run #1 Run #3 Run #2 Run #4 Model Prediction 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 Time (min) Figure 9: Coil capacity (load) as the unit operates from clean to frosted condition. 13. Machielsen, C.H. and H.G. Kerschbaumer. 1989. Influence of frost formation and defrosting on the performance of air coolers: standards and dimensionless coefficients for the system designer. International Journal of Refrigeration, 12(3):283 290. 14. 2006 ASHRAE Handbook Refrigeration, Chapter 13, Refrigeration Load. February 2009 ASHRAE Journal 33 40 35 30 25 20 15 Average Air Temperature ( F) Cooling Load (Ton)