1 12/9/2008 Page 1 Master s Program in Medical Physics Physics of Imaging Systems Basic Principles of Magnetic Resonance Imaging V Chair in Faculty of Medicine Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1-3 D-68167 Mannheim, Germany Lothar.Schad@MedMa.Uni-Heidelberg.de www.ma.uni-heidelberg.de/inst/cbtm/ckm/ 12/9/2008 Page 2 Imaging Contrast Imaging Contrast Seite 1
2 12/9/2008 Page 3 Spin-Echo Sequence k-space: after 1. TR k-space: after 2. TR k-space: after 256. TR k y k x 12/9/2008 Page 4 Spin-Echo Images S TR/T1 TE/T2 = ρ [114243 e e123 SE ] T1 factor T2 factor Pw TR = 2775 ms TE = 17 ms T2w TR = 2775 ms TE = 102 ms T1w TR = 575 ms TE = 14 ms - SE gold standard technique for T1 and T2 morphology Seite 2
3 12/9/2008 Page 5 Spin-Echo Contrast: TR, TE TE 90-60 ms 40 - no contrast SNR low T1-weighted T2-weighted proton-weighted 10 ms 300-800 ms 1500-3000 ms TR 12/9/2008 Page 6 Spin-Echo: T1 Dependency T1 - factor GM: T1 = 970 ms WM: T1 = 600 ms WM GM T1-factor: [1-exp(-TR/T1)] T1 - contrast contrast C = S S A A S + S B B source: Reiser and Semmler. Magnetresonanztomographie 2002 Seite 3
4 12/9/2008 Page 7 Spin-Echo: T2 Dependency T2 - factor GM: T2 = 110 ms WM: T2 = 90 ms T2-factor: exp(-te/t2) WM GM T2 - contrast source: Reiser and Semmler. Magnetresonanztomographie 2002 12/9/2008 Page 8 Spin-Echo: TR, TE source: Schlegel and Mahr. 3D Conformal Radiation Therapy: A Multimedia Introduction to Methods and Techniques" 2007 Seite 4
5 12/9/2008 Page 9 Spin-Echo: TR, TE SE contrast between grey and white matter 12/9/2008 Page 10 Spin-Echo: Multi-Slice - interleaved SE measurement measurement #1 1. slice measurement #2 2. slice 3. slice 4. slice 5. slice - multi-slice SE TR = 600 ms, TE = 10 ms about 60 slices can be measured simultaneously! Seite 5
6 12/9/2008 Page 11 Inversion Recovery Sequence M z M z source: Reiser and Semmler. Magnetresonanztomographie 2002 12/9/2008 Page 12 Inversion Recovery Images S TI/T1 TR/T1 TE/T2 = ρ [1 2e + e e 1444 24443 123 IR ] T1 factor T2 factor Seite 6
7 12/9/2008 Page 13 Inversion Recovery Contrast contrast [a.u.] T1-contrast T2-contrast T2-contrast - WM and GM contrast dependency on TI, TR and TE - IR gold standard technique for T1 contrast source: Reiser and Semmler. Magnetresonanztomographie 2002 12/9/2008 Page 14 Gradient-Echo Sequence spoiler z M z α M M xy x,y -example: α = 20 M z - reduction by 6% M xy - value 34% of M z!! Seite 7
8 12/9/2008 Page 15 Gradient-Echo: Phase in rot. frame: 0 t τ τ t 2τ t φ ( x, t) = γ G x dtˆ = γ G 0 φ ( x, t) = γ G x x t + γ G = γ G x x τ x τ + γ G t x x x x t x dtˆ x ( t τ ) source: Liang and Lauterbur. Principles of Magnetic Resonance Imaging 2000 12/9/2008 Page 16 Gradient-Echo: Steady-State example: WM T1 ~ 600 ms TR = 25 ms dephasing of transversal magnetization M z steady-state: number of RF M SS z TR/T1 M0 (1 e ) = TR/T1 1 e cosα source: Reiser and Semmler. Magnetresonanztomographie 2002 M xy steady-state: S M xy = M SS z sinα e TE/T2* Seite 8
9 12/9/2008 Page 17 Gradient-Echo: FLASH contrast [a.u.] contrast [a.u.] T1-contrast ρ-contrast (1 E1)sinα TE/T2* FLASH signal: SFLASH = ρ e 1 E 12 3 1 cosα 4243 4 T2* factor Haase et al. JMR 1986 T1 factor TR/T1 Ernst-angle: α = arccos ( e ) E with E 1 =exp(-tr/t1) FLASH: fast low angle shot 12/9/2008 Page 18 Gradient-Echo: Measuring Time SE GE α = 90 / 180 TE = 20 ms TR = 600 ms T aq : minutes α = 25 TE = 7 ms TR = 20 ms T aq : seconds!! Seite 9
10 12/9/2008 Page 19 Gradient-Echo: Examples I spin-echo TR = 680 ms TE = 15 ms α = 90 T1-contrast 2D FLASH TR = 170 ms TE = 5 ms α = 70 T1-contrast - no T2 contrast with gradient-echo technique! 3D FLASH TR = 60 ms TE = 40 ms α = 25 T2*-contrast 12/9/2008 Page 20 Gradient-Echo: Examples II CT SE TE = 20 ms GE TE = 20 ms normal bone susceptibility effect osteoporosis Seite 10
11 12/9/2008 Page 21 Gradient-Echo: FISP slice selection gradient gradient-echo - FISP: fast imaging with steady precession - steady-state free precession sequence: SSFP - no spoiler, all phases are compensated -M xy contributes to M z more signal! - FISP signal for TR<<T1 and TR<<T2*: phase encoding gradient frequency encoding gradient S FISP sin α TE/T2* = ρ e 1+ T1/T2* + (1 T1/T2*) cos α 123 44444 2444444 3 T2* factor T1/T2* factor - FISP contrast: T1/T2* water: ~ 1, all other tissues: ~ 10 Oppelt et al. Electromedica 1986 12/9/2008 Page 22 Gradient-Echo: FISP Problem concept transverse magnetization is not spoiled (as in FLASH) complete refocusing of all gradients in one TR problem signal equation yields T1/T2 contrast susceptibility differences can cause artifacts high flip angles (SAR) solution strong gradients very short TR (< 5 ms) Seite 11
12 12/9/2008 Page 23 Gradient-Echo: FISP Contrast α opt T1/T2 * 1 = arccos T1/T2 * + 1 - FISP sequence parameters: TR/TE/α = 2.6 ms / 1.4 ms / 55 12/9/2008 Page 24 Gradient-Echo: Fat-Water Separation - chemical shift between protons of water H 2 O and fatty tissue CH 2 is about 3.5 ppm or 220 Hz at 1.5 T - 1/220 Hz = 4.55 ms TE = 4.55, 9.1 ms fat / water: in-phase TE = 6.8, 11.4 ms fat / water: opposed-phase in-phase TE = 9.1 ms RF S α op.-phase TE = 6.8 ms fat B 0 water 90 F W F W Seite 12
13 12/9/2008 Page 25 Spin-Echo: Fat-Suppression x - no fat-water separation possible since refocusing 180 pulse - preparation by frequency selective 90 -pulse to select only fat resonance (CHESS) and to destroy fat signal by spoiling no fat-suppression with fat-suppression RF S 90 180 B 0 fat water F W 90 W 180 F 12/9/2008 Page 26 Spin-Echo: Contrast Agent + + + + + Gd N + + + e - S + Gd-DTPA complex - intravenous injection of 0.1 mmol/kg paramagnetic contrast agent Gd-DTPA - shortens locally T1 (ca. 1000 ms 100 ms) - signal increase at SE imaging by a factor of 2-4! - detects disruption of blood brain barrier tumor grading! - also ferromagnetic nano-particles (SPIO ~ 100 nm, USPIO < 50 nm) available liver Seite 13
14 12/9/2008 Page 27 Contrast Agent: Classification (by the different changes in relaxation times after their injection) 1. positive contrast agents - a reduction in the T1 relaxation time (increased signal intensity) - bright on MR images - small molecular weight compounds containing gadolinium, iron or manganese - unpaired electrons in their outer shells 2. negative contrast agents -short T2 relaxation time - dark on MRI (decreased signal intensity) - small aggregates often termed superparamagnetic iron oxide (SPIO) and ultrasmall superparamagnetic iron oxides (USPIO) - crystalline iron oxide core and a shell of polymer (e.g. dextrane) 12/9/2008 Page 28 Contrast Agent: Gd Requirements good solubility in water high thermodynamic and possibly kinetic stability to ensure against the in vivo release of toxic Gd 3+ ions and free ligand molecules short T1 relaxation time gadolinium: large magnetic moment long electron spin relaxation time (~10-9 s at the magnetic field strengths of interest for MRI applications) optimum efficiency for nuclear spin relaxation of the interacting nuclei Parker and Williams. J Chem Soc 1996 Aime et al. Chem Soc Rev 1998 Seite 14
15 12/9/2008 Page 29 Contrast Agent: Gd Ligands and Complexes - octadentate ligands: one water molecule in the inner coordination sphere - rapid exchange with the bulk solvent to affect the relaxation of all solvent protons Paul-Roth and Raymond. Inorg Chem 1995 - all considered safe enough for clinical use 12/9/2008 Page 30 Contrast Agent: Gd Spherical Models Gadopentetate (Magnevist) Gadodiamide (Omniscan) Gadoterate (Dotarem) Gadoteridol (ProHance) courtesy: Weinmann, Schering AG Seite 15
16 12/9/2008 Page 31 Contrast Agent: Gd-DTPA Complex octadentate coordination of gadolinium one free coordination side is occupied by a water molecule relationships between the chemical structure and the factors determining the ability to enhance the water protons relaxation rates for a positive CA short T1 time high longitudinal relaxation rate 12/9/2008 Page 32 Gd-DTPA Relaxation Mechanism dipolar interaction between the paramagnetic ion and the proton nuclei of coordinated water molecules 1. the number of metal bound water molecules q 2. molecular reorientation time τ R 3. electron-spin relaxation time τ S 4. and chemical exchange time τ M described in detail by the Solomon-Bloembergen-Morgan theory Bloemenbergen and Morgan. J Chem Phys 1961 Solomon. Phys Rev 1955 Seite 16
17 12/9/2008 Page 33 Spin-Echo: Gd-DTPA Example - typical measuring protocol in brain diagnostics SE T1 w SE T2 w SE T1 w patient: glioblastoma intravenous injection of 0.1 mmol/kg Gd-DTPA 12/9/2008 Page 34 Fast Imaging Fast Imaging Seite 17
18 12/9/2008 Page 35 Fast Spin-Echo Imaging RF 90 TE eff 180 180 180 echo 2 echo 1 G s echo 3 echo spacing G r G p compensation of G p after signal acquisition signal fluid signalacquisition 1 total k-space line is acquired with every echo muscle time - turbo-se-technique (TSE) with acceleration-factor 3 - acquired k-space data after first TR Hennig et al. MRM 1986 12/9/2008 Page 36 PSF: K-Space Inhomogeneity k-space 15 echoes ΔTE = 10 ms T2 = 50 ms position [pixel] Seite 18
19 12/9/2008 Page 37 Fast Spin-Echo Imaging: Examples TSE turbo-factor: 3 TR / TE = 4 s / 11 ms matrix: 320 x 256 3:36 min TSE turbo-factor: 33 TR / TE = 4 s / 11 ms matrix: 320 x 256 16 s - tissue with long T2 (water) sharp (see arrow) - tissue with short T2 (fat) blurred TSE heart turbo-factor: 23 ECG-triggered breath hold 12/9/2008 Page 38 Fast Spin-Echo Imaging: FLAIR TSE FLAIR TI - turbo-inversion-recovery -sequence (TIR) for fluid suppression followed by TSE readout - fluid-attenuated-inversion-recovery (FLAIR) - patient with brain tumour TSE: 4000/115 ms, TF = 15 FLAIR: 9000/115 ms, TF = 21, TI = 2500 ms Seite 19
20 12/9/2008 Page 39 Fast Spin-Echo Imaging: HASTE k-space frequency encoding sequence acquired hologram phase encoding calculation of missing points by mirroring at origin reconstructed MR-image Fourier transformation - HASTE: half-fourier acquisition single-shot turbo spin-echo - HASTE lung imaging: TE = 29 ms, ΔTE = 3.6 ms, N = 50 echoes, GRAPPA = 2, t aq = 200 ms! difference image - lung parenchyma is visible! 12/9/2008 Page 40 Fast Gradient-Echo Imaging: EPI - echo-planar imaging EPI - multi-gradient imaging technique - single-shot technique with strong requirements to the gradient power - strong T2* dependency susceptibility artifacts! - fastest imaging technique Sir Mansfield 2003 Nobel prize in medicine Mansfield and Pykett. JMR 1978 Seite 20
21 12/9/2008 Page 41 Fast Gradient-Echo Imaging: EPI Technique 12/9/2008 Page 42 EPI Problem: N/2 Ghosts gradient echo EPI echo shift of odd against even echoes Seite 21
22 12/9/2008 Page 43 EPI Problem: Field Inhomogeneities gradient echo EPI 12/9/2008 Page 44 Fast Gradient-Echo Imaging: EPI Examples 40 slices in 4 s! Seite 22
23 12/9/2008 Page 45 Fast Gradient-Echo Imaging: EPI Methods classical EPI diffusion-weighted EPI DW-EPI spin-echo EPI SE-EPI HF 12/9/2008 Page 46 Fast Gradient-Echo Imaging: 3D FLASH 3D-FLASH-Sequenz sequence Echo Spindephasierung measured Gz Gy Gx N slice N phase reconstructed AQ N freq TE TR Haase et al. MRM 1986 - whole brain imaging: 3D FLASH: 20/6/30, 256 slices - 3D isotropic resolution: 1 x 1 x 1 mm 3, t aq ~ 20 min Seite 23
24 12/9/2008 Page 47 3D FLASH: Example 1810 1800 1790 1780 1770 1760 1750 1740 1730 1720 1710 1700 1690 1680 1670 1660 1650 1640 1630 1620 run length nonuniformity horizontal vertical 45 135 direction - clinical application: osteoporosis - high resolution heel imaging: - 3D FLASH: 25/11/30, 100 slices, t aq ~ 10 min - 3D isotropic resolution: 0.4 x 0.4 x 0.4 mm 3!!! 12/9/2008 Page 48 Fast Gradient-Echo Imaging: MP-RAGE TI - MP-RAGE: 3D magnetization prepared rapid gradient echo technique Mugler and Brookeman. MRM 1990 - volunteer whole brain imaging: MP-RAGE: 10/4/10, TI = 200 ms, 128 slices - 3D isotropic resolution: 0.9 x 0.9 x 1.2 mm 3 t aq ~ 8 min! Seite 24
25 12/9/2008 Page 49 Fast Gradient-Echo Imaging: PSIF phase development excitation refocusing - PSIF: 3D reversed timing of FISP noissecerp etats ydaets htiw gnigami tsaf technique Bruder et al. MRM 1988 - volunteer whole brain imaging: PSIF: 17/7/50, 128 slices - 3D isotropic resolution: 0.9 x 0.9 x 1.2 mm 3 t aq ~ 10 min! 12/9/2008 Page 50 Clinical Application: MP-RAGE, PSIF Friedlinger et al. Comp Med Ima Graph 1995 - brain volumetry (GM, WM, CSF) in Alzheimer disease Seite 25
26 12/9/2008 Page 51 Clinical Application: 3D Visualization - functional MRI overlaid to MP-RAGE - planning of neurosurgery 12/9/2008 Page 52 Fast Imaging: Hybrid Technique GRASE spin-echo gradient-echoes - GRASE: gradient and spin-echo technique - TGSE: turbo-gradient-spin-echo technique - TSE technique mixed with GE s - k-space variability: SE s in center of k-space GE s at border of k-space - volunteer high resolution imaging: GRASE: 2030/112/90 ms - resolution: 0.4 x 0.4 x 2 mm 3! Oshio and Feinberg. MRM 1991 Seite 26
27 12/9/2008 Page 53 Summary: K-Space Scan Options conventional 1 echo / TR SE GE / FLASH FLAIR MP-RAGE FISP PSIF hybrid multiple echoes / TR TSE TGSE / GRASE single-shot all echoes / TR HASTE EPI 12/9/2008 Page 54 Summary: K-Space / Speed spinechoes gradientechoes speed Seite 27
28 12/9/2008 Page 55 Sequence Family 12/9/2008 Page 56 Sequence Family with Examples EPI MPR TGSE truefisp TIR TSE TIR, TIRM, TFLAIR HASTE TSE, FSE RARE TGSE GSE GRASE IR CSE EPI SE MPRAGE GE turboflash snapshotflash FSPGR PSIF CE-FAST GRE truefisp CISS DESS FISP GRASS FAST T2-FFE FLASH SPGR T1-FFE spoiled FAST PSIF FLASH W. Nitz, Siemens AG Fourier-Coding K-Space Seite 28
29 12/9/2008 Page 57 Babylonian Confusion of Tongues I Acronym Name Explanation Synonyms CE-FAST Contrast enhanced FAST GRE with SE-part using steady state magnetization name also PSIF, CE- GRASS CE-GRASS Contrast enhanced GRASS GRE with SE-part using steady state magnetization name also PSIF, CE-FAST CISS Constructive interference in steady state two GRE-sequences with SE-part where single signals are added constructive DESS Double echo steady state double-gre-sequence where GRE- and SE-parts are measured separately and added afterwards EPI Echo planar imaging multiple GRE after one excitation; mostly all raw data in one pulse train FAST Fast acquired steady state technique GRE using steady state magnetization name also FISP, FAST FFE Fast field echo GRE with small angle excitation FISP FISP Fast imaging with steady precession GRE using steady state magnetization name also GRASS, FAST FLASH Fast low angle shot GRE with small angle excitation T1-FFE, Spoiled GRASS FLAIR Fluid attenuated inversion recovery SE with 180 -pulse at the beginning, long inversion time for fluid attenuation - FSE Fast spin echo SE with multiple 180 -pulses, one raw data line per echo TSE, RARE FSPGR Fast spoiled GRASS GRE, fast FLASH with preparation pulse for contrast enhancement name also turbo-flash, TURBO-FFE, Snapshot- FLASH 12/9/2008 Page 58 Babylonian Confusion of Tongues II GRASE Gradient and spin echo Turbo-SE-sequence where SE is surrounded by GRE name also TGSE GRASS Gradient refocused acquisition in the steady state GRE using steady state magnetization name also FISP, FAST HASTE Half Fourier single shot turbo spin echo Turbo-SE with Half-Fourier-Acquisition, all raw data in one pulse train IR Inversion recovery SE with 180 -pulse at the beginning MP-RAGE Magnetization prepared rapid gradient echo 3D-variant of Turbo-FLASH T1-FFE T1 fast field echo GRE with small angle excitation FLASH, Spoiled GRASS PSIF mirrored" FISP GRE with SE-part using steady state magnetization name also CE-FAST, CE- GRASS RARE Rapid acquisition with relaxation enhancement SE with multiple 180 -pulses, one raw data line per echo name also TSE, FSE SE Spin echo 90-180 -pulse train snapshotflash Snapshot FLASH GRE, fast FLASH with preparation pulse for contrast enhancement name also turbo-flash, FSPGR, TFE Spoiled GRASS Spoiled gradient refocused acquisition in the steady state GRE with small angle excitation name also FLASH, FFE STEAM Stimulated echo acquisition mode Pulse train with three 90 -pulses STIR Short TI inversion recovery SE-sequence with 180 -pulse at the beginning, imaging of absolute signal Seite 29
30 12/9/2008 Page 59 Babylonian Confusion of Tongues III TGSE Turbo gradient spin echo Turbo-SE-sequence where SE is surrounded by GRE name also GRASE TIR Turbo inversion recovery Turbo-SE with 180 -pulse at the beginning TIRM Turbo inversion recovery magnitude Turbo-SE with 180 -pulse at the beginning, imaging of absolute signal truefisp True fast imaging with steady precession GE using steady state magnetization, all gradients are symmetric TSE Turbo spin echo SE with multiple 180 -pulses, one raw data line per echo FSE, RARE TFE Turbo fast field echo GRE, with multiple 180 -pulses, one raw data line per echo name also turbo-flash, Snapshot-FLASH, FSPGR TFL Turbo fast low angle shot GRE, fast FLASH with preparation pulse for contrast enhancement name also Snapshot- FLASH, FSPGR; TFE - the most important MRI-sequences!! SE / TSE FLASH / FISP / EPI 12/9/2008 Page 60 MRI: Advantage - Disadvantage - advantage - disadvantage best soft tissue contrast of all imaging modalities multi-planar slice orientation no ionizing radiation high flexibility of the method due to complex signal dependency of physical parameters costs availability contraindication It s fun!! Seite 30
31 12/9/2008 Page 61 Summary I - essential prerequisites for MRI are: 1. nuclear spin (magnetic moment) 2. strong, homogeneous magnetic field (0.1-7 Tesla) 3. nuclear magnetic resonance (interaction of magnetization with a high frequency pulse) 4. relaxation (T1, T2) 12/9/2008 Page 62 Summary II Larmor-frequency: ω = γ. B 0 magnetic field gradients for spatial encoding ω(x) = γ. B(x) = γ. B 0 + γ. G x. x - slice selection gradient - phase encoding gradient - frequency encoding gradient (readout gradient) Seite 31
32 12/9/2008 Page 63 Summary III pulse sequences are a chronology of RF-pulses and gradients the most important basic types of sequences are spin-echo and gradient-echo sequences spin-echo sequences are using a 90 -pulse for excitation followed by a 180 -refocussing pulse gradient-echo sequences are much faster since they use flip-angles of less than 90 for excitation without using any 180 -refocussing pulse EPI sequences are normally single-shot techniques, i.e. the complete image is acquired after one RF excitation 12/9/2008 Page 64 Summary IV k-space formalism is a very helpful decription in MRI k x = γ G x t k y = γ G y T p the measured signals in MRI are the Fourier transform of the unknown image S ( k x, k y ) = ρ ( x, y) F.T. e i 2π ( k x x + k y y ) dx dy Seite 32
33 12/9/2008 Page 65 Summary V source: Liang and Lauterbur. Principles of Magnetic Resonance Imaging 2000 Finale 12/9/2008 Page 66 Seite 33