Physics of Imaging Systems Basic Principles of Magnetic Resonance Imaging II

Size: px
Start display at page:

Download "Physics of Imaging Systems Basic Principles of Magnetic Resonance Imaging II"

Transcription

1 1 10/30/2015 Page 1 Master s Program in Medical Physics Physics of Imaging Systems Basic Principles of Magnetic Resonance Imaging II Chair in Faculty of Medicine Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1-3 D Mannheim, Germany Lothar.Schad@MedMa.Uni-Heidelberg.de 10/30/2015 Page 2 Literature I Dance et al.: Diagnostic Radiology Physics Publisher: International Atomic Energy Agency Diagnostic-Radiology-Physics-A-Handbook-for- Teachers-and-Students Free download!!! Seite 1

2 2 10/30/2015 Page 3 Literature II Reiser and Semmler: Magnetresonanztomographie Chapter 2, /30/2015 Page 4 Literature III Vlaardingerbroek and den Boer: Magnetic Resonance Imaging Theory and Practice, 2003 Seite 2

3 3 10/30/2015 Page 5 Physics: Nuclei Physics: Nuclei 10/30/2015 Page 6 Proton nuclear magnetic moment mechanic moment (spin) rotation charge Seite 3

4 4 10/30/2015 Page 7 Spin Quantum Mechanics I I z = m norm of nuclear spin I with h = Js Planck s constant with m the magnetic quantum number and discrete energy levels -I, -I+1,..., I-1, I in total 2I+1 possibilities m B z 1 2 I = 1 2 E m - m = 1 2 B z Zeeman effect m = /30/2015 Page 8 Spin Quantum Mechanics II magnetic moment µ is defined by nuclear spin I: γ gyromagnetic ratio proton: γ/2π = 42.6 MHz/T only nuclei with I 0 are visible by MRI!! analogy of nuclear magnetism Seite 4

5 5 10/30/2015 Page 9 NMR Nuclei nucleus spin I gyromagnetic ratio γ [10 8 rad s -1 T -1 ] natural abundance of isotope in % sensitivity for B 0 = const. in % (rel. to 1 H) 1 H 1/2 2,675 99,98 100,00 MRI: 110 mol 19 F 1/2 2, ,00 83,40 23 Na 3/2 0, ,00 9,27 31 P 1/2 1, ,00 6,65 2 H 1 0,410 0,01 9, C 0-98,89-13 C 1/2 0,673 1,11 1, N 1 0,193 99,63 1, O 0-99,76-17 O 5/2-0,363 0,04 1, Cl 3/2 0,262 75,77 3, K 3/2 0,125 93,26 4, Mg 5/2-0,164 10,00 2, Ca 7/2-0,180 0,14 8, S 3/2 0,205 0,75 1, (MRS: MRI: MRS: < 10-3 mmol) 50 mmol 40 mmol 10/30/2015 Page 10 Nuclei in an External Magnetic Field Zeeman energy levels of nuclei with I = 3/2 - potential energy in external B 0 : - external RF can induce transition between energy levels if m = ± 1: ω 0 : Larmor frequency = 64 MHz for protons at 1.5 T γ : gyromagnetic ratio = 42.6 MHz/T for protons Seite 5

6 6 10/30/2015 Page 11 NMR History: Discovery Germany - Columbia 1938 Isidor Rabi rebuilt a molecular beam apparatus (Otto Stern) detected nuclear resonance in a stream of Lithium Chloride molecules E -1/2 +1/2 Nobel prize for physics in 1944 B Harvard 1946 Edward Purcell, Torrey and Pound applied radar technology in investigating magnetic resonance achieved the first resonance in a practical sample, a block of paraffin E -1/2 ν +1/2 B Yves De Deene. University of Gent, Belgium B 10/30/2015 Page 12 Semi Classic Description mechanic spinner atomic spinner double precession cone for proton with I =1/2 problem of semi classic description: - mechanic precession = reaction of spinner to external force G - atomic precession = intrinsic properties of proton resulting from QM problem solved by macroscopic quantity: M 0 magnetization Seite 6

7 7 10/30/2015 Page 13 Movie: Summary Plewes DB, Plewes B, Kucharczyk W. The Animated Physics of MRI, University Toronto, Canada 10/30/2015 Page 14 Magnetization M 0 for Spin 1/2 B = 0 M 0 S B = B 0 Σ = N Seite 7

8 8 10/30/2015 Page 15 Boltzmann Statistic M 0 Boltzmann statistic protons: M 0 N +1/2 / N -1/2 = exp( E / kt) = exp(γhb 0 / kt) k : Boltzmann constant = J/K N +1/2 : number of spins parallel to B 0 lower energy level N -1/2 : number of spins anti-parallel to B 0 higher energy level since γhb 0 << kt Taylor series: N +1/2 / N -1/2 = 1 + γhb 0 / kt = = 6.6 ppm at B 0 = 1.0 T and T = 37 C = 310 K. M 0 = (N +1/2 N -1/2 ) <µ z > / volume = (N/V)(γ 2 h 2 /4kT)B 0 10/30/2015 Page 16 Energy Level Ratio source: Lissner and Seiderer. Klinische Kernspintomographie 1987 Seite 8

9 9 10/30/2015 Page 17 Zeeman Effect Curie s law: M 0 = ρ I(I+1) γ 2 h 2 B 0 3kT B 0 m = -1/2 M 0 m = +1/2 B = 0 B = B 0 splitting of energy levels (Zeeman effect) 10/30/2015 Page 18 Magnetic Field B 0 static magnetic field B 0 field strength homogeneity Tesla < 1.0 ppm nitrogen 77 K helium 4.2 K vacuum M 0 copper wires with niobium-titanium-fibers super conducting coil NbTi, Nb 3 Sn cryostat cooling liquid He, (N 2 ) Seite 9

10 10 10/30/2015 Page 19 Magnetic Field B 0 : Construction courtesy: Overweg, Philips 10/30/2015 Page 20 Comparison: CT - MRI CT = transmission tomography MRI = direct tomography X-ray tube detector detector electronics M 0 high voltage projection data Seite 10

11 11 10/30/2015 Page 21 Correspondence Principle in 1 mm 3 water about 6x10 19 protons (6x10 23 protons / mol Avogadro number) 10 ppm (10-5 ) energy level ratio at 1.5 T 6x10 14 parallel spins in M 0 Bohr s correspondence principle lim QM classical physics n 8 Proton M 0 10/30/2015 Page 22 Summary: Proton Bulk source: Schlegel and Mahr. 3D Conformal Radiation Therapy: A Multimedia Introduction to Methods and Techniques" 2007 Seite 11

12 12 10/30/2015 Page 23 Quantum Mechanic Classical Mechanic quantum mechanic classical mechanic Schrödinger equation: Bloch equation notice: M is a macroscopic quantity, all nutation angles are allowed CM µ is a microscopic quantity, only +1/2 and -1/2 are allowed QM Slichter. Principles of Magnetic Resonance /30/2015 Page 24 Leipzig - Stanford 1946 NMR History: Theory Felix Bloch achieved the same in a sample of water provided the mathematical characterization of the nuclear magnetic resonance phenomenon Nobel Prize for physics (Bloch & Purcell) in 1952 the Bloch equations B M x B M dm dt = γ (M x B) - G L L x G L = I ω Yves De Deene. University of Gent, Belgium Seite 12

13 13 10/30/2015 Page 25 Radiofrequency: Resonance N M R Nuclear Magnetic Resonance calculation of RF wave length: c H2O = c/ ε H2O ~ c/7 λ = c/ν λ ~ 67 cm at 1.5 T ( 64 MHz) λ ~ 14 cm at 7.0 T (298 MHz) 10/30/2015 Page 26 Electromagnetic Spectrum frequency [Hz] wave length [m] photon energy [ev] radiation molecular impact x- and γ-ray DNA break UV-radiation visible light IR-radiation e - -excitation (orbital) oscillation rotation UKW KW MW MRI LW source: Lissner and Seiderer. Klinische Kernspintomographie 1987 Seite 13

14 14 10/30/2015 Page 27 Resonance: Basic Principle swing tuning fork - energy transfer between A and B is only possible if both systems are resonant - RF system has to work at 64 MHz at 1.5 T 10/30/2015 Page 28 Radiofrequency: Rotating Frame y y in a rotating coordinate system the x y plane is rotating synchronous with a circular polarized RF-field B 1 -vector is not moving in this system! ω RF x rotating M 0 -vector only sees B 1! B 1 x radiofrequency RF: ω RF = γ B 0 Seite 14

15 15 10/30/2015 Page 29 Movie: Rotating Frame Plewes DB, Plewes B, Kucharczyk W. The Animated Physics of MRI, University Toronto, Canada 10/30/2015 Page 30 Magnetization Dynamic rotating system laboratory system in the rotating frame the M 0 -vector starts to precede with ω 1 = γ B 1 around the direction of B 1 in the laboratory frame the M 0 -vector is moving spirally in the direction of the x,y plane flip angle: α = ω 1 t p = γ B 1 t p B 0 >> B 1 ω 0 >> ω 1 Seite 15

16 16 10/30/2015 Page 31 RF-Pulse Characteristics since t p is a finite quantity the frequency distribution of the excited spins after Fourier transformation does have a frequency shape and bandwidth called sinc-pulse for t p : frequency spectrum gets monochromatically 10/30/2015 Page and Pulses 90 -pulse (π/2-pulse) in the laboratory and rotating coordinate system N -1/2 = N +1/2 to : 3x10 14 spins per 1 mm 3 at 1.5 T 180 -pulse (π-pulse) in the laboratory and rotating coordinate system N -1/2 > N +1/2 = -M 0 to : 6x10 14 spins per 1 mm 3 at 1.5 T source: Lissner and Seiderer. Klinische Kernspintomographie 1987 Seite 16

17 17 10/30/2015 Page 33 Movie: Spin Excitation Plewes DB, Plewes B, Kucharczyk W. The Animated Physics of MRI, University Toronto, Canada 10/30/2015 Page 34 NMR Experiment: Signal Detection object is located in a homogeneous static magnetic field B 0 RF-coil creates a magnetic field B 1 perpendicular to B 0 transmitter after excitation the received signal of the object is transferred by the receiving electronic to the computer receiver Seite 17

18 18 10/30/2015 Page 35 Movie: Free Induction Decay FID free induction decay: FID M xy signal intensity time Plewes DB, Plewes B, Kucharczyk W. The Animated Physics of MRI, University Toronto, Canada 10/30/2015 Page 36 NMR Excitation and Signal Detection B 0 B 0 M magnetic field RF transmit coil with ν = ω 0 M RF receive coil excitation detection RF receive coil Seite 18

19 19 10/30/2015 Page 37 FID Signal and Frequency Spectrum RF receive coil FID-signal (free induction decay) damped oscillation B 0 NMR frequency spectrum ω 0 = -γ B 0 M xy precession Larmor frequency ω 0 10/30/2015 Page 38 Faraday Induction bicycle dynamo loop with rotating magnet rotating magnetic moments z N S x M y y M xy signal intensity free induction decay: FID time Seite 19

20 20 10/30/2015 Page 39 Signal Detection Based on: - Faraday law of electromagnetic induction and - principal of reciprocity Electromagnetic Induction: a temporally variable magnetic flux in a loop (receiver coil) induces a charge in this loop which is proportional to the rate of change of the magnetic flux in the loop Principal of Reciprocity: the sensitivity for detecting a rotating magnetic moment in space is directly proportional to a corresponding electric current in the coil which is necessary for generating the same magnetic field at this point in space 10/30/2015 Page 40 Principal of Reciprocity correspondence between field strength and induced voltage no change of magnetic flux no induced voltage Hoult. Encyclopedia of Nuclear Magnetic Resonance 1996 Seite 20

21 21 10/30/2015 Page 41 Coil Signal magnetic flux through the coil: sensitivity of receiving coil Faraday induction: 10/30/2015 Page 42 Radio Frequency Coils: Volume Resonators Seite 21

22 22 10/30/2015 Page 43 Radio Frequency Coils: Coil Arrays I Hardy et al. MRM 2006 Zhu et al. MRM /30/2015 Page 44 Radio Frequency Coils: Coil Arrays II 102 seamlessly integrated coil elements at 32 receiving channels matrix coils: head neck stem leg courtesy: Siemens AG, Erlangen Seite 22

23 23 10/30/2015 Page 45 Radio Frequency Coils: Coil Sensitivity surface coils inhomogeneity correction phased array coils image combination parallel imaging: SMASH / SENSE array body combination coil 10/30/2015 Page 46 MRI Components: Schema magnet RF-unit (receiver) input/output-panel gradient system RF-unit (transmitter) computer Seite 23

24 24 10/30/2015 Page 47 MRI Components: Physical Parameters radio- gradients G xyz static field B 0 frequency RF shim coils gradient shim transmitter receiver technical component physical parameter static field B 0 M 0 radiofreq. RF signal control panel computer 350 MHz 350 MHz image processor gradients G xyz image Seite 24

Basic Principles of Magnetic Resonance

Basic Principles of Magnetic Resonance Basic Principles of Magnetic Resonance Contents: Jorge Jovicich jovicich@mit.edu I) Historical Background II) An MR experiment - Overview - Can we scan the subject? - The subject goes into the magnet -

More information

Nuclear Magnetic Resonance (NMR) Spectroscopy

Nuclear Magnetic Resonance (NMR) Spectroscopy April 28, 2016 Exam #3: Graded exams on Tuesday! Final Exam Tuesday, May 10 th, 10:30 a.m. Room: Votey 207 (tentative) Review Session: Sunday, May 8 th, 4 pm, Kalkin 325 (tentative) Office Hours Next week:

More information

How To Understand The Measurement Process

How To Understand The Measurement Process April 24, 2015 Exam #3: Solution Key online now! Graded exams by Monday! Final Exam Monday, May 4 th, 10:30 a.m. Room: Perkins 107 1 A Classical Perspective A classical view will help us understand the

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance NMR is probably the most useful and powerful technique for identifying and characterizing organic compounds. Felix Bloch and Edward Mills Purcell were awarded the 1952 Nobel

More information

NMR Techniques Applied to Mineral Oil, Water, and Ethanol

NMR Techniques Applied to Mineral Oil, Water, and Ethanol NMR Techniques Applied to Mineral Oil, Water, and Ethanol L. Bianchini and L. Coffey Physics Department, Brandeis University, MA, 02453 (Dated: February 24, 2010) Using a TeachSpin PS1-A pulsed NMR device,

More information

Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE

Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE SUMMARY (I/II) Angular momentum and the spinning gyroscope stationary state equation Magnetic dipole

More information

Generation and Detection of NMR Signals

Generation and Detection of NMR Signals Generation and Detection of NMR Signals Hanudatta S. Atreya NMR Research Centre Indian Institute of Science NMR Spectroscopy Spin (I)=1/2h B 0 Energy 0 = B 0 Classical picture (B 0 ) Quantum Mechanical

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Most spinning nuclei behave like magnets. Nuclear Magnetic Resonance Spectroscopy asics owever, as opposed to the behavior of a classical magnet the nuclear spin magnetic moment does not always align with

More information

4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a

4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a BASIC PRINCIPLES INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE (NMR) 1. The nuclei of certain atoms with odd atomic number, and/or odd mass behave as spinning charges. The nucleus is the center of positive

More information

Pulsed Fourier Transform NMR The rotating frame of reference. The NMR Experiment. The Rotating Frame of Reference.

Pulsed Fourier Transform NMR The rotating frame of reference. The NMR Experiment. The Rotating Frame of Reference. Pulsed Fourier Transform NR The rotating frame of reference The NR Eperiment. The Rotating Frame of Reference. When we perform a NR eperiment we disturb the equilibrium state of the sstem and then monitor

More information

The Hydrogen Atom Is a Magnet. http://www.seed.slb.com/en/scictr/watch/gashydrates/detecting.htm

The Hydrogen Atom Is a Magnet. http://www.seed.slb.com/en/scictr/watch/gashydrates/detecting.htm The Hydrogen Atom Is a Magnet Nuclear Magnetic Resonance Spectroscopy (NMR) Proton NMR A hydrogen nucleus can be viewed as a proton, which can be viewed as a spinning charge. As with any spinning charge,

More information

What is NMR? Innovation with Integrity. Nuclear Magnetic Resonance NMR

What is NMR? Innovation with Integrity. Nuclear Magnetic Resonance NMR What is NMR? Nuclear Magnetic Resonance Innovation with Integrity NMR Nuclear Magnetic Resonance You may have heard the term NMR nuclear magnetic resonance but how much do you actually know about it? NMR

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Practical Course M I. Physikalisches Institut Universität zu Köln May 15, 2014 Abstract Nuclear magnetic resonance (NMR) techniques are widely used in physics, chemistry, and

More information

Nuclear Magnetic Resonance and the Measurement of Relaxation Times of Acetone with Gadolinium

Nuclear Magnetic Resonance and the Measurement of Relaxation Times of Acetone with Gadolinium Nuclear Magnetic Resonance and the Measurement of Relaxation Times of Acetone with Gadolinium Xia Lee and Albert Tsai June 15, 2006 1 1 Introduction Nuclear magnetic resonance (NMR) is a spectroscopic

More information

Introduction to Nuclear Magnetic Resonance Spectroscopy

Introduction to Nuclear Magnetic Resonance Spectroscopy Introduction to Nuclear Magnetic Resonance Spectroscopy Dr. Dean L. Olson, NMR Lab Director School of Chemical Sciences University of Illinois Called figures, equations, and tables are from Principles

More information

Nuclear Magnetic Resonance and Its Application in Condensed Matter Physics

Nuclear Magnetic Resonance and Its Application in Condensed Matter Physics Nuclear Magnetic Resonance and Its Application in Condensed Matter Physics Kangbo Hao 1. Introduction Nuclear Magnetic Resonance (NMR) is a physics phenomenon first observed by Isidor Rabi in 1938. [1]

More information

NMR Nuclear Magnetic Resonance

NMR Nuclear Magnetic Resonance NMR Nuclear Magnetic Resonance Nuclear magnetic resonance (NMR) is an effect whereby magnetic nuclei in a magnetic field absorb and re-emit electromagnetic (EM) energy. This energy is at a specific resonance

More information

Atomic and Nuclear Physics

Atomic and Nuclear Physics Atomic and Nuclear Physics Nuclear Physics Nuclear Magnetic Resonance LD Physics Leaflets P6.5.3.1 Nuclear magnetic resonance in polystyrene, glycerine and teflon Objects g Nuclear Magnetic Resonance on

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Author: James Dragan Lab Partner: Stefan Evans Physics Department, Stony Brook University, Stony Brook, NY 794. (Dated: December 5, 23) We study the principles behind Nuclear

More information

NMR - Basic principles

NMR - Basic principles NMR - Basic principles Subatomic particles like electrons, protons and neutrons are associated with spin - a fundamental property like charge or mass. In the case of nuclei with even number of protons

More information

Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading:

Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading: Applied Spectroscopy Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading: Banwell and McCash Chapter 7 Skoog, Holler Nieman Chapter 19 Atkins, Chapter 18 Relaxation processes We need

More information

Quantum Computing with NMR

Quantum Computing with NMR Quantum Computing with NMR Sabine Keiber, Martin Krauÿ June 3, 2009 Sabine Keiber, Martin Krauÿ Quantum Computing with NMR June 3, 2009 1 / 46 1 A Short Introduction to NMR 2 Di Vincenzo's Requirements

More information

Application of Nuclear Magnetic Resonance in Petroleum Exploration

Application of Nuclear Magnetic Resonance in Petroleum Exploration Application of Nuclear Magnetic Resonance in Petroleum Exploration Introduction Darko Tufekcic, consultant email: darkotufekcic@hotmail.com Electro-magnetic resonance method (GEO-EMR) is emerging as the

More information

Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in organic chemistry Related to MRI in medicine

Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in organic chemistry Related to MRI in medicine Structure Determination: Nuclear Magnetic Resonance CHEM 241 UNIT 5C 1 The Use of NMR Spectroscopy Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in

More information

Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy CHEM 334L Organic Chemistry Laboratory Revision 2.0 Proton Nuclear Magnetic Resonance Spectroscopy In this laboratory exercise we will learn how to use the Chemistry Department's Nuclear Magnetic Resonance

More information

Pulsed Nuclear Magnetic Resonance An Experiment for UCSB s Advanced Laboratory

Pulsed Nuclear Magnetic Resonance An Experiment for UCSB s Advanced Laboratory 1 Pulsed Nuclear Magnetic Resonance An Experiment for UCSB s Advanced Laboratory Foreword Pulsed nuclear magnetic resonance is fascinating in its own right, and is also an incredibly important tool for

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Nuclear magnetic resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by identifying carbonhydrogen frameworks within

More information

13C NMR Spectroscopy

13C NMR Spectroscopy 13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

More information

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE References for Nuclear Magnetic Resonance 1. Slichter, Principles of Magnetic Resonance, Harper and Row, 1963. chapter

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Introduction NMR is the most powerful tool available for organic structure determination. It is used to study a wide variety of nuclei: 1 H 13 C 15 N 19 F 31 P 2

More information

MRI. Chapter M. Contents M.1

MRI. Chapter M. Contents M.1 Chapter M MRI Contents Introduction to nuclear magnetic resonance imaging (NMR / MRI)....................... M.2 Physics overview................................................... M.2 Spins......................................................

More information

How To Understand Electron Spin Resonance

How To Understand Electron Spin Resonance HB 10-24-08 Electron Spin Resonance Lab 1 Electron Spin Resonance Equipment Electron Spin Resonance apparatus, leads, BK oscilloscope, 15 cm ruler for setting coil separation Reading Review the Oscilloscope

More information

DIAGNOSTIC MEDICAL IMAGING 1st Part --Introduction. Ing. Tommaso Rossi tommaso.rossi@uniroma2.it

DIAGNOSTIC MEDICAL IMAGING 1st Part --Introduction. Ing. Tommaso Rossi tommaso.rossi@uniroma2.it DIAGNOSTIC MEDICAL IMAGING 1st Part --Introduction Ing. Tommaso Rossi tommaso.rossi@uniroma2.it Tommaso Rossi - Modulo di SEGNALI, a.a. 2013/2014 Overview 2 How we can look on the inside of human body?

More information

CHEM 1411 Chapter 5 Homework Answers

CHEM 1411 Chapter 5 Homework Answers 1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of

More information

where h = 6.62 10-34 J s

where h = 6.62 10-34 J s Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena

More information

mri : Physics For anyone who does not have a degree in physics Evert J Blink Application Specialist MRI

mri : Physics For anyone who does not have a degree in physics Evert J Blink Application Specialist MRI B A S I C mri : Physics For anyone who does not have a degree in physics Evert J Blink Application Specialist MRI 0 Preface Over the years Magnetic Resonance Imaging, hereafter referred to as MRI, has

More information

Theory of spin magnetic resonance: derivations of energy spacing and chemical shifts in NMR spectroscopy.

Theory of spin magnetic resonance: derivations of energy spacing and chemical shifts in NMR spectroscopy. William McFadden Physics 352 Quantum Mechanics Final Project Theory of spin magnetic resonance: derivations of energy spacing and chemical shifts in NMR spectroscopy. Introduction The simplicity of a spin

More information

Dual H&D Cavity for the PAX Target Polarimeter

Dual H&D Cavity for the PAX Target Polarimeter Dual H&D Cavity for the PAX Target Polarimeter M. Capiluppi a, V. Carassiti a, G. Ciullo a, P. Lenisa a, A. Nass b, and E. Steffens c a INFN Ferrara, Italy b IKP, Research Center Jülich, Germany c Univ.

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Chapter 8 Nuclear Magnetic Resonance Spectroscopy http://www.yteach.co.uk/page.php/resources/view_all?id=nuclear_magnetic _resonance_nmr_spectroscopy_spin_spectrometer_spectrum_proton_t_pag e_5&from=search

More information

COURSE#1022: Biochemical Applications of NMR Spectroscopy. http://www.bioc.aecom.yu.edu/labs/girvlab/nmr/course/ Basic Principles

COURSE#1022: Biochemical Applications of NMR Spectroscopy. http://www.bioc.aecom.yu.edu/labs/girvlab/nmr/course/ Basic Principles COURSE#1022: Biochemical Applications of NMR Spectroscopy http://www.bioc.aecom.yu.edu/labs/girvlab/nmr/course/ Basic Principles LAST UPDATE: 1/11/2012 Reading Selected Readings for Basic Principles of

More information

Main properties of atoms and nucleus

Main properties of atoms and nucleus Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom

More information

Introduction to NMR spectroscopy. Swiss Institute of Bioinformatics I.Phan & J. Kopp

Introduction to NMR spectroscopy. Swiss Institute of Bioinformatics I.Phan & J. Kopp Introduction to NMR spectroscopy Swiss Institute of Bioinformatics I.Phan & J. Kopp NMR: the background Complex technique. Requires knowledge in: Mathematics Physics Chemistry Biology (Medicin) Involves

More information

Chapter 1. Fundamentals of NMR THOMAS L. JAMES. Department of Pharmaceutical Chemistry University of California San Francisco, CA 94143-0446 U.S.A.

Chapter 1. Fundamentals of NMR THOMAS L. JAMES. Department of Pharmaceutical Chemistry University of California San Francisco, CA 94143-0446 U.S.A. Chapter 1 Fundamentals of NMR THOMAS L. JAMES Department of Pharmaceutical Chemistry University of California San Francisco, CA 94143-0446 U.S.A. 1.1 INTRODUCTION 1.2 MAGNETIC RESONANCE Nuclear Spins The

More information

NMR for Physical and Biological Scientists Thomas C. Pochapsky and Susan Sondej Pochapsky Table of Contents

NMR for Physical and Biological Scientists Thomas C. Pochapsky and Susan Sondej Pochapsky Table of Contents Preface Symbols and fundamental constants 1. What is spectroscopy? A semiclassical description of spectroscopy Damped harmonics Quantum oscillators The spectroscopic experiment Ensembles and coherence

More information

Electron Paramagnetic (Spin) Resonance

Electron Paramagnetic (Spin) Resonance Electron Paramagnetic (Spin) Resonance References: Jardetzky & Jardetzky, Meth. Biochem. Anal. 9, 235. Wertz & Bolton, Electron Spin Resonance Poole, Electron Spin Resonance... Abragam & Bleaney, EPR of

More information

1. Basics of LASER Physics

1. Basics of LASER Physics 1. Basics of LASER Physics Dr. Sebastian Domsch (Dipl.-Phys.) Computer Assisted Clinical Medicine Medical Faculty Mannheim Heidelberg University Theodor-Kutzer-Ufer 1-3 D-68167 Mannheim, Germany sebastian.domsch@medma.uni-heidelberg.de

More information

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy Concept 2 A. Description of light-matter interaction B. Quantitatities in spectroscopy Dipole approximation Rabi oscillations Einstein kinetics in two-level system B. Absorption: quantitative description

More information

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves 5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

More information

Precession of spin and Precession of a top

Precession of spin and Precession of a top 6. Classical Precession of the Angular Momentum Vector A classical bar magnet (Figure 11) may lie motionless at a certain orientation in a magnetic field. However, if the bar magnet possesses angular momentum,

More information

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated

More information

Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy Proton Nuclear Magnetic Resonance Spectroscopy Introduction: The NMR Spectrum serves as a great resource in determining the structure of an organic compound by revealing the hydrogen and carbon skeleton.

More information

Preface. (modified from Alastair G. Smith, Surgeons Hall, Edinburgh, October 1939) H. H. Schild

Preface. (modified from Alastair G. Smith, Surgeons Hall, Edinburgh, October 1939) H. H. Schild Author: Prof. Dr. Hans H. Schild Lt. Oberarzt im Institut für Klinische Strahlenkunde des Klinikums der Johann-Gutenberg-Universität All rights, particularly those of translation into foreign languages,

More information

NUCLEAR MAGNETIC RESONANCE. Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706

NUCLEAR MAGNETIC RESONANCE. Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706 (revised 4/21/03) NUCLEAR MAGNETIC RESONANCE Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706 Abstract This experiment studies the Nuclear Magnetic Resonance of protons

More information

Nuclear Magnetic Resonance Spectroscopy Notes adapted by Audrey Dell Hammerich, October 3, 2013

Nuclear Magnetic Resonance Spectroscopy Notes adapted by Audrey Dell Hammerich, October 3, 2013 Nuclear Magnetic Resonance Spectroscopy Notes adapted by Audrey Dell Hammerich, October 3, 2013 Nuclear magnetic resonance (NMR), as all spectroscopic methods, relies upon the interaction of the sample

More information

Chemistry 102 Summary June 24 th. Properties of Light

Chemistry 102 Summary June 24 th. Properties of Light Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible

More information

Selected Radio Frequency Exposure Limits

Selected Radio Frequency Exposure Limits ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 50: Non-ionizing Radiation Selected Radio Frequency Exposure Limits Product ID: 94 Revision ID: 1736 Date published: 30 June 2015 Date effective: 30 June 2015

More information

Advanced Physics Labs SEPT 2006. Pulsed NMR

Advanced Physics Labs SEPT 2006. Pulsed NMR Advanced Physics Labs SEP006 Pulsed NMR Pulsed NMR is widely used for chemical analysis, in Magnetic Resonance Imaging (MRI), and a number of other applications of magnetic resonance. In this lab you will

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

Infrared Spectroscopy: Theory

Infrared Spectroscopy: Theory u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

More information

Organic Chemistry Tenth Edition

Organic Chemistry Tenth Edition Organic Chemistry Tenth Edition T. W. Graham Solomons Craig B. Fryhle Welcome to CHM 22 Organic Chemisty II Chapters 2 (IR), 9, 3-20. Chapter 2 and Chapter 9 Spectroscopy (interaction of molecule with

More information

NMR-the basic principles and its use in studies of water/ethanol/mixture

NMR-the basic principles and its use in studies of water/ethanol/mixture NMR-the basic principles and its use in studies of water/ethanol/mixture Ayhan DEMİR, Bachelor Degree Project in Chemistry, 15 ECTS, April 2012, Sweden. Supervisor: Prof. Per Olof WESTLUND, Dr.Tobias SPARRMAN

More information

Chapter 19 Nuclear Magnetic Resonance Spectroscopy (NMR)

Chapter 19 Nuclear Magnetic Resonance Spectroscopy (NMR) Chapter 19 Nuclear Magnetic Resonance Spectroscopy (NMR) 23 pages 2 weeks worth! Problems : 1, 2, 3, 4, 7, 10, 11, 19, 20, 22, 24, 27, 30, 34, 35 Absorption of radio-frequency E from 4-900 MHz (wavelengths

More information

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1 AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three

More information

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu)

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) Introduction Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) The scattering of light may be thought of as the redirection

More information

- thus, the total number of atoms per second that absorb a photon is

- thus, the total number of atoms per second that absorb a photon is Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

More information

Chemistry 307 Chapter 10 Nuclear Magnetic Resonance

Chemistry 307 Chapter 10 Nuclear Magnetic Resonance Chemistry 307 Chapter 10 Nuclear Magnetic Resonance Nuclear magnetic resonance (NMR) spectroscopy is one of three spectroscopic techniques that are useful tools for determining the structures of organic

More information

Review of the isotope effect in the hydrogen spectrum

Review of the isotope effect in the hydrogen spectrum Review of the isotope effect in the hydrogen spectrum 1 Balmer and Rydberg Formulas By the middle of the 19th century it was well established that atoms emitted light at discrete wavelengths. This is in

More information

KE A = PE MAX 1/2M v 2 = k q1 q2 /R

KE A = PE MAX 1/2M v 2 = k q1 q2 /R CHAPTER 13 NUCLEAR STRUCTURE NUCLEAR FORCE The nucleus is help firmly together by the nuclear or strong force, We can estimate the nuclear force by observing that protons residing about 1fm = 10-15m apart

More information

NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany.

NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany. NMR SPECTROSCOPY Basic Principles, Concepts, and Applications in Chemistry Harald Günther University of Siegen, Siegen, Germany Second Edition Translated by Harald Günther JOHN WILEY & SONS Chichester

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

More information

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Main points of the chapter 1. Hydrogen Nuclear Magnetic Resonance a. Splitting or coupling (what s next to what) b. Chemical shifts (what type is it) c. Integration

More information

NMR Signal Properties & Data Processing

NMR Signal Properties & Data Processing COURSE#1022: Biochemical Applications of NMR Spectroscopy http://www.bioc.aecom.yu.edu/labs/girvlab/nmr/course/ NMR Signal Properties & Data Processing LAST UPDATE: 1/13/2012 Reading Selected Readings

More information

WAVES AND ELECTROMAGNETIC RADIATION

WAVES AND ELECTROMAGNETIC RADIATION WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):

More information

Nuclear Magnetic Resonance (NMR) Wade Textbook

Nuclear Magnetic Resonance (NMR) Wade Textbook Nuclear Magnetic Resonance (NMR) Wade Textbook Background Is a nondestructive structural analysis technique Has the same theoretical basis as magnetic resonance imaging (MRI) Referring to MRI as nuclear

More information

ELECTRON SPIN RESONANCE Last Revised: July 2007

ELECTRON SPIN RESONANCE Last Revised: July 2007 QUESTION TO BE INVESTIGATED ELECTRON SPIN RESONANCE Last Revised: July 2007 How can we measure the Landé g factor for the free electron in DPPH as predicted by quantum mechanics? INTRODUCTION Electron

More information

A look at the utility of pulsed NMR

A look at the utility of pulsed NMR 1 A look at the utility of pulsed NMR Katherine Magat and Vasudev Mandyam Physics 173, Spring 2004, Prof. Kleinfeld Introduction Pulsed nuclear magnetic resonance (NMR) was first introduced in the 1940

More information

Trans Fats. What is a trans fat? Trans fatty acids, or trans fats as they are known, are certain

Trans Fats. What is a trans fat? Trans fatty acids, or trans fats as they are known, are certain Trans Fats What is a trans fat? Trans fatty acids, or trans fats as they are known, are certain fats found in such foodstuffs as vegetable shortenings, margarines, crackers, candies baked goods and many

More information

Relaxation Can T, Be Longer Than T,?

Relaxation Can T, Be Longer Than T,? Concepts in Magnetic Resonance, 1991, 3, 171-177 Relaxation Can T, Be Longer Than T,? Daniel D. Traficante Departments of Chemistry and Medicinal Chemistry and NMR Concepts UniVersily of Rhode Island Kingston,

More information

NMR and MRI. Seppo Vahasalo Philips Medical Systems MR Finland 2008-06-17

NMR and MRI. Seppo Vahasalo Philips Medical Systems MR Finland 2008-06-17 NMR and MRI Seppo Vahasalo Philips Medical Systems MR Finland 2008-06-17 Contents Some local MRI history NMR and MRI Physics Magnet technology and electronics Recent trends in MRI and magnet technology

More information

Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes

Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes Disclaimer: These lecture notes are not meant to replace the course textbook. The content may be incomplete. Some topics may be unclear. These notes are only meant to be a study aid and a supplement to

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm First H/W#1 is due Sept. 10 Course Info The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model)

More information

A GENERALIZED FINITE SIZED DIPOLE MODEL FOR RADAR AND MEDICAL IMAGING PART II: NEAR FIELD FORMULATION FOR MAGNETIC RESONANCE IMAGING

A GENERALIZED FINITE SIZED DIPOLE MODEL FOR RADAR AND MEDICAL IMAGING PART II: NEAR FIELD FORMULATION FOR MAGNETIC RESONANCE IMAGING Progress In Electromagnetics Research, PIER 24, 227 256, 1999 A GENERALIZED FINITE SIZED DIPOLE MODEL FOR RADAR AND MEDICAL IMAGING PART II: NEAR FIELD FORMULATION FOR MAGNETIC RESONANCE IMAGING T. S.

More information

Time out states and transitions

Time out states and transitions Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hn = DE = E i - E f Energy levels due to interactions between

More information

Low-field NMR Measurement Procedure when SQUID Detection is Used

Low-field NMR Measurement Procedure when SQUID Detection is Used Low-field NMR Measurement Procedure when SQUID Detection is Used Longqing Qiu 1,2, Yi Zhang 1, Hans-Joachim Krause 1, Alex I. Braginski 1 and Andreas Offenhäusser 1 (1) Institute of Bio- and Nanosystems,

More information

Understanding Precessional Frequency, Spin-Lattice and Spin-Spin Interactions in Pulsed Nuclear Magnetic Resonance Spectroscopy Introduction Theory

Understanding Precessional Frequency, Spin-Lattice and Spin-Spin Interactions in Pulsed Nuclear Magnetic Resonance Spectroscopy Introduction Theory 1 Understanding Precessional Frequency, Spin-Lattice and Spin-Spin Interactions in Pulsed Nuclear Magnetic Resonance Spectroscopy Wagner, E.P. (revised January 2015) Introduction Nuclear Magnetic Resonance

More information

Flow Sensors. - mass flow rate - volume flow rate - velocity. - stream line parabolic velocity profile - turbulent vortices. Methods of measurement

Flow Sensors. - mass flow rate - volume flow rate - velocity. - stream line parabolic velocity profile - turbulent vortices. Methods of measurement Flow Sensors Flow - mass flow rate - volume flow rate - velocity Types of flow - stream line parabolic velocity profile - turbulent vortices Methods of measurement - direct: positive displacement (batch

More information

An Adaptive Signal Processing Approach to Dynamic Magnetic Resonance Imaging

An Adaptive Signal Processing Approach to Dynamic Magnetic Resonance Imaging An Adaptive Signal Processing Approach to Dynamic Magnetic Resonance Imaging A Thesis Presented by William Scott Hoge to The Department of Electrical and Computer Engineering in partial fulfillment of

More information

NMR SPECTROSCOPY A N I N T R O D U C T I O N T O... Self-study booklet NUCLEAR MAGNETIC RESONANCE. 4 3 2 1 0 δ PUBLISHING

NMR SPECTROSCOPY A N I N T R O D U C T I O N T O... Self-study booklet NUCLEAR MAGNETIC RESONANCE. 4 3 2 1 0 δ PUBLISHING A N I N T R O D U T I O N T O... NMR SPETROSOPY NULEAR MAGNETI RESONANE 4 3 1 0 δ Self-study booklet PUBLISING NMR Spectroscopy NULEAR MAGNETI RESONANE SPETROSOPY Origin of Spectra Theory All nuclei possess

More information

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.

More information

How To Understand Light And Color

How To Understand Light And Color PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 Electronic Supplementary Information Achieving High Resolution and Controlling

More information

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information

Primer on Magentic Resonance Imaging Tomography c 2004

Primer on Magentic Resonance Imaging Tomography c 2004 Primer on Magentic Resonance Imaging Tomography c 2004 Timothy Chupp and Scott Swanson University of Michigan Departments of Physics, Biomedical Engineering, and Radiology March 1, 2004 Contents 1 Introduction

More information

F en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself.

F en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself. The Electron Oscillator/Lorentz Atom Consider a simple model of a classical atom, in which the electron is harmonically bound to the nucleus n x e F en = mω 0 2 x origin resonance frequency Note: We should

More information

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

More information

Spin-Lattice Relaxation Times

Spin-Lattice Relaxation Times Spin-Lattice Relaxation Times Reading Assignment: T. D. W. Claridge, High Resolution NMR Techniques in Organic Chemistry, Chapter 2; E. Breitmaier, W. Voelter, Carbon 13 NMR Spectroscopy,3rd Ed., 3.3.2.

More information

PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

More information

Radiation Transfer in Environmental Science

Radiation Transfer in Environmental Science Radiation Transfer in Environmental Science with emphasis on aquatic and vegetation canopy media Autumn 2008 Prof. Emmanuel Boss, Dr. Eyal Rotenberg Introduction Radiation in Environmental sciences Most

More information