MRI Physics for Radiologists
|
|
|
- Dorothy Evans
- 9 years ago
- Views:
Transcription
1 Alfred L. Horowitz MRI Physics for Radiologists A Visual Approach Second Edition With 94 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest
2 Alfred L. Horowitz, M.D. Director, Magnetic Resonance Imaging, Resurrection Hospital, Chicago, IL and Clinical Assistant Professor of Radiology, University of Illinois Hospital at Chicago, Chicago, IL USA Library of Congress Cataloging-in-Publication Data Horowitz, Alfred L. MRI physics for radiologists: a visual approach I Alfred L. Horowitz. - 2nd ed. p. cm. Includes bibliographical references and index. ISBN-13: Magnetic resonance imaging. [DNLM: 1. Magnetic Resonance Imaging. 2. Physics. OC 762 H816mj RC78.7.N83H '.36:-dc20 DNLMIDLC for Library of Congress Printed on acid-free paper. 1989, 1992 Springer-Verlag New York, Inc. Originally published under the title MRI Physics for Physicians. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. While the advice and information in this book is believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Production managed by Henry Krell; manufacturing supervised by Jacqui Ashri. Camera ready copy provided by author ISBN-13: e-isbn-13: DOl: /
3 To Paula, Jason and Amy
4 PREFACE When this book was initially published three years ago, it was my goal to delineate the principles of magnetic resonance imaging in a format that could be understood without a sophisticated physics or mathematics background. That is still my goal. However, in the interim, it has become clear to me that many magnetic resonance techniques that we now routinely use are inadequately understood by many of us. Therefore, I have re-structured and expanded the book in the following way. There are now three main sections: sections one and two deal with the contrast and spatial characteristics of the image, as they did in the original text; and an additional section deals with various peripheral but significant magnetic resonance topics. Sections one and two still provide the "meat" of the material through the guise of the spin-echo pulse sequence; but section three goes beyond by explaining other pulse cycles and devices that are commonly used in today's imaging centers. To begin with, since fast scanning has now become a widely used technique, that chapter has been significantly expanded, and now includes a complete but non-mathematical explanation of what a gradient echo is and how fast scan images differ in principle from spin-echo images. Also, the applications of 3DFT and "half-fourier" imaging are graphically covered without mathematical intervention. A large chapter is devoted to motion, including the considerations of motion artifacts and the devices used to control them, as well as the subjects of blood flow, and magnetic resonance angiography. A separate little chapter on aliasing is provided to explain the mystery of the "wrap-around" artifact - both in the phase and frequency encoding directions. The last of the new chapters in section three deals with the interaction of water and fat on the MR image, which includes discussions of chemical shift artifacts as well as chemical shift imaging. The mathematical appendix, which appeared in the first addition, has been replaced by a separate chapter that reveals how a scanner receives and processes a signal to form an image (once again ignoring the "queen of sciences"). This chapter forms the conclusion of the section on the formation of the image, and is placed immediately following the detailed explanations of the frequency and phase encoding processes. vii
5 The change in the title of the book, which now refers to a ''visual approach," was undertaken because of the way in which the book was written: nearly every topic was based on a visual graphic conception. The image came first, and then the text was constructed to fit the picture. Certainly, my basic philosophy for this text remains hinged around my belief that the book can be understood by anybody with a knowledge of basic algebra. In conclusion, I again hope that I have achieved my goal of providing understandable explanations of the principles we use in our daily magnetic resonance imaging activities. I again wish to thank the residents and other physicians in the Department of Radiology at the University of Illinois Hospital in Chicago for their helpful comments and questions, which were especially useful in the preparation of sections one and two in the book. I also wish to acknowledge and thank Pradip M. Pattany, MSc., Director of Research and Development MRI of Colorado, and Norbert J. Pelc, Sc.D., Associate Professor Department of Radiology Stanford University Medical School for their physics expertise, which helped me to understand some of the more difficult concepts.
6 CONTENTS Preface vii Section 1-Image Contrast Overview.... Magnetic Field.... Fields.... Basic 'JYpes of Magnets Permanent Magnet... 5 Superconducting Magnet... 6 Vectors... 8 Paramagnetic, Diamagnetic, Ferromagnetic.... Angular Momentum-Nuclear Spin.... Magnetic Dipole Moment.... Resultant M Vector.... Precession and the Larmor Equation.... Radiofrequency Pulse.... Electromagnetic Waves.... Periodic Functions.... Axis Conventions.... Perturbance of the M Vector.... Rotating Frame of Reference.... Resonance.... M vs the Component MDM Vectors.... The Signal and the Mx Vector.... Controlling the Flip of M.... Motion of M in the X-Y Plane.... Relaxation.... T1 and T2 Components of Relaxation.... Tl Curves.... Pulse Cycles, Pulse Sequences and Tissue Contrast.... TRand TE.... T1 and T2 Weighting.... Balanced (Spin Density) Scans.... T2 and the Spin-echo Pulse Cycle ix
7 Graph of MR Signal-free Induction Decay (FID)..., 41 Envelopes of the Signal T2* Concept of Phase Phase and the MR Signal Dephasing and the MR Signal Rephasing the MR Signal-180 D Refocusing Pulse The Spin-echo Pulse Cycle The ltue T2 Curve T2 Curves for Different Tissues for Long TR'S Tl and T2 Constants T2 Curves for Different Tissues for Short TR'S Section 2-The Image in Space Gradients The Slice Select Gradient Changing Slice Thickness Frequency Gradient The Pixel Grid Sine Functions for Each Pixel Application of Frequency Gradient The Fourier Transform The Spectrum The Fourier Series Fourier Transform of Pixel Grid Rotating Gradients-One Alternative The Phase Encoding Gradient Degrees of Phase Shift Per Row Phase Shift in Sine Functions Simple Summary of Phase Ideas Multiple Repetitions to Form the Image Phase Encoding Repititions and the Pixel Grid Phase Encoding Repetitions and the MDM Inside the "Black Box": From Signal to Image (l)-repetition-time Matrices (2)-Phase-frequency Matrices (3)-Transformation to Image-the 2DFT Wrapping Up Basic Concepts The Gradients in Perspective Imaging in Other Planes x
8 The Multislice Technique Averages, Excitations Exam Time General Wrap-up Section 3-Miscellaneous Topics Some Other Pulse Cycles and Procedures Saturation Recovery and Partial Saturation Inversion Recovery Fast Scans Pulse Cycle Summary Three Dimensional Fourier Imaging Half Fourier Imaging Motion General Considerations Flowing Blood Time-of-flight Phenomena Phase-related Phenomena Thrbulence Even and Odd Echo Effects Flow-related Enhancement Magnetic Resonance Angiography (MRA) Maximum Intensity Projection Algorithm Projection Acquisition Methods to Combat Motion Artifacts Pre-saturation Cardiac Gating Respiratory Ordered Phase Encoding Gradient Moment Nulling Aliasing Aliasing in the Phase Encoding Axis Aliasing in the Frequency Encoding Axis Fat and Water Chemical Shift Artifact Method of Dixon Selective Spectral Excitation Stir Sequences Coils Receiver, Transmitter Coils Gradient Coils Shim Coils xi
9 User Parameter Summary... ' 181 Bibliography Index xii
The MRI Study Guide for Technologists
The MRI Study Guide for Technologists Kenneth S. Meacham The MRI Study Guide for Technologists With 51 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest
Basic Principles of Magnetic Resonance
Basic Principles of Magnetic Resonance Contents: Jorge Jovicich [email protected] I) Historical Background II) An MR experiment - Overview - Can we scan the subject? - The subject goes into the magnet -
MRI SEQUENCES. 1 Gradient Echo Sequence
5 An MRI sequence is an ordered combination of RF and gradient pulses designed to acquire the data to form the image. In this chapter I will describe the basic gradient echo, spin echo and inversion recovery
GE Medical Systems Training in Partnership. Module 8: IQ: Acquisition Time
Module 8: IQ: Acquisition Time IQ : Acquisition Time Objectives...Describe types of data acquisition modes....compute acquisition times for 2D and 3D scans. 2D Acquisitions The 2D mode acquires and reconstructs
5 Factors Affecting the Signal-to-Noise Ratio
5 Factors Affecting the Signal-to-Noise Ratio 29 5 Factors Affecting the Signal-to-Noise Ratio In the preceding chapters we have learned how an MR signal is generated and how the collected signal is processed
Musculoskeletal MRI Technical Considerations
Musculoskeletal MRI Technical Considerations Garry E. Gold, M.D. Professor of Radiology, Bioengineering and Orthopaedic Surgery Stanford University Outline Joint Structure Image Contrast Protocols: 3.0T
Generation and Detection of NMR Signals
Generation and Detection of NMR Signals Hanudatta S. Atreya NMR Research Centre Indian Institute of Science NMR Spectroscopy Spin (I)=1/2h B 0 Energy 0 = B 0 Classical picture (B 0 ) Quantum Mechanical
Nuclear Magnetic Resonance and Its Application in Condensed Matter Physics
Nuclear Magnetic Resonance and Its Application in Condensed Matter Physics Kangbo Hao 1. Introduction Nuclear Magnetic Resonance (NMR) is a physics phenomenon first observed by Isidor Rabi in 1938. [1]
NMR Techniques Applied to Mineral Oil, Water, and Ethanol
NMR Techniques Applied to Mineral Oil, Water, and Ethanol L. Bianchini and L. Coffey Physics Department, Brandeis University, MA, 02453 (Dated: February 24, 2010) Using a TeachSpin PS1-A pulsed NMR device,
NMR for Physical and Biological Scientists Thomas C. Pochapsky and Susan Sondej Pochapsky Table of Contents
Preface Symbols and fundamental constants 1. What is spectroscopy? A semiclassical description of spectroscopy Damped harmonics Quantum oscillators The spectroscopic experiment Ensembles and coherence
PHYSICAL TESTING OF RUBBER
PHYSICAL TESTING OF RUBBER PHYSICAL TESTING OF RUBBER Roger Brown Springer Library of Congress Cataloging-in-Publication Data A CLP. Catalogue record for this book is available from the Library of Congress.
MRI for Paediatric Surgeons
MRI for Paediatric Surgeons Starship David Perry Paediatric Radiologist Starship Children s Hospital CHILDREN S HEALTH What determines the brightness of a pixel in MRI? i.e. What determines the strength
GE 3.0T NPW,TRF,FAST,F R NPW,TRF,FAST,F R
GE 3.0T 3.0T WRIST Invivo 8CH Wrist Coil Sequence Ax T2 Cor PD Cor PDFS Cor T1 Cor PD (Small FOV) FOV (mm) 80 80 80 80 40 Matrix 384x224 384x256 320x256 384x320 320x192 Phase Direction RL RL RL RL RL #
Table 11: Pros and Cons of 1.5 T MRI vs. 3.0 T MRI; Safety and Technical Issues, and Clinical Applications
Safety Issue 3.0 T MRI Pro 3.0 T MRI Con Immediate fringe field surrounding magnet A ferromagnetic object inadvertently brought into the scan room will experience a sharp increase in attraction toward
How To Understand The Measurement Process
April 24, 2015 Exam #3: Solution Key online now! Graded exams by Monday! Final Exam Monday, May 4 th, 10:30 a.m. Room: Perkins 107 1 A Classical Perspective A classical view will help us understand the
Studies in the Economics of Uncertainty
Studies in the Economics of Uncertainty Josef Hadar Thomas B. Fomby Tae Kun Sea Editors Studies in the Economics of Uncertainty In Honor of Josef Hadar With 25 Illustrations Springer Verlag New York Berlin
NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany.
NMR SPECTROSCOPY Basic Principles, Concepts, and Applications in Chemistry Harald Günther University of Siegen, Siegen, Germany Second Edition Translated by Harald Günther JOHN WILEY & SONS Chichester
Nuclear Magnetic Resonance
Nuclear Magnetic Resonance Author: James Dragan Lab Partner: Stefan Evans Physics Department, Stony Brook University, Stony Brook, NY 794. (Dated: December 5, 23) We study the principles behind Nuclear
ParaVision 6. Innovation with Integrity. The Next Generation of MR Acquisition and Processing for Preclinical and Material Research.
ParaVision 6 The Next Generation of MR Acquisition and Processing for Preclinical and Material Research Innovation with Integrity Preclinical MRI A new standard in Preclinical Imaging ParaVision sets a
Nuclear Magnetic Resonance and the Measurement of Relaxation Times of Acetone with Gadolinium
Nuclear Magnetic Resonance and the Measurement of Relaxation Times of Acetone with Gadolinium Xia Lee and Albert Tsai June 15, 2006 1 1 Introduction Nuclear magnetic resonance (NMR) is a spectroscopic
runl I IUI%I/\L Magnetic Resonance Imaging
runl I IUI%I/\L Magnetic Resonance Imaging SECOND EDITION Scott A. HuetteS Brain Imaging and Analysis Center, Duke University Allen W. Song Brain Imaging and Analysis Center, Duke University Gregory McCarthy
THEORY, SIMULATION, AND COMPENSATION OF PHYSIOLOGICAL MOTION ARTIFACTS IN FUNCTIONAL MRI. Douglas C. Noll* and Walter Schneider
THEORY, SIMULATION, AND COMPENSATION OF PHYSIOLOGICAL MOTION ARTIFACTS IN FUNCTIONAL MRI Douglas C. Noll* and Walter Schneider Departments of *Radiology, *Electrical Engineering, and Psychology University
Nuclear Magnetic Resonance (NMR) Spectroscopy
April 28, 2016 Exam #3: Graded exams on Tuesday! Final Exam Tuesday, May 10 th, 10:30 a.m. Room: Votey 207 (tentative) Review Session: Sunday, May 8 th, 4 pm, Kalkin 325 (tentative) Office Hours Next week:
Medical Imaging. MRI Instrumentation, Data Acquisition, Image Reconstruction. Assistant Professor Department of Radiology, NYU School of Medicine
G16.4426/EL5823/BE6203 Medical Imaging MRI Instrumentation, Data Acquisition, Image Reconstruction Riccardo Lattanzi, Ph.D. Assistant Professor Department of Radiology, NYU School of Medicine Department
Overview. Optimizing MRI Protocols. Image Contrast. Morphology & Physiology. User Selectable Parameters. Tissue Parameters
Overview Optimizing MRI Protocols Clinical Practice & Compromises Geoffrey D. Clarke, Radiology Department University of Texas Health Science Center at San Antonio Pulse timing parameters for adjusting
Nuclear Magnetic Resonance
Nuclear Magnetic Resonance Practical Course M I. Physikalisches Institut Universität zu Köln May 15, 2014 Abstract Nuclear magnetic resonance (NMR) techniques are widely used in physics, chemistry, and
SITE IMAGING MANUAL ACRIN 6698
SITE IMAGING MANUAL ACRIN 6698 Diffusion Weighted MR Imaging Biomarkers for Assessment of Breast Cancer Response to Neoadjuvant Treatment: A sub-study of the I-SPY 2 TRIAL Version: 1.0 Date: May 28, 2012
Glossary of MRI Terms
Glossary of MRI Terms A Absorption mode. Component of the MR signal that yields a symmetric, positive-valued line shape. Acceleration factor. The multiplicative term by which faster imaging pulse sequences
GE Medical Systems Training in Partnership. Module 12: Spin Echo
Module : Spin Echo Spin Echo Objectives Review the SE PSD. Review the concepts of T, T, and T*. Spin Echo PSD RF Gz Gy 90 80 Gx Spin Echo - SE Spin echo is a standard pulse sequence on Signa MRi/LX and
FDA Guidelines for Magnetic Resonance Equipment Safety
FDA Guidelines for Magnetic Resonance Equipment Safety Loren A. Zaremba, Ph.D. Center for Devices and Radiological Health Food and Drug Administration Outline I. Introduction II. Static Magnetic Field
Pulsed Nuclear Magnetic Resonance An Experiment for UCSB s Advanced Laboratory
1 Pulsed Nuclear Magnetic Resonance An Experiment for UCSB s Advanced Laboratory Foreword Pulsed nuclear magnetic resonance is fascinating in its own right, and is also an incredibly important tool for
Applying Comparative Effectiveness Data to Medical Decision Making
Applying Comparative Effectiveness Data to Medical Decision Making Carl V. Asche Editor Applying Comparative Effectiveness Data to Medical Decision Making A Practical Guide Adis Editor Carl V. Asche Research
Lasers in Restorative Dentistry
Lasers in Restorative Dentistry Giovanni Olivi Matteo Olivi Editors Lasers in Restorative Dentistry A Practical Guide Editors Giovanni Olivi Rome Italy Matteo Olivi Rome Italy ISBN 978-3-662-47316-0 DOI
Pulsed Fourier Transform NMR The rotating frame of reference. The NMR Experiment. The Rotating Frame of Reference.
Pulsed Fourier Transform NR The rotating frame of reference The NR Eperiment. The Rotating Frame of Reference. When we perform a NR eperiment we disturb the equilibrium state of the sstem and then monitor
Gravity Field and Dynamics of the Earth
Milan Bursa Karel Pec Gravity Field and Dynamics of the Earth With 89 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo HongKong Barcelona Budapest Preface v Introduction 1 1 Fundamentals
13C NMR Spectroscopy
13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number
The New Enhanced Multiframe CT and MR DICOM Objects
The New Enhanced Multiframe CT and MR DICOM Objects David Clunie, MB, BS CTO, RadPharm Bangor, PA 18013 Bradley J Erickson, MD PhD Dept Radiology, Mayo Clinic Rochester, MN 55902 (507) 284-8548 Outline
Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE
Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE SUMMARY (I/II) Angular momentum and the spinning gyroscope stationary state equation Magnetic dipole
Magnetic Resonance Imaging Level 1
MIAP1 Revised July 2015 MEDICAL IMAGING ADVISORY PANEL 1 Course Syllabus Magnetic Resonance Imaging Level 1 Page 1 of 13 MIAP1 MRI Course Syllabus Guide Under Revision 07 July 2015 Please refer to Medical
Spin-Lattice Relaxation Times
Spin-Lattice Relaxation Times Reading Assignment: T. D. W. Claridge, High Resolution NMR Techniques in Organic Chemistry, Chapter 2; E. Breitmaier, W. Voelter, Carbon 13 NMR Spectroscopy,3rd Ed., 3.3.2.
Magnetic Resonance Imaging
Magnetic Resonance Imaging What are the uses of MRI? To begin, not only are there a variety of scanning methodologies available, but there are also a variety of MRI methodologies available which provide
Electronic Supplementary Information
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 Electronic Supplementary Information Achieving High Resolution and Controlling
Introduction to Magnetic Resonance Imaging Techniques
Introduction to Magnetic Resonance Imaging Techniques Lars G. Hanson, [email protected] Danish Research Centre for Magnetic Resonance (DRCMR), Copenhagen University Hospital Hvidovre Latest document version:
Investigation of Magnetic Resonance Imaging Effects when Using Bone Conduction Implants
Investigation of Magnetic Resonance Imaging Effects when Using Bone Conduction Implants Master of Science Thesis in Biomedical Engineering, MPBME Karl-Johan Fredén Jansson Department of Signals and Systems
A look at the utility of pulsed NMR
1 A look at the utility of pulsed NMR Katherine Magat and Vasudev Mandyam Physics 173, Spring 2004, Prof. Kleinfeld Introduction Pulsed nuclear magnetic resonance (NMR) was first introduced in the 1940
NMR Pulse Spectrometer PS 15. experimental manual
NMR Pulse Spectrometer PS 15 experimental manual NMR Pulse Spectrometer PS 15 Experimental Manual for MS Windows For: MS Windows software Winner Format: MS Word 2002 File: PS15 Experimental Manual 1.5.1.doc
The Fourier Analysis Tool in Microsoft Excel
The Fourier Analysis Tool in Microsoft Excel Douglas A. Kerr Issue March 4, 2009 ABSTRACT AD ITRODUCTIO The spreadsheet application Microsoft Excel includes a tool that will calculate the discrete Fourier
MRI. Chapter M. Contents M.1
Chapter M MRI Contents Introduction to nuclear magnetic resonance imaging (NMR / MRI)....................... M.2 Physics overview................................................... M.2 Spins......................................................
Trans Fats. What is a trans fat? Trans fatty acids, or trans fats as they are known, are certain
Trans Fats What is a trans fat? Trans fatty acids, or trans fats as they are known, are certain fats found in such foodstuffs as vegetable shortenings, margarines, crackers, candies baked goods and many
Ammonia. Catalysis and Manufacture. Springer-Verlag. Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest
Ammonia Catalysis and Manufacture With contributions by K. Aika, L. 1. Christiansen, I. Dybkjaer, 1. B. Hansen, P. E. H0jlund Nielsen, A. Nielsen, P. Stoltze, K. Tamaru With 68 Figures and 23 Tables Springer-Verlag
1.5 Tesla and 3 Tesla Magnetic Resonance Imaging (MRI) Guidelines for the Senza System
1.5 Tesla and 3 Tesla Magnetic Resonance Imaging (MRI) Guidelines for the Senza System NEVRO CORP. All questions or concerns about Nevro products should be forwarded to: Nevro Corp. 1800 Bridge Parkway
Technique and Safety of. by Pierluigi Castellone, Electronics Engineer Brain Products General Manager
Technique and Safety of performing EEG/fMRI measurements by Pierluigi Castellone, Electronics Engineer Brain Products General Manager Contents of the presentation Why recording simultaneous EEG and fmri?
MDCT Technology. Kalpana M. Kanal, Ph.D., DABR Assistant Professor Department of Radiology University of Washington Seattle, Washington
MDCT Technology Kalpana M. Kanal, Ph.D., DABR Assistant Professor Department of Radiology University of Washington Seattle, Washington ACMP Annual Meeting 2008 - Seattle, WA Educational Objectives Historical
Proton magnetic resonance spectroscopy in the brain: Report of AAPM MR Task Group #9
Proton magnetic resonance spectroscopy in the brain: Report of AAPM MR Task Group #9 Dick J. Drost a) Nuclear Medicine and MRI Department, St. Joseph s Health Centre, London, Ontario N6A 4L6, Canada William
Diffusione e perfusione in risonanza magnetica. E. Pagani, M. Filippi
Diffusione e perfusione in risonanza magnetica E. Pagani, M. Filippi DW-MRI DIFFUSION-WEIGHTED MRI Principles Diffusion results from a microspic random motion known as Brownian motion THE RANDOM WALK How
WAVES AND FIELDS IN INHOMOGENEOUS MEDIA
WAVES AND FIELDS IN INHOMOGENEOUS MEDIA WENG CHO CHEW UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN IEEE PRESS Series on Electromagnetic Waves Donald G. Dudley, Series Editor IEEE Antennas and Propagation Society,
Kap 8 Image quality, signal, contrast and noise
4/5/ FYS-KJM 474 contrast SNR MR-teori og medisinsk diagnostikk Kap 8 Image qualit, signal, contrast and noise resolution vailable MRparameters speed Main source of noise in MRI: Noise generated within
mri : Physics For anyone who does not have a degree in physics Evert J Blink Application Specialist MRI
B A S I C mri : Physics For anyone who does not have a degree in physics Evert J Blink Application Specialist MRI 0 Preface Over the years Magnetic Resonance Imaging, hereafter referred to as MRI, has
Physics of Imaging Systems Basic Principles of Magnetic Resonance Imaging II
1 10/30/2015 Page 1 Master s Program in Medical Physics Physics of Imaging Systems Basic Principles of Magnetic Resonance Imaging II Chair in Faculty of Medicine Mannheim University of Heidelberg Theodor-Kutzer-Ufer
Super-Resolution Reconstruction in MRI: Better Images Faster?
Super-Resolution Reconstruction in MRI: Better Images Faster? Esben Plenge 1,, Dirk H. J. Poot 1, Monique Bernsen 2, Gyula Kotek 2, Gavin Houston 2, Piotr Wielopolski 2, Louise van der Weerd 3, Wiro J.
Toshiba Excelart Vantage 1.5T MRI Tech Specs (Technical Specifications)
Toshiba Excelart Vantage 1.5T MRI Tech Specs (Technical Specifications) Excelart Vantage Magnet Configuration: Ultra-short-bore Strength (or W x H): 1.5 T Homogeneity, ppm V-RMS: Dimensions of maximum
Introduction to Robotics Analysis, Systems, Applications
Introduction to Robotics Analysis, Systems, Applications Saeed B. Niku Mechanical Engineering Department California Polytechnic State University San Luis Obispo Technische Urw/carsMt Darmstadt FACHBEREfCH
REVIEW. Magnetic Resonance: An Introduction to Ultrashort TE (UTE) Imaging
REVIEW Magnetic Resonance: An Introduction to Ultrashort TE (UTE) Imaging Matthew D. Robson, PhD, Peter D. Gatehouse, DPhil, Mark Bydder, PhD, and Graeme M. Bydder, MB, ChB Abstract: The background underpinning
CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging
Physics of Medical X-Ray Imaging (1) Chapter 3 CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY 3.1 Basic Concepts of Digital Imaging Unlike conventional radiography that generates images on film through
The Hydrogen Atom Is a Magnet. http://www.seed.slb.com/en/scictr/watch/gashydrates/detecting.htm
The Hydrogen Atom Is a Magnet Nuclear Magnetic Resonance Spectroscopy (NMR) Proton NMR A hydrogen nucleus can be viewed as a proton, which can be viewed as a spinning charge. As with any spinning charge,
The Neuropsychology Toolkit
The Neuropsychology Toolkit Richard L. Wanlass The Neuropsychology Toolkit Guidelines, Formats, and Language Richard L. Wanlass University of California, Davis, Medical Center Sacramento, CA, USA [email protected]
ImageReady MRI Full Body Guidelines for Precision Montage MRI Spinal Cord Stimulator System
ImageReady MRI Full Body Guidelines for Precision Montage MRI Spinal Cord Stimulator System CAUTION: Federal law restricts this device to sale, distribution and use by or on the order of a physician. 91035972-01
GUIDE TO SETTING UP AN MRI RESEARCH PROJECT
GUIDE TO SETTING UP AN MRI RESEARCH PROJECT Formal requirements and procedures OVERVIEW This document is intended to help a principle investigator set up a research project using magnetic resonance imaging
MANAGEMENT OF DATA IN CLINICAL TRIALS
MANAGEMENT OF DATA IN CLINICAL TRIALS Second Edition ELEANOR MCFADDEN Frontier Science, Ltd. Kincraig, Inverness-shire, Scotland WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION MANAGEMENT OF
Physiological Basis of the BOLD Signal. Kerstin Preuschoff Social and Neural systems Lab University of Zurich
Physiological Basis of the BOLD Signal Kerstin Preuschoff Social and Neural systems Lab University of Zurich Source: Arthurs & Boniface, 2002 From Stimulus to Bold Overview Physics of BOLD signal - Magnetic
Chapter 2 NMR in Inhomogeneous Fields
Chapter 2 NMR in Inhomogeneous Fields Federico Casanova and Juan Perlo 2.1 Introduction Besides the redesigning of the hardware to excite and detect NMR signals from sample volumes external to the sensor,
510(k) Summary. This summary of 510(k) safety and effectiveness is being submitted in accordance with the requirements of 21 CFR 807.
MAR, 2009 / \MLECH MRI-TECH Sp. z o.o., ul. Zielihska 3, 31-227 Krak6w, Poland MRI-TECH Canada, Inc. 206-3820 Cambie Street Vancouver BC V5Z 2X7 510(k) Summary This summary of 510(k) safety and effectiveness
7/16/2010. Pulse Sequences and Acquisition Techniques for Breast MRI. Objectives. ACR Breast MRI Accreditation Program Launched May 2010
Pulse Sequences and Acquisition Techniques for Breast MRI ACR Breast MRI Accreditation Program Launched May 2010 Ron Price Vanderbilt University Medical Center Nashville, TN 37232 Information available:
Statistics for Biology and Health
Statistics for Biology and Health Series Editors M. Gail, K. Krickeberg, J.M. Samet, A. Tsiatis, W. Wong For further volumes: http://www.springer.com/series/2848 David G. Kleinbaum Mitchel Klein Survival
NMR practice times. Mo 2---8 pm Jim 2-4:30 Ning 4:30-7. Tues 2--- 8 pm Jianing 2-4:30 Ting 4:30-7. Fri 10- --- 7 Donia 10-12:00 Ilya 2-4
NMR practice times 1 Mo 2---8 pm Jim 2-4:30 Ning 4:30-7 Tues 2--- 8 pm Jianing 2-4:30 Ting 4:30-7 Wed 4:30---8 John 5:00-7:30 Fri 10- --- 7 Donia 10-12:00 Ilya 2-4 Samples are listed in the homework along
Data Visualization. Principles and Practice. Second Edition. Alexandru Telea
Data Visualization Principles and Practice Second Edition Alexandru Telea First edition published in 2007 by A K Peters, Ltd. Cover image: The cover shows the combination of scientific visualization and
RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS
RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS Qizheng Gu Nokia Mobile Phones, Inc. Q - Springer Gu, Qizheng, 1936- RF system
LONI De-Identification Policy
The following defines how different file formats are de-identified with LONI tools. Each metadata attribute of each file can have the following operations performed: Operation keep Remove Replace Description
International Series on Consumer Science
International Series on Consumer Science For further volumes: http://www.springer.com/series/8358 Tsan-Ming Choi Editor Fashion Branding and Consumer Behaviors Scientific Models 1 3 Editor Tsan-Ming Choi
Chapter 1. Fundamentals of NMR THOMAS L. JAMES. Department of Pharmaceutical Chemistry University of California San Francisco, CA 94143-0446 U.S.A.
Chapter 1 Fundamentals of NMR THOMAS L. JAMES Department of Pharmaceutical Chemistry University of California San Francisco, CA 94143-0446 U.S.A. 1.1 INTRODUCTION 1.2 MAGNETIC RESONANCE Nuclear Spins The
PHYS 1624 University Physics I. PHYS 2644 University Physics II
PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus- based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus
Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading:
Applied Spectroscopy Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading: Banwell and McCash Chapter 7 Skoog, Holler Nieman Chapter 19 Atkins, Chapter 18 Relaxation processes We need
Preface. (modified from Alastair G. Smith, Surgeons Hall, Edinburgh, October 1939) H. H. Schild
Author: Prof. Dr. Hans H. Schild Lt. Oberarzt im Institut für Klinische Strahlenkunde des Klinikums der Johann-Gutenberg-Universität All rights, particularly those of translation into foreign languages,
Numerical Modelling of E-M Occupational Exposures associated with MRI
Numerical Modelling of E-M Occupational Exposures associated with MRI Jeff Hand and Yan Li Imaging Sciences Dept, Imperial College London, Hammersmith Hospital Campus Physical Agents Directive (EMFs) 2004/40/EC
Clinical applications of MRI in radiation therapy. Jatta Berberat, PhD Kantonsspital Aarau [email protected]
Clinical applications of MRI in radiation therapy Jatta Berberat, PhD Kantonsspital Aarau [email protected] Background and introduction Magnetic Resonance Imaging Relaxation mechanisms Imaging gradients
ELECTRON SPIN RESONANCE Last Revised: July 2007
QUESTION TO BE INVESTIGATED ELECTRON SPIN RESONANCE Last Revised: July 2007 How can we measure the Landé g factor for the free electron in DPPH as predicted by quantum mechanics? INTRODUCTION Electron
University Children s Hospital Basel
Cooperation Siemens International Reference Center Pediatric MRI www.siemens.com/skyra University Children s Hospital Basel Siemens International Reference Center Pediatric MRI Answers for life. Partnering
Nuclear Magnetic Resonance Spectroscopy
Most spinning nuclei behave like magnets. Nuclear Magnetic Resonance Spectroscopy asics owever, as opposed to the behavior of a classical magnet the nuclear spin magnetic moment does not always align with
Volume visualization I Elvins
Volume visualization I Elvins 1 surface fitting algorithms marching cubes dividing cubes direct volume rendering algorithms ray casting, integration methods voxel projection, projected tetrahedra, splatting
Spin-lattice and spin-spin relaxation
Spin-lattice and spin-spin relaation Sequence of events in the NMR eperiment: (i) application of a 90 pulse alters the population ratios, and creates transverse magnetic field components (M () ); (ii)
4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a
BASIC PRINCIPLES INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE (NMR) 1. The nuclei of certain atoms with odd atomic number, and/or odd mass behave as spinning charges. The nucleus is the center of positive
Analysis of Financial Time Series
Analysis of Financial Time Series Analysis of Financial Time Series Financial Econometrics RUEY S. TSAY University of Chicago A Wiley-Interscience Publication JOHN WILEY & SONS, INC. This book is printed
MRI Department Goals. Effective Ways to Improve Patient Cooperation and Safety in MRI Exam. Lecture Topics
Effective Ways to Improve Patient Cooperation and Safety in MRI Exam [email protected] Lecture Topics MRI patient preparation Department MRI Safety Policies and Procedures MRI patient safety screening
What s new in Trendsetting Applications?
What s new in Trendsetting Applications? Leading. With MAGNETOM. Answers for life. What s new in trendsetting applications? Growth with Body MRI FREEZEit 2 Quiet Suite Advanced WARP 1,3 DotGO 1 MyoMaps
