2) f(x, y) = 2x2-8y, (4, 8) 7) Find parametric equations for the normal line to the surface z = e8x2 + 4y2 at the point (0, 0, 1).

Similar documents
Practice Final Math 122 Spring 12 Instructor: Jeff Lang

Section 12.6: Directional Derivatives and the Gradient Vector

Solutions to Practice Problems for Test 4

Solutions to Homework 10

Solutions for Review Problems

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

MULTIPLE INTEGRALS. h 2 (y) are continuous functions on [c, d] and let f(x, y) be a function defined on R. Then

This makes sense. t /t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5

L 2 : x = s + 1, y = s, z = 4s Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

Solutions - Homework sections

If Σ is an oriented surface bounded by a curve C, then the orientation of Σ induces an orientation for C, based on the Right-Hand-Rule.

( 1) = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

FINAL EXAM SOLUTIONS Math 21a, Spring 03

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

Math 2443, Section 16.3

Review Sheet for Test 1

Exam 1 Sample Question SOLUTIONS. y = 2x

Chapter 17. Review. 1. Vector Fields (Section 17.1)

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall Oct. 1, 2004 ANSWERS

1 3 4 = 8i + 20j 13k. x + w. y + w

Fundamental Theorems of Vector Calculus

F = 0. x ψ = y + z (1) y ψ = x + z (2) z ψ = x + y (3)

Line and surface integrals: Solutions

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

27.3. Introduction. Prerequisites. Learning Outcomes

vector calculus 2 Learning outcomes

CHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder.

4 More Applications of Definite Integrals: Volumes, arclength and other matters

Math 53 Worksheet Solutions- Minmax and Lagrange

Triple Integrals in Cylindrical or Spherical Coordinates

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

Differentiation of vectors

x 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y

AB2.5: Surfaces and Surface Integrals. Divergence Theorem of Gauss

INTEGRATING FACTOR METHOD

SAT Subject Test Practice Test II: Math Level II Time 60 minutes, 50 Questions

a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12.

4.2. LINE INTEGRALS ; z = t. ; y = sin

Derive 5: The Easiest... Just Got Better!

Techniques of Integration

Math 241, Exam 1 Information.

Vector Calculus Solutions to Sample Final Examination #1

MATH 121 FINAL EXAM FALL December 6, 2010

Separable First Order Differential Equations

Math 113 HW #7 Solutions

Solutions to old Exam 1 problems

Change of Variables in Double Integrals

Visualizing Differential Equations Slope Fields. by Lin McMullin

Vector surface area Differentials in an OCS

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period:

Math 1B, lecture 5: area and volume

Review Solutions MAT V (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.

The Math Circle, Spring 2004

Area and Arc Length in Polar Coordinates

1. First-order Ordinary Differential Equations

Answer Key for the Review Packet for Exam #3

ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

2 Integrating Both Sides

AP Calculus AB 2010 Free-Response Questions Form B

Linear and quadratic Taylor polynomials for functions of several variables.

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx

Calculus 1: Sample Questions, Final Exam, Solutions

Sect Greatest Common Factor and Factoring by Grouping

3 Contour integrals and Cauchy s Theorem

Calculus AB 2014 Scoring Guidelines

42 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x Brief review of Conic Sections

Solutions to Homework 5

Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50

13.5. Click here for answers. Click here for solutions. CURL AND DIVERGENCE. 17. F x, y, z x i y j x k. 2. F x, y, z x 2z i x y z j x 2y k

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

The Vector or Cross Product

2008 AP Calculus AB Multiple Choice Exam

Mark Howell Gonzaga High School, Washington, D.C.

6 Further differentiation and integration techniques

The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., July Derive 5: The Easiest... Just Got Better!

MATH 132: CALCULUS II SYLLABUS

1 The basic equations of fluid dynamics

Numerical Solution of Differential Equations

SOLUTIONS TO HOMEWORK ASSIGNMENT #4, MATH 253

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

Analysis of Stresses and Strains

Double Integrals in Polar Coordinates

Additional Topics in Math

Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015

Using a table of derivatives

Particular Solutions. y = Ae 4x and y = 3 at x = 0 3 = Ae = A y = 3e 4x

DERIVATIVES AS MATRICES; CHAIN RULE

Exercises and Problems in Calculus. John M. Erdman Portland State University. Version August 1, 2013

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

Two vectors are equal if they have the same length and direction. They do not

AP Calculus AB 2004 Free-Response Questions

Review B: Coordinate Systems

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)

RADIUS OF CURVATURE AND EVOLUTE OF THE FUNCTION y=f(x)

Math 432 HW 2.5 Solutions

Transcription:

Exam Name C o m p u t e t h e g r a d i e n t o f t h e f u n c t i o n a t t h e g i v e n p o i n t. ) f(x, y, z) = ln(x + y + z), (,, ) S o l v e t h e p r o b l e m. ) Find the equation for the tangent plane to the surface z = -8x + y at the point (,, -). ) f(x, y) = x - 8y, (, 8) ) Find parametric equations for the normal line to the surface z = e8x + y at the point (,, ). A n s w e r t h e q u e s t i o n. ) Find the direction in which the function is increasing or decreasing most rapidly at the point Po. f(x, y) = xy - yx, Po(-, ) F i n d t h e d e r i v a t i v e o f t h e f u n c t i o n a t t h e g i v e n p o i n t i n t h e d i r e c t i o n o f A. ) f(x, y) = x - y, (-, ), A = i - j F i n d a l l l o c a l e x t r e m e v a l u e s o f t h e g i v e n f u n c t i o n a n d i d e n t i f y e a c h a s a l o c a l m a x i m u m, l o c a l m i n i m u m, o r s a d d l e p o i n t. 8) f(x, y) = xy - x + y ) f(x, y) = x + y - x - y - ) f(x, y, z) = xyz, (,, ), A = - i + j - k

) f(x, y) = - xy ) x exy y F i n d t h e e x t r e m e v a l u e s o f t h e f u n c t i o n s u b j e c t t o t h e g i v e n c o n s t r a i n t. ) f(x, y) = x + y, x + y = ) ex y/8 ) f(x, y) = xy, x + y = E v a l u a t e t h e i n t e g r a l. ) - x x ) f(x, y, z) = x + y + z, x - y - z = 8) y D e t e r m i n e t h e o r d e r o f i n t e g r a t i o n a n d t h e n e v a l u a t e t h e i n t e g r a l. ) tan- x y/

) (s + t) dt ds ) The region bounded by the paraboloid z = x + y, the cylinder x + y =, and the xy-plane F i n d t h e v o l u m e o f t h e i n d i c a t e d r e g i o n. ) The solid cut from the first octant by the surface z = - x - y W r i t e a n e q u i v a l e n t d o u b l e i n t e g r a l w i t h t h e o r d e r o f i n t e g r a t i o n r e v e r s e d. ) - x ) The region that lies under the paraboloid z = x + y and above the triangle enclosed by the lines x =, y =, and y = x ) π/ sin x (x + 8y) ) The region that lies under the plane z = x + y and over the triangle with vertices at (, ), (, ), and (, ) ) ln x x ) tan- x

8) y/ ) x/ + ) ln ln y ey E x p r e s s t h e a r e a o f t h e r e g i o n b o u n d e d b y t h e g i v e n l i n e ( s ) a n d / o r c u r v e ( s ) a s a n i t e r a t e d d o u b l e i n t e g r a l. ) The lines x + y =, x + y =, and y = ) x ) The parabola x = y and the line y = x - ) - y ) The parabola y = x and the line y = x + ) y y ) The curve y = ex and the lines x + y = 8 and x = 8 8) The coordinate axes and the line x + y =

) The lines x =, y = x, and y = ) - y (x + y) F i n d t h e a r e a o f t h e r e g i o n s p e c i f i e d b y t h e i n t e g r a l ( s ). ) - x ) - x e-(x + y) ) - y + y ) - - x - - x ( + x + y) C h a n g e t h e C a r t e s i a n i n t e g r a l t o a n e q u i v a l e n t p o l a r i n t e g r a l, a n d t h e n e v a l u a t e. ) - - x ) - - y (x + y) / - - y F i n d t h e a r e a o f t h e r e g i o n s p e c i f i e d i n p o l a r c o o r d i n a t e s. 8) The region enclosed by the curve r = sin θ ) - - - x + x + y

) The region enclosed by the curve r = 8 cos θ ) Integrate f(x, y) = sin(x + y) over the region x + y. ) One petal of the rose curve r = cos θ E v a l u a t e t h e i n t e g r a l b y c h a n g i n g t h e o r d e r o f i n t e g r a t i o n i n a n a p p r o p r i a t e w a y. ) y/ sin x xz dz ) The region enclosed by the curve r = cos θ ) x/ ey z dy dz dx S o l v e t h e p r o b l e m. ) Integrate f(x, y) = ln(x + y) x + y x + y. over the region ) z dz x(y + ) ) Integrate f(x, y) = sin x + y over the region x + y.

8) z y + x dy dz dx F i n d t h e v o l u m e o f t h e i n d i c a t e d r e g i o n. ) The region bounded by the coordinate planes and the planes z = x + y, z = E v a l u a t e t h e i n t e g r a l. ) π π π sin(8u + ) du dv dw ) The region in the first octant bounded by the coordinate planes and the surface z = - x - y ) The tetrahedron cut off from the first octant by ) 8 ( - z/8) ( - y/ - z/8) dz the plane x + y + z = ) The region bounded by the paraboloid ) - y z yz dx dz dy z = x + y and the cylinder x + y =

) The region bounded by the cylinder x + y = and the planes z = and x + z = ) Rewrite the integral / ( - z)/ in the order dz. (- y - z)/ dz S o l v e t h e p r o b l e m. ) Write an iterated triple integral in the order dz for the volume of the rectangular solid in the first octant bounded by the planes x =, y =, and z =. ) Write an iterated triple integral in the order dz for the volume of the region enclosed by the paraboloids z = 8 - x - y and z = x + y. 8) Write an iterated triple integral in the order dz for the volume of the region in the first octant enclosed by the cylinder x + y = and the plane z =. ) Write an iterated triple integral in the order dz for the volume of the tetrahedron cut from the first octant by the plane x + y + z =. ) Rewrite the integral 8 ( - x/8) in the order dz. ( - x/8 - y/) dz 8

Answer Key Testname: CAL PT ) i + j + k ) i - 8 ) 8 i + -8 8 j ) - ) -.88e+ ) -x + y - z = - ) x =, y =, z = t + 8) f -, = 8, saddle point ) f(, ) = -. local minimum; f(, -) = -, saddle point; f(-, ) = 8, saddle point; f(-, -) = 8, local maximum ) f(, ) =, local maximum ) Maximum: at (, ); minimum: - at (, -) ) Maximum: at, minimum: - at, - ) Maximum: none; minimum: ) tan- - ln, ) e - ) (e - ) ) 8) - ) ) ) 8 ) ) 8π ) ) ) - y π/ (x + 8y) sin- y ln x ey and -, - and -, ; at,-,- ) 8) ) ) ) ) ) ) ) ) ) 8) ) π/ tan y x/ ln x y ln y - x. - - 8 ) ) x y y/(-) ( - y/) ( - y/) y + y x + x ex 8 - x ( - x/) y/ ) 8π π( - ln ) ) ),π 8

Answer Key Testname: CAL PT ) π - e - ) π ) π ) ) - - x - - x x + y ( - z/) ( - y/ - z/) dz 8 - x - y dz 8) π ) π ) π ) π ) π(ln ) ) π(sin - cos ) ) π( - cos ) ) ln ( - cos ) ) ln (e - ) ) ln 8) 8 ln ) π cos ) ) - ) ) 8 ) ) 8π ) 8π ) 8) ) ) - / dz - x - - x ( - z/) (- x)/ dz 8( - y/ - z/) dz (- x - y)/ dz