SCA610-E23H1A SINGLE AXIS ACCELEROMETER WITH ANALOG INTERFACE

Similar documents
Small, Low Power, 3-Axis ±3 g Accelerometer ADXL335

TLI4946. Datasheet TLI4946K, TLI4946-2K, TLI4946-2L. Sense and Control. May 2009

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

VT-802 Temperature Compensated Crystal Oscillator

Small, Low Power, 3-Axis ±3 g Accelerometer ADXL337

TSic 101/106/201/206/301/306/506 Rapid Response, Low-Cost Temperature Sensor IC with Analog or digital Output Voltage

ICS379. Quad PLL with VCXO Quick Turn Clock. Description. Features. Block Diagram

MXD7202G/H/M/N. Low Cost, Low Noise ±2 g Dual Axis Accelerometer with Digital Outputs

Low-Jitter I 2 C/SPI Programmable Dual CMOS Oscillator

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

AS A Low Dropout Voltage Regulator Adjustable & Fixed Output, Fast Response

EVERLIGHT ELECTRONICS CO., LTD. Technical Data Sheet 0805 Package Chip LED Preliminary

VS-500 Voltage Controlled SAW Oscillator

Supertex inc. HV Channel High Voltage Amplifier Array HV256. Features. General Description. Applications. Typical Application Circuit

DATA SHEET. TDA8560Q 2 40 W/2 Ω stereo BTL car radio power amplifier with diagnostic facility INTEGRATED CIRCUITS Jan 08

NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator

GT Sensors Precision Gear Tooth and Encoder Sensors

EM3242. Angle Sensor IC [EM3242]

ICS514 LOCO PLL CLOCK GENERATOR. Description. Features. Block Diagram DATASHEET

TYPICAL APPLICATION CIRCUIT. ORDER INFORMATION SOP-EP 8 pin A703EFT (Lead Free) A703EGT (Green)

SELECTION GUIDE. Nominal Input

Low Cost ±1.2 g Dual Axis Accelerometer ADXL213

High Precision TCXO / VCTCXO Oscillators

Advanced Monolithic Systems

Application Note TMA Series

Data Sheet, V1.1, May 2008 SMM310. Silicon MEMS Microphone. Small Signal Discretes

Features. Modulation Frequency (khz) VDD. PLL Clock Synthesizer with Spread Spectrum Circuitry GND

Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff

PACKAGE OUTLINE DALLAS DS2434 DS2434 GND. PR 35 PACKAGE See Mech. Drawings Section

How To Test A Sidactor Series For A Power Supply

IS31LT V/1.2A LED DRIVER WITH INTERNAL SWITCH. January 2014

LDS WLED Matrix Driver with Boost Converter FEATURES APPLICATION DESCRIPTION TYPICAL APPLICATION CIRCUIT

Photolink- Fiber Optic Receiver PLR135/T1

NBB-402. RoHS Compliant & Pb-Free Product. Typical Applications

Hardware Documentation. Data Sheet HAL 202. Hall-Effect Sensor. Edition Sept. 18, 2014 DSH000159_002EN

SM712 Series 600W Asymmetrical TVS Diode Array

How To Control A Power Supply On A Powerline With A.F.F Amplifier

Kit 27. 1W TDA7052 POWER AMPLIFIER

LM138 LM338 5-Amp Adjustable Regulators

DATA SHEET. TDA1543 Dual 16-bit DAC (economy version) (I 2 S input format) INTEGRATED CIRCUITS

Adding Heart to Your Technology

Features. Typical Applications G9. ProLight PEA2-3FVE 3W Warm White AC LED Technical Datasheet Version: DS-0042

28V, 2A Buck Constant Current Switching Regulator for White LED

4N25 Phototransistor Optocoupler General Purpose Type

DATA SHEET. TDA1518BQ 24 W BTL or 2 x 12 watt stereo car radio power amplifier INTEGRATED CIRCUITS

MIC2844A. Features. General Description. Applications. Typical Application

DATA SHEET. TDA1510AQ 24 W BTL or 2 x 12 W stereo car radio power amplifier INTEGRATED CIRCUITS

VS-702 Voltage Controlled SAW Oscillator Previous Vectron Model VS-720

CLA LF: Surface Mount Limiter Diode

PS25202 EPIC Ultra High Impedance ECG Sensor Advance Information

LM118/LM218/LM318 Operational Amplifiers

LM1036 Dual DC Operated Tone/Volume/Balance Circuit

NCT3941S/S-A Nuvoton 4 Times Linear Fan Driver NCT3941S/S-A

3mm Photodiode,T-1 PD204-6C/L3

AP KHz, 2A PWM BUCK DC/DC CONVERTER. Description. Pin Assignments V IN. Applications. Features. (Top View) GND GND. Output AP1509 GND GND

TRIPLE PLL FIELD PROG. SPREAD SPECTRUM CLOCK SYNTHESIZER. Features

Product Datasheet P MHz RF Powerharvester Receiver

ICS SPREAD SPECTRUM CLOCK SYNTHESIZER. Description. Features. Block Diagram DATASHEET

A1301 and A1302. Continuous-Time Ratiometric Linear Hall Effect Sensor ICs DESCRIPTION FEATURES AND BENEFITS. Packages:

DATA SHEET. SiGe LOW NOISE AMPLIFIER FOR GPS/MOBILE COMMUNICATIONS. Part Number Order Number Package Marking Supplying Form

Real Time Clock Module with I2C Bus

CMR Series Isolated 0.75W Single and Dual Output Isolated DC/DC Converters

FUNCTIONAL BLOCK DIAGRAM 3V TO 5V (ADC REF) ST2 ST1 TEMP V RATIO 25 C MECHANICAL SENSOR AC AMP CHARGE PUMP AND VOLTAGE REGULATOR

7 OUT1 8 OUT2 9 OUT3 10 OUT4 11 OUT5 12 OUT6 13 OUT7 14 OUT8 15 OUT9 16 OUT10 17 OUT11 18 OUT12 19 OUT13 20 OUT14 21 OUT15 22 OUT16 OUT17 23 OUT18

The accelerometer designed and realized so far is intended for an. aerospace application. Detailed testing and analysis needs to be

IN1M101 Precision AC Brown-out Supervisor IC

MMC314xMR. Ultra Small 3-axis Magnetic Sensor, With I 2 C Interface. Signal Path X. Signal Path Y. Signal Path Z FEATURES

TEA1024/ TEA1124. Zero Voltage Switch with Fixed Ramp. Description. Features. Block Diagram

Assembly of LPCC Packages AN-0001

Description. 5k (10k) - + 5k (10k)

Current Sensor: ACS755xCB-050

DRM compatible RF Tuner Unit DRT1

Current Loop Tuning Procedure. Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) General Procedure AN-015

MEMS inertial sensor high performance 3-axis ±2/±6g ultracompact linear accelerometer

ADXL345-EP. 3-Axis, ±2 g/±4 g/±8 g/±16 g Digital Accelerometer. Enhanced Product FEATURES GENERAL DESCRIPTION ENHANCED PRODUCT FEATURES APPLICATIONS

SPREAD SPECTRUM CLOCK GENERATOR. Features

ICS SYSTEM PERIPHERAL CLOCK SOURCE. Description. Features. Block Diagram DATASHEET

Hardware Documentation. Data Sheet HAL 401. Linear Hall-Effect Sensor IC. Edition Dec. 8, 2008 DSH000018_002EN

High Accuracy, Ultralow IQ, 1 A, anycap Low Dropout Regulator ADP3338

Optocoupler, Phototransistor Output, 4 Pin LSOP, Long Creepage Mini-Flat Package

DSC1001. Low-Power Precision CMOS Oscillator 1.8~3.3V. Features. General Description. Benefits. Block Diagram

DC to 30GHz Broadband MMIC Low-Power Amplifier

UA741. General-purpose single operational amplifier. Features. Applications. Description. N DIP8 (plastic package)

DALLAS DS1233 Econo Reset. BOTTOM VIEW TO-92 PACKAGE See Mech. Drawings Section on Website

HDMM01 V1.0. Dual-axis Magnetic Sensor Module With I 2 C Interface FEATURES. Signal Path X

TEP 200WIR Series, Watt

Symbol Parameters Units Frequency Min. Typ. Max. 850 MHz

PowerAmp Design. PowerAmp Design PAD135 COMPACT HIGH VOLATGE OP AMP

STLQ ma, ultra low quiescent current linear voltage regulator. Description. Features. Application

unit : mm With heat sink (see Pd Ta characteristics)

If there is any doubt about the results, measurement shall be made within the following limits : Ambient temperature 25±3 Relative humidity 40%~70%

Preamplifier Circuit for IR Remote Control

LM117 LM317A LM317 3-Terminal Adjustable Regulator

Y.LIN ELECTRONICS CO.,LTD.

CS V/250 ma, 5.0 V/100 ma Micropower Low Dropout Regulator with ENABLE

css Custom Silicon Solutions, Inc.

Metal-Oxide Varistors (MOVs) Surface Mount Multilayer Varistors (MLVs) > MLN Series. MLN SurgeArray TM Suppressor. Description

Precision ±2 g Dual Axis, PWM Output Accelerometer ADXL212 GENERAL DESCRIPTION FEATURES APPLICATIONS FUNCTIONAL BLOCK DIAGRAM

2 TO 4 DIFFERENTIAL PCIE GEN1 CLOCK MUX ICS Features

SLLP G PRODUCT DATASHEET. RoHS Compliant

Transcription:

Datasheet SCA610-E23H1A SINGLE AXIS ACCELEROMETER WITH ANALOG INTERFACE The SCA610 accelerometer consists of a silicon bulk micro machined sensing element chip and a signal conditioning ASIC. The chips are mounted on a pre-molded package and wire bonded to appropriate contacts. The sensing element and ASIC are protected with silicone gel and lid. The sensor has 8 SMD legs (Gull-wing type). Features Single +5 V supply Current consumption 2.5 ma typical Ratiometric output in relation to supply voltage (Vdd = 4.75 V...5.25 V) Enhanced failure detection features o Digitally activated, true self-test by proof mass deflection using electrostatic force o Memory parity check during power up, and self-test cycle. o Built in connection failure detection Digitally activated, true self-test by proof mass deflection using electrostatic force Wide load drive capability (max. 20 nf) True DC response Qualified according to AEC-Q100 standard 5V supply Applications SCA610 product family is targeted to automotive applications with high stability and reliability requirements. Typical applications include: Electronic Stability Control (ESC) Engine Vibration Measurement Roll Over Suspension Inclination Measurement circuitry Gain & filtering Vout Sensing element EEPROM for calibration constants (32 bit, pari ty check) ASIC Digital self test input GND 4 programming lines for factory use only Figure 1. Functional block diagram. Murata Electronics Oy 1/11 www.muratamems.fi Doc.nr. 82 1525 00 Rev.A

Table of Contents SCA610-E23H1A single axis accelerometer with analog interface... 1 FEATURES... 1 APPLICATIONS... 1 TABLE OF CONTENTS... 2 1. Electrical Specifications... 3 1.1. ABSOLUTE MAXIMUM RATINGS... 3 1.2. PERFORMANCE CHARACTERISTICS... 3 1.3. OFFSET AND SENSITIVITY CALIBRATION... 4 1.4. ERROR CALCULATIONS... 4 1.5. SUPPLY VOLTAGE... 5 1.6. ELECTRICAL CONNECTION... 6 2. Functional description... 7 2.1. MEASURING DIRECTIONS... 7 2.2. VOLTAGE TO ACCELERATION CONVERSION... 7 2.3. RATIOMETRIC OUTPUT... 7 2.4. SELFTEST AND FAILURE DETECTION MODES... 7 3. Mechanical Specification... 9 3.1. DIMENSIONS... 9 4. Application information... 10 4.1. RECOMMENDED PCB LAY-OUT... 10 4.2. REFLOW SOLDERING... 11 Murata Electronics Oy 2/12

1. Electrical Specifications 1.1. Absolute Maximum Ratings Parameter Value Units Acceleration (powered or non-powered) 20 000 (1 g Supply voltage 0.3 to +7.0 V Voltage at input / output pins 0.3 to VDD + 0.3 V ESD HBM (Human Body Model) 2 kv ESD CDM (Charged Device Model) 500 middle pins 750 corner pins Temperature range (storage) 50 to +125 C Temperature range (operating) 40 to +125 C 1 Equals to drop from 1 meter on a concrete surface. V 1.2. Performance Characteristics V DD = 5.00 V and ambient temperature unless otherwise specified. KPC A) Parameter Condition Min. Typ Max. Units Measuring range Nominal 1.5 +1.5 g Supply voltage Vdd 4.75 5.0 5.25 V <CC> Current consumption Vdd = 5 V; No load 2.5 4.0 ma Operating temperature 40 +125 C Resistive output load Vout to Vdd or Vss 20 kω Capacitive load Vout to Vdd or Vss 20 nf Min. output voltage; Vdd = 5 V 20k from Vout to Vdd 0 0.25 V Max. output voltage; Vdd = 5 V 20k from Vout to Vss 4.75 5.00 V <CC> Offset (Output at 0 g) @ room temperature Vdd/2 V <CC> Sensitivity @ room temperature 1.333 (0.267*Vdd) V/g <SC> Offset Error (Output at 0 g) 40 C...125 C 125 0 +125 mg Sensitivity error 25 C...85 C 3 0 +3 % <SC> 40 C...125 C 5 0 +5 % Typical non-linearity Within the measuring range 20 +20 mg Amplitude response 3 db B) 20 50 80 Hz Ratiometric error Vdd = 4.75 V...5.25 V 2 +2 % <SC> Cross-axis sensitivity @ room temperature 3.9 % Output noise From DC...4 khz 5 mv rms Start-up delay Reset and parity check 10 ms Self test pull down resistor (Internal) 44 62 80 kω A. CC= Critical Characteristics. Must be 100% monitored during production SC= Significant Characteristic. The process capability (Cpk) must be better than 1.33, which allows sample based testing. If process is not capable the part will be 100% tested B. Output has true DC response Murata Electronics Oy 3/12

1.3. Offset and sensitivity calibration Vout offset is calibrated in 0g position: Offset Vout 0g [V] Nominal offset is Vdd/2: Vdd Offsetnom [V] 2 Sensitivity is calibrated as: 1g V 1g Vout out Sensitivity [V/g] 2g Nominal sensitivity is: Sensitivit 1,2 [V/g] y nom 1.4. Error calculations Total error is the allowed maximum error, which include partial error sources. Total error over lifetime is specified as a sum of offset and sensitivity errors: Total _ Error Offset _ Error Sensitivity _ Error [mg] Offset error is specified as: Vdd Vout0g Offset _ Error 2 [mg] Sensitivity Sensitivity error percent is specified as: Sensitivit y Vout _ Error% 1g Vout1g Sensitivity 2 g Sensitivity nom nom 100% Sensitivity error is specified as: Vout Vout 0g Sensitivity _ Error% Sensitivity _ Error [mg] Sensitivity Murata Electronics Oy 4/12

1.5. Supply voltage Usage of external 100 nf power supply bypass capacitor is recommended. ASIC start-up should be tolerant to noise between Vdd and GND. Recommended power-up ramp is presented below. Parameter Min Max T 1 T 0 + 0.1 µs T 2 T 0 + 100 μs V 1 0.3 V 0.5 V V 2 4.5 V 5.5 V Supply voltage ramp at startup. supply voltage V 2 V 1 t Figure 2. V DD Start-up sequence. T 0 T 1 T 2 Murata Electronics Oy 5/12

1.6. Electrical Connection The following is minimum requirement for electrical interface to the SCA610. If over-voltage or reverse polarity protection is needed, please contact VTI Technologies Oy for application information. Usage of external minimum 100 nf power supply bypass capacitor is recommended. Maximum rise time of V DD is 100 ms. If self-test (Pin 6) is not used it should be left floating. Pins 1, 2, 3, and 5 are left floating. Vdd Vout 8 7 6 5 SCA610 Min. 100nF 1 2 3 4 GND Figure 3. Electrical connection of SCA610 component. Pin # Pin Name I/O Function Connection on PCB 1 CLK Float / Not connected 2 C1 Float / Not connected 3 MODE Float / Not connected 4 GND Supply Negative supply voltage (VSS) Ground 5 PGM Float / Not connected 6 ST Input Self-test control Float when not used 7 VOUT Output Sensor output voltage Measuring circuit input 8 VDD Supply Positive supply voltage (VDD) Vdd (+5V) Murata Electronics Oy 6/12

2. Functional description 2.1. Measuring directions - + + - -1 g position V out,nom = 1.3 V 0 g position V out,nom = 2.5 V +1 g position V out,nom = 3.7 V 2.2. Voltage to acceleration conversion Analog output can be transferred to acceleration using the following equation for conversion: Acceleration Vout Vout 0g Sensitivity [g] where: V out (0g) = nominal output of the device at 0g position with 5 V supply voltage (ratiometric output), Sensitivity is the sensitivity of the device and V out is the output of the sensor. 2.3. Ratiometric Output Ratiometric output means that the zero offset point and sensitivity of the sensor are proportional to the supply voltage. If the SCA6X0 supply voltage is fluctuating the SCA6X0 output will also vary. When the same reference voltage for both the SCA6X0 sensor and the measuring part (A/Dconverter) is used, the error caused by reference voltage variation is automatically compensated for. 2.4. Selftest and failure detection modes To ensure reliable measurement results the SCA6X0 has continuous interconnection failure and calibration memory validity detection. A detected failure forces the output signal close to power supply ground or VDD level, outside the normal output range. The calibration memory validity is verified by continuously running parity check for the control register memory content. In the case where a parity error is detected, the control register is automatically re-loaded from the EEPROM. If a new parity error is detected after re-loading data analog output voltage is forced to go close to ground level (<0.25 V). The SCA6X0 also includes a separate self test mode. The true self test simulates acceleration, or deceleration, using an electrostatic force. The electrostatic force simulates acceleration that is high enough to deflect the proof mass to the extreme positive position, and this causes the output signal to go to the maximum value. The self test function is activated by a separate on-off command on the self test input. Murata Electronics Oy 7/12

The self-test generates an electrostatic force, deflecting the sensing element s proof mass, thus checking the complete signal path. The true self test performs following checks: Sensing element movement check ASIC signal path check PCB signal path check Micro controller A/D and signal path check The created deflection can be seen in analogue output. Self test can be activated applying logic 1 (positive supply voltage level) to ST pin (pins 6) of SCA6X0. The self test Input high voltage level is 4 Vdd+0.3 V and input low voltage level is 0.3 1 V. 5 V 0 V 5V Vout ST pin voltage V1 V2 V3 0 V T1 T2 T3 T5 TIME [ MS ] Figure 7. Self test wave forms. T4 V1 = initial output voltage before the self test function is activated. V2 = output voltage during the self test function. V3 = output voltage after the self test function has been de-activated and after stabilization time Please note that the error band specified for V3 is to guarantee that the output is within 5% of the initial value after the specified stabilization time. After a longer time (max. 1 second) V1=V3. T1 = Pulse length for Self test activation T2 = Saturation delay T3 = Recovery time T4 = Stabilization time =T2+T3 T5 = Rise time during self test. T1 [ms] T2 [ms] T3 [ms] T4 [ms] T5 [ms] V2: V3: 10-100 Typ. 20 Typ. 50 Typ. 70 Typ. 10 Min 0.95*VDD (4.75V @Vdd=5V) 0.95*V1-1.05*V1 Self test characteristics. Murata Electronics Oy 8/12

3. Mechanical Specification Lead frame material: Plating: Solderability: Co-planarity: The part weights: Copper Nickel followed by Gold JEDEC standard: JESD22-B102-C 0.1 mm max. ~0.73 g 3.1. Dimensions Figure 8. Mechanical dimensions [mm]. Murata Electronics Oy 9/12

4. Application information The SCA6X0 should be powered from a well regulated 5 V DC power supply. Coupling of digital noise to the power supply line should be minimized. 100nF filtering capacitor between VDD pin 8 and GND plane must be used. If regulator is placed far from component for example other PCB it is recommend adding more capacitance between VDD and GND to ensure current drive capability of the system. For example 470 pf and 1uF capacitor can be used. The SCA6X0 has a ratiometric output. To get the best performance use the same reference voltage for both the SCA6X0 and Analog/Digital converter. Locate the 100nF power supply filtering capacitor close to VDD pin 8. Use as short a trace length as possible. Connect the other end of capacitor directly to the ground plane. Connect the GND pin 4 to underlying ground plane. Use as wide ground and power supply planes as possible. Avoid narrow power supply or GND connection strips on PCB. 4.1. Recommended PCB lay-out Figure 9. Recommended PCB lay-out [mm]. Notes: It is important that the part is parallel to the PCB plane and that there is no angular alignment error from intended measuring direction during assembly process. 1 mounting alignment error will increase the cross-axis sensitivity by 1.7% 1 mounting alignment error will change the output by 17 mg Wave soldering is not recommended Ultrasonic cleaning is not allowed A supply voltage by-pass capacitor (> 100 nf) is recommended Murata Electronics Oy 10/12

4.2. Reflow soldering The SCA6X0 is suitable for Sn-Pb eutectic and Pb- free soldering process and mounting with normal SMD pick-and-place equipment. Recommended body temperature profile during reflow soldering: Figure 10. Recommended body temperature profile during reflow soldering. Ref. IPC/JEDEC J-STD-020D. Profile feature Sn-Pb Eutectic Assembly Pb-free Assembly Average ramp-up rate (T L to T P ) 3 C/second max. 3 C/second max. Preheat - Temperature min (T smin ) 100 C 150 C - Temperature max (T smax ) 150 C 200 C - Time (min to max) (ts) 60-120 seconds 60-180 seconds Tsmax to T L 3 C/second max - Ramp up rate Time maintained above: - Temperature (T L ) 183 C 217 C - Time (t L ) 60-150 seconds 60-150 seconds Peak temperature (T P ) 240 +0/ 5 C 250 +0/ 5 C Time within 5 C of actual Peak Temperature (T P ) 10-30 seconds 20-40 seconds Ramp-down rate 6 C/second max 6 C/second max Time 25 C to Peak temperature 6 minutes max 8 minutes max The Moisture Sensitivity Level of the part is 3 according to the IPC/JEDEC J-STD-020D. The part should be delivered in a dry pack. The manufacturing floor time (out of bag) in the customer s end is 168 hours. Murata Electronics Oy 11/12

Notes: Preheating time and temperatures according to guidance from solder paste manufacturer. It is important that the part is parallel to the PCB plane and that there is no angular alignment error from intended measuring direction during assembly process. Wave soldering is not recommended. Ultrasonic cleaning is not allowed. The sensing element may be damaged by an ultrasonic cleaning process The Moisture Sensitivity Level of the part is 3 according to the IPC/JEDEC J-STD- 020B. The part should be delivered in a dry pack. The manufacturing floor time (out of bag) in the customer s end is 168 hours. Maximum soldering temperature is 250 C/40 sec. Rework after the initial soldering process is not recommended. Rework can cause heat build-up to the leg and this heat build-up will cause the housing material to get soft thus allowing the leg to move. The movement can cause bond wire disconnection inside the part. Murata Electronics Oy 12/12