Chapter 16 Angular Momentum

Similar documents
State of Stress at Point

1 Lecture 3: Operators in Quantum Mechanics

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited

Chapter 9 Unitary Groups and SU(N)

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

Similarity and Diagonalization. Similar Matrices

Continuous Groups, Lie Groups, and Lie Algebras

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

The three-dimensional rotations are defined as the linear transformations of the vector x = (x 1, x 2, x 3 ) x i = R ij x j, (2.1) x 2 = x 2. (2.

2. Spin Chemistry and the Vector Model

Chapter 6. Orthogonality

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Chapter 17. Orthogonal Matrices and Symmetries of Space

Linear Algebra: Vectors

5.61 Physical Chemistry 25 Helium Atom page 1 HELIUM ATOM

Introduction to Matrix Algebra

The Characteristic Polynomial

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Mathematics Course 111: Algebra I Part IV: Vector Spaces

LS.6 Solution Matrices

NOTES ON LINEAR TRANSFORMATIONS

Lecture 1: Schur s Unitary Triangularization Theorem

The Quantum Harmonic Oscillator Stephen Webb

CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW

Unified Lecture # 4 Vectors

Figure 1.1 Vector A and Vector F

α = u v. In other words, Orthogonal Projection

An Introduction to Hartree-Fock Molecular Orbital Theory

Continued Fractions and the Euclidean Algorithm

Inner Product Spaces

Notes on Determinant

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims

Irreducible Representations of SO(2) and SO(3)

3 Orthogonal Vectors and Matrices

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product

7 Gaussian Elimination and LU Factorization

3. Derive the partition function for the ideal monoatomic gas. Use Boltzmann statistics, and a quantum mechanical model for the gas.

13 MATH FACTS a = The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

Matrix Representations of Linear Transformations and Changes of Coordinates

Section Inner Products and Norms

Solution to Homework 2

LINEAR ALGEBRA W W L CHEN

Vectors 2. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996.

Linear Algebra Review. Vectors

= N 2 = 3π2 n = k 3 F. The kinetic energy of the uniform system is given by: 4πk 2 dk h2 k 2 2m. (2π) 3 0

Orthogonal Diagonalization of Symmetric Matrices

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form

University of Lille I PC first year list of exercises n 7. Review

[1] Diagonal factorization

Chapter 10 Electronic Wavefunctions Must Also Possess Proper Symmetry. These Include Angular Momentum and Point Group Symmetries

Data Mining: Algorithms and Applications Matrix Math Review

A note on companion matrices

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

1 Sets and Set Notation.

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

2, 8, 20, 28, 50, 82, 126.

THREE DIMENSIONAL GEOMETRY

Solving Systems of Linear Equations

Physics 221A Spring 2016 Notes 1 The Mathematical Formalism of Quantum Mechanics

5.3 The Cross Product in R 3

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Lectures notes on orthogonal matrices (with exercises) Linear Algebra II - Spring 2004 by D. Klain

Inner Product Spaces and Orthogonality

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

Applied Linear Algebra I Review page 1

Name: Section Registered In:

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G:

by the matrix A results in a vector which is a reflection of the given

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

Nonlinear Iterative Partial Least Squares Method

DATA ANALYSIS II. Matrix Algorithms

Linear Algebra I. Ronald van Luijk, 2012

Elasticity Theory Basics

Let s first see how precession works in quantitative detail. The system is illustrated below: ...

Feynman diagrams. 1 Aim of the game 2

Linear Algebra and TI 89

6. Vectors Scott Surgent (surgent@asu.edu)

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8

LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL

1 Variational calculation of a 1D bound state

Fundamental Quantum Mechanics for Engineers

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = i.

BANACH AND HILBERT SPACE REVIEW

Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj

9 MATRICES AND TRANSFORMATIONS

Rotation Matrices and Homogeneous Transformations

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression

Linear Programming. March 14, 2014

Quantum Physics II (8.05) Fall 2013 Assignment 4

Systems of Linear Equations

NMR and IR spectra & vibrational analysis

A Primer on Index Notation

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Linear Algebra: Determinants, Inverses, Rank

Molecular-Orbital Theory

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

1 VECTOR SPACES AND SUBSPACES

Transcription:

Chapter 6 Angular Momentum Apart from the Hamiltonian, the angular momentum operator is of one of the most important Hermitian operators in quantum mechanics. In this chapter we consider its eigenvalues and eigenfunctions in more detail. We begin this chapter with the consideration of the orbital angular momentum. This gives rise to a general definition of angular momenta. We derive the eigenvalue spectrum of the orbital angular momentum with an algebraic method. After a brief presentation of the eigenfunctions of the orbital angular momentum in the position representation, we outline some concepts for the addition of angular momenta. 6. Orbital Angular Momentum Operator The orbital angular momentum is given by l = r p. (6.) As we have seen in Chap. 3, Vol., it is not necessary to symmetrize for the translation into quantum mechanics (spatial representation). It follows directly that l = r, (6.) i or, in components, l x = i ( y z z ) y (6.3) plus cyclic permutations (x y z x ). All the components of l are observables. J. Pade, Quantum Mechanics for Pedestrians : Applications and Extensions, 9 Undergraduate Lecture Notes in Physics, DOI:.7/978-3-39-83-4_6, Springer International Publishing Switzerland 4

3 6 Angular Momentum We know that one can measure two variables simultaneously if the corresponding operators commute. What about the components of the orbital angular momentum? A short calculation (see the exercises) yields lx, l y = i lz ; ly, l z = i lx ; lz, l x = i ly, (6.4) or, compactly, l x, l y = i lz and cyclic permutations. This term can be written still more compactly with the Levi-Civita symbol (permutation symbol, epsilon tensor) ε ijk (see also Appendix F, Vol. ): ε ijk = if ijk is an even permutation of 3 ijk is an odd permutation of 3 otherwise (6.5) namely as li, l j = i l k ε ijk. (6.6) k Each component of the orbital angular momentum commutes with l = l x + l y + lz (see the exercises): l x, l = l y, l = l z, l =. (6.7) 6. Generalized Angular Momentum, Spectrum We now generalize these facts by the following definition: A vector operator J is a (generalized) angular momentum operator, if its components are observables and satisfy the commutation relation Jx, J y = i Jz. (6.8) and its cyclic permutations. It follows that J = Jx + J y + J z commutes with all the components: J x, J = ; J y, J = ; J z, J =. (6.9) Instead of J, one often finds j (whereby this is of course not be confused with the probability current density). In this section, we denote the operator by J and the eigenvalue by j. The factor is due to the choice of units, and would be replaced by a different constant if one were to choose different units. The essential factor is i.

6. Generalized Angular Momentum, Spectrum 3 The task that we address now is the calculation of the angular momentum spectrum. We will deduce that the angular momentum can assume only half-integer and integer values. To this end, we need only Eqs. (6.8) and (6.9) and the fact that the J i are Hermitian operators, J i = J i (whereby it is actually quite amazing that one can extract so much information from such sparse initial data). We note first that the squares of the components of the angular momentum are positive operators. Thus, we have for an arbitrary state ϕ : ϕ J x ϕ = J x ϕ. (6.) Consequently, J as a sum of positive Hermitian operators is also positive, so it can have only non-negative eigenvalues. For reasons which will become clear later, these eigenvalues are written in the special form j ( j + ) with j (and not just simply j or something similar). Equations (6.8) and (6.9) show that J and one of its components can be measured simultaneously. Traditionally, one chooses the z-component J z and denotes the eigenvalue associated with J z by m. 3 We are looking for eigenvectors j, m of J and J z with J j, m = j ( j + ) j, m ; J z j, m = m j, m. (6.) To continue, we must now use the commutation relations (6.8). It turns out that it is convenient to use two new operators instead of J x and J x, namely J ± = J x ± ij y. (6.) For reasons that will become apparent immediately, these two operators are called ladder operators; J + is the raising operator and J the lowering operator. The operators are adjoint to each other, since J x and J y are Hermitian: J ± = J. (6.3) With J + and J, the commutation relations (6.8) are written as Jz, J + = J+ ; Jz, J = J ; J+, J = Jz, (6.4) and for J,wehave J = (J + J + J J + ) + J z. (6.5) Together with J +, J = Jz, this equation leads to the expressions 3 j is also called the angular momentum quantum number and m the magnetic or directional quantum number.

3 6 Angular Momentum J + J = J J z (J z ) ; J J + = J J z (J z + ). (6.6) Furthermore, J commutes with J + and J (see the exercises). Our interest in the expressions J + J and J J + is essentially due to the fact that they are positive operators. This can be easily seen since, because of Eq. (6.3), the matrix element ϕ J + J ϕ is a norm and it follows that ϕ J + J ϕ = J ϕ. We apply J + J and J J + to the angular momentum states. With Eq. (6.6), it follows that J + J j, m = j ( j + ) m(m ) j, m and J J + j, m = j ( j + ) m(m + ) j, m. (6.7) Since the operators are positive, we obtain immediately the inequalities j ( j + ) m(m ) = ( j m)(j + m + ) and j ( j + ) m(m + ) = ( j + m)(j m + ) (6.8) which must be fulfilled simultaneously. This means that e.g. in the first inequality, the brackets ( j m) and ( j + m + ) must both be positive or both negative. If they were negative, we would have j m and m j. But this is a contradiction since j is positive. Hence we have j m and m j. If we consider in addition the second inequality, it follows that j m j. (6.9) In this way, the range of m is fixed. Now we have to determine the possible values of j. Let us consider the effect of J ± on the states j, m. Wehave J J ± j, m = j ( j + ) J ± j, m and J z J± j, m = (m ± ) J ± j, m. (6.) On the right-hand sides, we have the numbers j ( j + ) and (m ± ). This means that J ± j, m is an eigenvector of J with the eigenvalue j ( j + ) as well as of J z with the eigenvalue (m ± ). It follows that J ± j, m = c ± j,m j, m ±. (6.) The proportionality constant c ± j,m can be fixed by using Eq. ( 6.7) (see the exercises). The simplest choice is J ± j, m = j ( j + ) m (m ± ) j, m ±. (6.)

6. Generalized Angular Momentum, Spectrum 33 Here, we see clearly the reason why J + and J are called ladder operators or raising and lowering operators; for if we apply J + or J several times to j, m, the magnetic quantum number is increased or decreased by each time. Hence, with the help of these operators, we can climb down or up step by step, as on a ladder. Especially for m = j or m = j,wehave J + j, j = or J j, m =. Since the norm of a vector vanishes iff it is the zero vector, it follows that J + j, j = ; J j, j =. (6.3) We now apply the ladder operators repeatedly and can conclude that J± N j, m is an eigenvector of J z with the eigenvalue (m ± N) (see the exercises), i.e. that it is proportional to j, m ± N with N N. In other words, if we start from any state j, m with j < m < j, then after a few steps 4 we obtain states whose norm is negative (or rather would obtain them), or whose magnetic quantum number m ± N violates the inequality (6.9). This can be avoided only if the following conditions are fulfilled, going up for J + and going down for J : m + N = j and m N = j; N, N N. (6.4) For as we know from Eq. (6.3), J + j, j =, and further applications of J + yield just zero again; and similarly for J. The addition of the two last equations (6.4) leads to j = N + N.Itfollows with j that the allowed values for j are given by j =,,, 3,,... (6.5) and for m by m = j, j +, j +,..., j, j, j (6.6) In this way, we have determined the possible eigenvalues of the general angular momentum operators J and J z. We remark that there are operators with only integer eigenvalues (e.g. the orbital angular momentum operator), or only half-integer eigenvalues (e.g. the spin- operator), but also those which have half-integer and integer eigenvalues. One of the latter operators, for example, occurs in connection with the Lenz vector; see Appendix G, Vol.. As for elementary particles, nature has apparently set up two classes, which differ by their spins: those with half-integer spin are called fermions, those with integer spin bosons. General quantum objects can, however, have half-integer or integer spin, as we see in the example of helium, occurring as 3 He (fermion) and as 4 He (boson). We point out that a very general theorem (the spin-statistics theorem )shows the 4 For e.g. J +, j, m j, m + j, m +.

34 6 Angular Momentum connection between the spin and quantum statistics, proving that all fermions obey Fermi-Dirac statistics and all bosons obey Bose-Einstein statistics. We note that in the derivation of the angular-momentum eigenvalues, we have obtained little information about the eigenvectors but we do not need it in order to derive the spectrum. It is understandable if this leaves feelings of uncertainty at first sight; but on the other hand, it is simply superb that there is such an elegant technique! 6.3 Matrix Representation of Angular Momentum Operators With Eq. (6.), it follows that j, m J± j, m = j ( j + ) m (m ± )δ m,m±. (6.7) By means of this equation, we can represent the angular momentum operators as matrices. We assume that the eigenstates are given as column vectors. We consider the case of spin, where one usually writes s instead of J. We can represent the two possible states as 5, ( ) ( ) = and, =. (6.8) Only two matrix elements do not vanish, namely, s +, = and, s, = (6.9) or s + = ( ) and s = ( ). (6.3) With the definition of the ladder operators, s ± = s x ± is y or s x = (s + + s )/ and s y = (s + s )/i, it follows that s x = ( ) = σ x and s y = ( ) i = i σ y (6.3) i.e. two of the well-known spin matrices (s) or Pauli matrices (σ). We obtain the third one by using the equation s z /, m = m /, m directly as 5 We omit here the distinction between = and =.

6.3 Matrix Representation of Angular Momentum Operators 35 s z = ( ) = σ z. (6.3) In the same way, we can obtain e.g. the matrix representation of the orbital angular momentum operator for l = ; see the exercises. We recall briefly some properties of the Pauli matrices (cf. Chap. 4, Vol. ). With a view to a more convenient notation, one often writes σ, σ, σ 3 instead of σ x, σ y, σ z. In this notation, 6 σi, σ j = i ε ijk σ k ; { } σ i, σ j = δij ; σi = ; σ i σ j = i k k ε ijk σ k (6.33) holds. Finally, we note that every -matrix can be represented as a linear combination of the three Pauli matrices and the unit matrix. 6.4 Orbital Angular Momentum: Spatial Representation of the Eigenfunctions The eigenvalues of the orbital angular momentum are integers. For the position representation of the eigenfunctions, it is advantageous to use spherical coordinates. In these coordinates, we find that 7 : l = sin ϑ ϑ ( sin ϑ ) + ϑ sin ϑ ϕ ; l z = i ϕ. (6.34) The eigenvalue problem (6.) is written as ( sin ϑ ) + sin ϑ ϑ ϑ sin ϑ ϕ Yl m (ϑ, ϕ) = l (l + ) Yl m (ϑ, ϕ) ϕ Y l m (ϑ, ϕ) = imyl m (ϑ, ϕ), (6.35) or, more compactly, as l Yl m (θ, ϕ) = l(l + )Y m l z Y m l l (θ, ϕ) with l =,,, 3,... (θ, ϕ) = myl m (θ, ϕ) with l m l (6.36) 6 The anticommutator is defined as usual by {A, B} = AB + BA. 7 We recall the equality See also Appendix D, Vol.. = r + r r l r

36 6 Angular Momentum where the functions Yl m (ϑ, ϕ) are the eigenfunctions of the orbital angular momentum in the position representation 8 ; they are called spherical functions (or spherical harmonics). The number l is the orbital angular momentum (quantum) number, m the magnetic (or directional) (quantum) number. With the separation ansatz Yl m (ϑ, ϕ) = (ϑ) (ϕ), we obtain ( sin ϑ ) + sin ϑ ϑ ϑ sin + l (l + ) (ϑ) = ϑ ϕ (ϕ) = im (ϕ). (6.37) ϕ The solutions of the first equation are well-known special functions (associated Legendre functions). The solutions of the second equation can immediately be written down as (ϕ) = e imϕ. We will not deal with the general form of the spherical functions (for details see Appendix B, Vol. ), but just note here some important features as well as the simplest cases. The spherical harmonics form a CONS. They are orthonormal π dϑ sin ϑ π dϕ Y m l (ϑ, ϕ) Y m l (ϑ, ϕ) = δ ll δ mm (6.38) and complete l l= m= l Y m l (ϑ, ϕ) Y m l ( ϑ, ϕ ) δ ( ϑ ϑ ) δ ( ϕ ϕ ) =. (6.39) sin ϑ With the notation = (ϑ, ϕ) for the solid angle and d = sin ϑdϑdϕ (also written as d ˆr or d ˆr, see Appendix D, Vol. ) for its differential element, we can write the orthogonality relation as Y m l (ϑ, ϕ) Y m l (ϑ, ϕ) d = δ ll δ mm. (6.4) Because of the completeness of the spherical harmonics, we can expand any (sufficiently well-behaved) function f (ϑ, ϕ) in terms of them: f (ϑ, ϕ) = l,m c lm Y m l (ϑ, ϕ) (6.4) with 8 Other notations: Yl m (ϑ, ϕ) = Yl m ) (ˆr = ˆr l, m. ˆr is the unit vector and is an abbreviation for the pair (ϑ, ϕ). Moreover, the notation Y lm (ϑ, ϕ) is also common.

6.4 Orbital Angular Momentum: Spatial Representation of the Eigenfunctions 37 c lm = Y m l (ϑ, ϕ) f (ϑ, ϕ) d. (6.4) Such an expansion is called a multipole expansion; the contribution for l = is called the monopole (term), for l = the dipole, for l = the quadrupole, and generally, that for l = n the n -pole. Finally, we write down the first spherical harmonics explicitly (more spherical functions may be found in Appendix B, Vol., where there are also some graphs): Y = ; Y 3 = 4π 4π cos ϑ; Y 3 = 8π ) Y 5 ( = 3cos ϑ 6π For negative m, the functions are given by Y m l sin ϑeiϕ ; Y = 5 8π sin ϑ cos ϑeiϕ ; Y = 5 3π sin ϑe iϕ. (6.43) (ϑ, ϕ) = ( ) m Y m l (ϑ, ϕ). (6.44) 6.5 Addition of Angular Momenta This section is intended to give a brief overview of the topic. Therefore, only some results are given, without derivation. In this section, we denote the angularmomentum operators by lower-case letters j. The addition theorem for angular momentum states that: If one adds two angular momenta j and j, then j, the quantum number of the total angular momentum j = j + j can assume only one of the values 9 : j + j, j + j, j + j,..., j j (6.45) while the projections onto the z-axis are added directly: m = m + m. (6.46) Total angular momentum states jm can be obtained from the individual states j, m and j, m through the relation: jm; j j = j j m m jm j, m j, m (6.47) m +m =m 9 Intuitively-clear reason: If the two angular momentum vectors are parallel to each other, then their angular-momentum quantum numbers are added to give j = j + j. For other arrangements, j is smaller. The smallest value is j j, because of j.

38 6 Angular Momentum where of course j j j j + j has to be satisfied. The numbers j j m m jm are called Clebsch-Gordan coefficients ; they are real and are tabulated in relevant works on the angular momentum in quantum mechanics. The inverse of the last equation is j, m j, m = j + j j= j j j j m m jm jm; j j. (6.48) As an application, we consider the spin-orbit coupling, i.e. the coupling of the orbital angular momentum l of electrons with their spins s. The total angular momentum of the electron is j = l + s (6.49) and its possible values are j = l + and j = l (except for l = in which case only j = occurs). Intuitively, this means that orbital angular momentum and spin are either parallel ( j = l + ) or antiparallel ( j = l ). The spin is a relativistic phenomenon and can, if one argues from the nonrelativistic SEq, at best be introduced heuristically. A clear-cut approach starts e.g. from the relativistically correct Dirac equation i t ψ = ( cαp + βmc + eφ ) ψ = H Dirac ψ. Here, p is the three-dimensional momentum operator p = i, while β and the three components of the vector α are certain 4 4 matrices, the Dirac matrices. j j There are several different notations for these coefficients, e.g. C 3j-symbols are related coefficients: ( ) j j j = ( ) m m m j j m j j m m j m. j + The 3j-symbols are invariant against cyclic permutation: ( ) ( ) j j j j j j =, etc. m m m mm m m m ; jm. The so-called The two conditions j j j j + j and m = m + m must be met in order that a Clebsch-Gordan coefficient is nonzero. The CGC satisfy the orthogonality relations j j m m jm j j m m j m = δ jj δ mm m,m j j m m jm j j m m jm = δ m m δ m m. j,m A particular CGC can in principle be calculated using the ladder operators j ± + j ±, whereby one starts e.g. from j j j j j + j j + j =. In this way, one obtains for example ( ) ABA+ B = ( ) a b c A B c (A)! (B)! (A + B + c)! (A + B c)!. (A + B + )! (A + a)! (A a)! (B + b)! (B b)!

6.5 Addition of Angular Momenta 39 Essentially, one performs an expansion of this equation in powers of ( v c ) and retains only the lowest term for the nonrelativistic description. Then it turns out that in the SEq, a spin-orbit term F(r) l s appears (see also Chap. 9), with F(r) a radiallysymmetric function. Because of l s has the values (l + s) = j = l + ls + s, (6.5) l s = j ( j + ) l (l + ) s (s + ). (6.5) It follows for the spin-orbit term in the SEq: F(r) l s = { lf(r) for (l + ) F(r) j = l + j = l. (6.5) Next, we briefly discuss the corresponding eigenfunctions and write down their explicit form. We start from the states for the spin sm s and the orbital angular momentum Q; lm l, where Q stands for possible additional quantum numbers (e.g. the principal quantum number of the hydrogen atom). The total angular momentum state is then described by Q; j, m j; l ; j = l ± for l ; j = for l = (6.53) and is composed of spin and orbital angular momentum states: Q; j, m j; l = m l +m s =m j lsm l m s Calculating the Clebsch-Gordan coefficients yields Q; j = l + /, m j; l l+m = j +/ l+ Q; j = l /, m j; l = l m j +/ l+ jmj Q; lml sm s (6.54) Q; l, m j / l m s, / + j +/ l+ Q; l, m j + / s, / Q; l, m j / l+m s, / + j +/ l+ Q; l, m j + / s, / (6.55) with m j = l + /,..., (l + /) in the upper line and m j = l /,..., (l /) in the lower line. With the notation as column vectors, we obtain using ( ) s, / /, / = ( ) and s, / /, / = (6.56)

4 6 Angular Momentum the explicit formulations Q; j = l + /, m j; l = l+m j +/ l+ l m j +/ l+ Q; l, m j / Q; l, m j + / with m j = l + /,..., (l + /) (6.57) and Q; j = l /, m j; l = l m j +/ l+ l+m j +/ l+ Q; l, m j / Q; l, m j + / with m j = l /,..., (l /). (6.58) 6.6 Exercises. For which K, N, M are the spherical harmonics (in spherical coordinates) f (ϑ, ϕ) = cos K ϑ sin M ϑ e inϕ (6.59) eigenfunctions of l?. Write out the spherical harmonics for l = using Cartesian coordinates, x, y, z. 3. Show that: l ˆr = ˆr l = (6.6) 4. Show that the components of l are Hermitian. 5. Show that for the orbital angular momentum, it holds that lx, l y = i lz ; l y, l z = i lx ; l z, l x = i ly. (6.6) 6. Show that A, BC = B A, C + A, B C holds. Using this identity and the commutators l x, l y = i lz plus cyclic permutations, prove that l x, l =. 7. Show that: J, J ± =. (6.6) 8. We have seen in the text that J ± j, m = c ± j,m j, m ±. (6.63)

6.6 Exercises 4 Using J + J j, m = j ( j + ) m(m ) j, m J J + j, m = j ( j + ) m(m + ) j, m, (6.64) show that for the coefficients c ± j,m, holds. 9. Given the Pauli matrices σ k, (a) Show (once more) that σi, σ j = iεijk σ k ; (b) Prove that c ± j,m = j ( j + ) m (m ± ) (6.65) { σi, σ j } = δij ; σ i = ; σ i σ j = iε ijk σ k ; (6.66) (σ A)(σ B) = AB + iσ (A B) (6.67) where σ is the vector σ = (σ, σ, σ 3 ) and A, B are three-dimensional vectors; (c) Show that every x matrix can be expressed as a linear combination of the three Pauli matrices and the unit matrix.. Given the orbital angular momentum operator l and the spin operator s, show that l z, s l = ; s z, s l = ; l z + s z, s l =.. The ladder operators for a generalized angular momentum are given as J ± = J x ± ij y. (a) Show that J z, J + = J+, J z, J = J, J +, J = Jz, as well as J = (J + J + J J+) + J z. (b) Show that it follows from the last equation that: and hence J + J = J J z (J z ) ; J J + = J J z (J z + ) (6.68) J + J j, m = j ( j + ) m(m ) j, m J J + j, m = j ( j + ) m(m + ) j, m. (6.69)

4 6 Angular Momentum Fig. 6. Rotation about an axis â z â x ϕ ϑ y (c) Show that from the last two equations, it follows that: j ( j + ) m(m ) = ( j m)(j + m + ) j ( j + ) m(m + ) = ( j + m)(j m + ) (6.7) and hence j m j. (6.7). What is the matrix representation of the orbital angular momentum for l =? 3. Consider the orbital angular momentum l =. Express the operator e iαl z/ as sum over dyadic products (representation-free). Specify this for the bases and, = ;, = ;, = (6.7), = ± i ;, = ;, = i. (6.73) 4. Calculate the term γâl i e = e iγâl (6.74) for the orbital angular momentum l = and the basis (6.73). â is the rotation axis (a unit vector), γ the rotation angle. For reasons of economy, use the simplified angular momentum l = L/, i.e. the theoretical units system. (a) Express the rotations around the x-, y- and z-axis as matrices. (b) Express the rotations about an axis â with rotation angle γ as matrices (the angles in spherical coordinates are ϑ and ϕ; see Fig. 6.). Of course, all the calculations may also be performed representation-free.

http://www.springer.com/978-3-39-8-7