BIODIVERSITY. Miss Yorke

Similar documents
4. Why are common names not good to use when classifying organisms? Give an example.

Question Bank Five Kingdom Classification

6 Kingdoms of Life. Prokaryotes. Prokaryotes & Eukaryotes. DO HAVE: DNA Ribosomes Cytoplasm Cell membrane

Introduction to Plants

Georgia Performance Standards Framework for Science GRADE 7 DICHOTOMOUS KEYS AND CLASSIFICATION

Break down material outside their body and then absorb the nutrients. Most are single-celled organisms Usually green. Do not have nuclei

3.1 Types of Living Things

Table 1: Kingdom Worksheet

D.U.C. Assist. Lec. Faculty of Dentistry Medical Biology Ihsan Dhari. Kingdoms of life

Fungi and plants practice

Introduction to Animals

Classification Why Things are Grouped classify Methods of Classification

nucleus cytoplasm membrane wall A cell is the smallest unit that makes up living and nonliving things.

IDENTIFICATION OF ORGANISMS

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z.

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy

PLANT DIVERSITY. EVOLUTION OF LAND PLANTS KINGDOM: Plantae

COWLEY COLLEGE & Area Vocational Technical School

AP Biology Review. ame: Class: Date:

2. Fill in the blank. The of a cell is like a leader, directing and telling the different parts of the cell what to do.

Practice Questions 1: Evolution

MCAS Biology. Review Packet

NOTE TO TEACHER: It is appropriate to introduce the mitochondria (where energy is made) as a major structure common to all cells.

Introduction to Medical Microbiology

Cytology. Living organisms are made up of cells. Either PROKARYOTIC or EUKARYOTIC cells.

Name: LAB SECTION: Circle your answer on the test sheet: completely erase or block out unwanted answers.

Protists and Fungi. What color are the cells in the living culture?

Classification. Living Things. bacteria and blue green algae: (single celled organisms without a nucleus)

The Cell Teaching Notes and Answer Keys

How Scientists Classify Living Things. on Earth. Fill the board or a large sheet of paper with the names of organisms.

Flowers; Seeds enclosed in fruit

Lab # 6 on Taxonomy and the Animal Kingdom Pre Lab Questions:

PLANT EVOLUTION DISPLAY Handout

Classification & Kingdoms Worksheet

PRINCIPLES OF OCEANOGRAPHY AND MARINE ECOLOGY

Natural surface water on earth includes lakes, ponds, streams, rivers, estuaries, seas and oceans.

Problem Set 5 BILD10 / Winter 2014 Chapters 8, 10-12

Cells are tiny building blocks that make up all living things. Cells are so small that you need a microscope to see them.

Pre-lab homework Lab 2: Reproduction in Protists, Fungi, Moss and Ferns

The Living Cell from the Biology: The Science of Life Series. Pre-Test

7.1 What Are Cells? You are made of cells. A cell is the basic unit of structure and function in a living thing. CHAPTER 7

Organization and Structure of Cells

Ecology 1 Star. 1. Missing from the diagram of this ecosystem are the

KEY CONCEPT Organisms can be classified based on physical similarities. binomial nomenclature

THE WATER CYCLE. Ecology

XII. Biology, Grade 10

Biological Science, 5e (Freeman) Chapter 1 Biology and the Tree of Life

BIO 182 General Biology (Majors) II with Lab. Course Package

Cell and Membrane Practice. A. chromosome B. gene C. mitochondrion D. vacuole

FOURTH GRADE ORGANISMS

Life Science Study Guide. Environment Everything that surrounds and influences (has an effect on) an organism.

Name Class Date. binomial nomenclature. MAIN IDEA: Linnaeus developed the scientific naming system still used today.

Protists and Fungi. What are protists? What are protists? Key Concepts. 1. Identify What is a protist? CHAPTER 14 LESSON 1

TEACHER BACKGROUND INFORMATION LIVING ORGANISMS

Make your own bacteria!

Topic 3: Nutrition, Photosynthesis, and Respiration

Biological Classification Worksheet

Plant and Animal Cells

The Origin of Life. The Origin of Life. Reconstructing the history of life: What features define living systems?

Gymnázium, Brno, Slovanské nám. 7, WORKBOOK - Biology WORKBOOK.

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A.

Theory of Evolution. A. the beginning of life B. the evolution of eukaryotes C. the evolution of archaebacteria D. the beginning of terrestrial life

1. Over the past century, several scientists around the world have made the following observations:

Section 24 1 Reproduction With Cones and Flowers (pages )

ENVIRONMENTAL CHANGES

Evolutionary Trees I

CHAPTER 2 : CELL AS THE BASIC UNIT OF LIFE

The main source of energy in most ecosystems is sunlight.

A Correlation of Pearson Miller & Levine Biology 2014 To the Utah Core State Standards for Biology Grades 9-12

Respiration occurs in the mitochondria in cells.

10B Plant Systems Guided Practice

The Good and Bad of Microorganisms

Basic Biology: A Brief Introduction

The animals at higher levels are more competitive, so fewer animals survive. B.

called a cell wall. The cell wall protects against mechanical stress and keeps the cell from becoming over-filled with water.

Cells in Biology. Lesson 1.

FOOD CHAINS, FOOD WEBS AND ECOLOGICAL PYRAMIDS

Cell Structure and Function. Eukaryotic Cell: Neuron

Life in a Pond. Page 1 of 5. Grade Levels K-5

Honors Biology Course Summary Department: Science

the!sun!to!sugars.!this!is!called!! photosynthesis.!the!byproduct!of!those! Nucleus! sugars!is!our!oxygen.!

Chapter 5 Organelles. Lesson Objectives List the organelles of the cell and their functions. Distinguish between plant and animal cells.

Chapter 4: A Tour of the Cell. 1. Cell Basics. Limits to Cell Size. 1. Cell Basics. 2. Prokaryotic Cells. 3. Eukaryotic Cells

a. a population. c. an ecosystem. b. a community. d. a species.

Lesson Overview. Biodiversity. Lesson Overview. 6.3 Biodiversity

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?

Cellular Energy. 1. Photosynthesis is carried out by which of the following?

Classification of Microorganisms (Chapter 10) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus

Biology 170: Exam 2. Multiple choice (2 pts each). Mark (bubble-in) the correct answer on your scantron.

Use this diagram of a food web to answer questions 1 through 5.

Anatomy and Physiology of Leaves

PHOTOSYNTHESIS AND CELLULAR RESPIRATION

BME Engineering Molecular Cell Biology. Lecture 02: Structural and Functional Organization of

Multiple Choice Questions

BIOL 1030 TOPIC 5 LECTURE NOTES TOPIC 5: SEEDLESS VASCULAR PLANTS (CH. 29)

Section 3: Trophic Structures

Vascular Plants Bryophytes. Seedless Plants

Ecosystems and Food Webs

Section 5.1 Food chains and food webs

Transcription:

BIODIVERSITY Miss Yorke

Which of the following three ducks belong to the same species?

American Wigeon Male (Anas americana) Green-winged Teal Male (Anas crecca) Green-winged Teal female (Anas crecca)

Classification Think about your home, school and neighbourhood. Can you think of any examples of classification systems in use?

Possible Answers:

Vegetable Activity Answers The varieties of Brassica oleracea are all artificially selected and derived from the wild-type that grows on the sea cliffs of Europe. Note that obvious traits are not always important in defining species. In this case, the detail of the flowers present is used to define the Brassica genus, and the arrangement of stalks defines the Brassica species.

Discuss the scientific names. These samples are good for reinforcing the idea that the scientific names do mean something (if you know Latin and Greek). Latin Greek brassic = cabbage acephala = no head capitata = head botrytis = bunch of grapes oler = greens caulo = turnip rapa = stem gemmifera = bud-bearing chinesis = Chinese lattuca = lettuce

The number of Brassica oleracea varieties is an excellent representation of the genetic variation in a species. Artificial selection can be demonstrated with broccoli, cauliflower, and broccoflower (Brassica oleracea botrytis), which have been bred for selected traits. Remind students of the role that artificially bred plants and animals played in the development of Darwin s ideas on natural selection.

Classification Tools Really great activity for using biotechnology to determine classification http://glencoe.mcgrawhill.com/sites/0078695104/student_view0/unit4/c hapter17/virtual_labs.html#

Kingdoms and Domains

The 3 Domains of Life This phylogenetic tree (a tree showing evolutionary relationships) is based on rrna sequences that demonstrate the division of all living things into three broad domains.

The 3 Domains of Life The Bacteria domain is prokaryotic, is considered to be the oldest and is composed of the organisms in the Kingdom Eubacteria (the true bacteria). Archaea is the second prokaryotic domain and is also composed of single kingdom Archaebacteria. The third domain, Eukarya, contains all four of the eukaryotic kingdoms: Animalia (animals), Fungi (fungi), Plantae (plants), and Protista (protists).

The Kingdoms of Life Biologists have further organized living things into large groups called Kingdoms. Biologists group organisms into six Kingdoms based on RNA and DNA sequencing and the following other similarities: Cell Type Organisms are either prokaryotes or eukaryotes. Cell Walls Body Type Organisms are either unicellular or multicellular. Nutrition Organisms are either autotrophs or heterotrophs.

The 6 Kingdoms of Life

What happened to the 5 Kingdoms? Just a few years ago, living things used to be classified into 5 Kingdoms: i) Plantae ii) iii) iv) Animalia Fungi Protista v) Monera * The difference is that Archaebacteria and Eubacteria were once in one category. Recent RNA testing has shown that Archaebacteria are not closely related to the true bacteria, Eubacteria.

The Domain Bacteria Contains a single kingdom, Eubacteria. Some scientists call this kingdom Bacteria. Bacteria are prokaryotes and have no membrane bound structures such as a nucleus or mitochondria Bacteria have a nucleoid instead of a nucleus. Like eukaryotic cells, bacteria have ribosomes Bacteria are found in practically every environment on Earth. Bacilli bacteria under an electron microscope

Characteristics of Bacteria Bacteria have strong exterior cell walls made of peptidoglycan, a molecule complex consisting of sugars and amino acids that form a mesh-like layer outside the plasma membrane.

Kinds of Bacteria Bacteria can cause disease, while others are used by humans to process food. Bacteria are used to control agricultural pests, to produce various chemicals, and perform genetic engineering. Some Bacteria obtain energy from inorganic compounds such as hydrogen sulfide, ammonia, and methane. Some Bacteria are photosynthetic and are found in ocean and freshwater ecosystems. Some heterotrophic Bacteria are able to live in the absence of oxygen. Heterotrophic Bacteria are also important decomposers.

Uses of Bacteria - Cheese production - Bacteria enables us to eat fermented dairy products such as yogurt, buttermilk, and cheese - Example: Lactococcus lactis is used to ferment milk into Cheddar Cheese! - We ve all heard of probiotic yogurts All yogurts are probiotic! This just means they have good bacteria. Did you know? - Escherichia coli (E. coli) exists in abundance in everyone s intestine. It is only dangerous when ingested.

The Domain Archaea Contains a single kingdom Archaebacteria. Archaebacteria are prokaryotes that have diverged very early from bacteria. They are more closely related to eukaryotes than to bacteria.

Characteristics of Archaebacteria Cell Wall and Membrane The cell walls of archaebacteria do not contain peptidoglycan, as the cell walls of bacteria do. Archaebacteria contain lipids very different from those of bacteria or eukaryotes. Gene Structure and Translation The ribosomal proteins of archaebacteria are very similar to those of eukaryotes and different from those of bacteria.

Kinds of Archaebacteria 1) Methanogens These archaebacteria obtain energy by combining hydrogen gas and carbon dioxide to form methane gas. Methanogens live deep in the mud of swamps and are poisoned by even traces of oxygen. They are common in wetlands, where they are responsible for marsh gas, and in the guts of animals such as ruminants (cud-chewing animals) and humans, where they are responsible for the methane content of flatulence.

Kinds of Archaebacteria cont d 2) Extremophiles A group of extremophiles called Thermophiles lives in very hot places. Halophiles inhabit very salty lakes that can be three times as salty as seawater. Other extremophiles live in very acidic places or under enormous pressure. 3) Nonextreme Archaebacteria These grow in all the same environments that bacteria do.

The Domain Eukarya Eukarya is made up of four kingdoms: Protista Fungi Plantae Animalia Members of this domain are Eukaryotes.

Characteristics of Eukarya Highly Organized Cell Interior All eukaryotes have cells with a nucleus and other internal compartments. Multicellularity The activities of individual cells are coordinated and the cells themselves are in contact, occurs only in eukaryotes. Sexual Reproduction Meiotic cell division forms haploid gametes and two gametes unite to form a diploid cell in fertilization. Genetic recombination during meiosis and fertilization causes the offspring of eukaryotes to vary widely, providing for evolution.

Kinds of Eukarya A wide variety of Eukaryotes are unicellular. Most unicellular Eukaryotes are in the kingdom Protista. Protists contain both unicellular and multicellular organisms, many are aquatic. Fungi are heterotrophs that are mostly multicellular. Many fungi live on and decompose dead organisms, many others are parasitic. Plants and Animals are all multicellular. Almost all plants are autotrophs and have cells with cell walls composed of cellulose. All animals are heterotrophs composed of cells that do not have cell walls. Most plants and animals have tissues and organs.

Kingdom and Domain Characteristics Domain Kingdom Characteristics Cell type Bacteria Eubacteria Prokaryotic Archaea Archaebacteria Prokaryotic Cell Structure Eukarya Protista Eukaryotic Mixed Cell Wall, Peptidoglycan Cell Wall, No Peptidoglycan Body Type Nutrition Example Unicellular Unicellular Unicellular and Multicellular Autotrophic and Heterotrophic Autotrophic and Heterotrophic Autotrophic and Heterotrophic Enterobacteria Spirochetes Methanogens Amoebas Euglenas Kelps Eukarya Fungi Eukaryotic Cell Wall, Chitin Unicellular and Multicellular Heterotrophic Yeasts Mushrooms Eukarya Plantae Eukaryotic Cell Wall, Cellulose Multicellular Autotrophic Ferns Pine trees Eukarya Animalia Eukaryotic No Cell Wall Multicellula r Heterotroph ic Birds Earthworms

Of the six kingdoms of organisms, Protista is the most diverse. They are eukaryotes that are not fungi, plants, or animals. Many are unicellular. All single celled eukaryotes (except yeasts) are protists. Some protists, such as some kinds of algae, have cell specialization. Most are microscopic, but some are as large as trees. Kingdom Protista

Kinds of Protists Protists that use Pseudopodia Amoebas are protists that have flexible surfaces with no cell walls or flagella. They move by using extensions of cytoplasm called pseudopodia. Forams have porous shells through which long, thin projections of cytoplasm can be extended. Protists that use Flagella Many protists move by using flagella.

Kinds of Protists 1) Animal-like Protists - also called protozoa (means "first animal") heterotrophs 2) Plant-like Protists - also called algae - autotrophs Distinguished by the type of chlorophyll they contain. Many algae are multicellular and reproduce sexually. 3) Fungus-like Protists Slime molds and water molds are often confused with fungi because they aggregate in times of stress to form spore-producing bodies. heterotrophs, decomposers, external digestion

Malaria Malaria is caused by the protozoa Plasmodium falciparum and is spread by the mosquito Each year, malaria kills between 1 and 3 million people! Economists suggest that malaria can be controlled for $3 billion US per year through drugs, mosquito eradication, and bite prevention

Kingdom Plantae Plants are complex multicellular autotrophs. Plants have specialized cells and tissues. Most plants have several different types of cells that are organized into many specialized tissues. Plants cannot move from one place to another. Portable reproductive structures, such as spores and seeds, enable the dispersal of plants. As autotrophs, plants are the primary producers in most terrestrial food webs. Plants also release oxygen gas to the atmosphere. Plants are very important in the cycling of phosphorus, water, nitrogen, and carbon. Plants are a source of food, medicines, dyes, cloth, paper and many other products.

Example of Plant Western prairie fringed orchid Platanthera praeclara Scheviak and Bowles (Orchidaceae) Endangered in Manitoba

Western Fringed Prairie Orchid The largest population in the world exists by Tolstoi, MB. Pollinated by a specific moth (hawk moth). This moth lives in trees and the flower lives in grassland, so they can only coexist along the borders of these regions. These orchid seeds may take up to 12 years to germinate because they have to form a relationship with the fungi in the soil.

Kinds of Plants Nonvascular Plants Plants without a well-developed system of vascular tissue. These plants are relatively small. They lack tissue to transport water and dissolved nutrients. They also lack true roots, stems, and leaves. Mosses are the most familiar example. Seedless Vascular Plants They have roots, stems, and leaves and their surfaces are coated with a waxy covering that reduces water loss. They reproduce with spores that are resistant to drying. Both haploid and diploid phases occupy significant parts of the life cycle. Ferns are the most common and familiar example.

Kinds of Plants Nonflowering Seed Plants Gymnosperms are vascular plants that reproduce using seeds but do not produce flowers. Gymnosperms include plants that produce seeds in cones, such as pines and spruces. Flowering Seed Plants Most plants that produce seeds also produce flowers. Flowering plants are called angiosperms. Angiosperms, such as roses, grasses, and oaks, produce seeds in fruits. Fruits are structures that enable the dispersal of seeds. Seeds enable plants to scatter offspring and to survive long periods of harsh environmental conditions, such as drought and extreme temperatures.

Kingdom Animalia Animals are complex multicellular heterotrophs. Their cells are mostly diploid, lack a cell wall, and are organized as tissues. Animals are able to move rapidly in complex ways. Movement enables animals to avoid predators and to look for food and mates.

Kingdom Animalia Most animals reproduce sexually. Almost all animals (99%) are invertebrates; they lack a backbone. Of more than 1 million living species, only about 42,500 have a backbone; they are referred to as vertebrates. Damselfly The animal kingdom includes about 35 phyla, most of which live in the sea.

Nine Animal Phyla Phylum Porifera Sponges Phylum Cnidaria Hydra, jellyfishes, corals, sea anemones Phylum Platyhelminthes Marine / freshwater flatworms Phylum Nematoda Roundworms

Phylum Annelida leeches and segmented worms Phylum Mollusca snails (gastropods), octopus, squid, nautilus, bivalves Phylum Arthropoda Crustaceans (e.g. Lobsters, crabs), insects

Phylum Echinodermata Star fish, sea urchins, sea cucumbers Phylum Chordata invertebrate chordates, fish, amphibians, reptiles, birds, mammals