Math 316 Solutions To Sample Final Exam Problems

Similar documents
Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993

Algorithmic Aspects of Access Networks Design in B3G/4G Cellular Networks

Enhancing Downlink Performance in Wireless Networks by Simultaneous Multiple Packet Transmission

Outline. Binary Tree

Link-Disjoint Paths for Reliable QoS Routing

Chapter 3 Chemical Equations and Stoichiometry

Level 3. Monday FRACTIONS ⅔ ⅗ 2) ⅔ =?/18. 1) What is a) ⅕ of 30? b) ⅖ of 30?

Uses for Binary Trees -- Binary Search Trees

Higher. Exponentials and Logarithms 160

Diagram Editing with Hypergraph Parser Support

Oracle PL/SQL Programming Advanced

Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems. Distributed File Systems. Example: NFS Architecture

MATH PLACEMENT REVIEW GUIDE

Where preparation meets opportunity. My Academic Planner. Early Academic Outreach Program (EAOP)

Back left Back right Front left Front right. Blue Shield of California. Subscriber JOHN DOE. a b c d

Usability Test Checklist

Fundamentals of Tensor Analysis

Economics 340: International Economics Andrew T. Hill Nontariff Barriers to Trade

Maximum area of polygon

Angles 2.1. Exercise Find the size of the lettered angles. Give reasons for your answers. a) b) c) Example

Homeomorphic Alignment of Weighted Trees

IncrEase: A Tool for Incremental Planning of Rural Fixed Broadband Wireless Access Networks

Last time Interprocedural analysis Dimensions of precision (flow- and context-sensitivity) Flow-Sensitive Pointer Analysis

Standard Conditions for Street Traders The Royal Borough of Kensington and Chelsea. Revised standard conditions for street trading

Revised Conditions (January 2009) LLOYDS BANKING GROUP SHARE ISA CONDITIONS

Discovering Petri Nets From Event Logs

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions

Hospitals. Internal Revenue Service Information about Schedule H (Form 990) and its instructions is at

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:

Predicting Current User Intent with Contextual Markov Models

1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.

December Homework- Week 1

11 + Non-verbal Reasoning

Network Decoupling for Secure Communications in Wireless Sensor Networks

50 MATHCOUNTS LECTURES (10) RATIOS, RATES, AND PROPORTIONS

Operational Procedure: ACNC Data Breach Response Plan

A122 MARION COUNTY HEALTH BUILDING HVAC, GLAZING AND LIGHTING RENOVATION 75% DOCUMENTS 08/31/2015

One Ring to Rule them All: Service Discovery and Binding in Structured Peer-to-Peer Overlay Networks

The remaining two sides of the right triangle are called the legs of the right triangle.

Lesson 2.1 Inductive Reasoning

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES A

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Approximate Subtree Identification in Heterogeneous XML Document Collections

AC Circuits Three-Phase Circuits

P U B L I C A T I O N I N T E R N E 1800 PARTIAL ORDER TECHNIQUES FOR DISTRIBUTED DISCRETE EVENT SYSTEMS: WHY YOU CAN T AVOID USING THEM

Chapter. Fractions. Contents: A Representing fractions

c b N/m 2 (0.120 m m 3 ), = J. W total = W a b + W b c 2.00

SECTION 7-2 Law of Cosines

Discovering Block-Structured Process Models From Event Logs Containing Infrequent Behaviour

Question 3: How do you find the relative extrema of a function?

Quick Guide to Lisp Implementation

New Basis Functions. Section 8. Complex Fourier Series

Graph Theoretical Analysis and Design of Multistage Interconnection Networks

AP Calculus AB 2008 Scoring Guidelines

Words Symbols Diagram. abcde. a + b + c + d + e

Review Problems for the Final of Math 121, Fall 2014

Upward Planar Drawings of Series-Parallel Digraphs with Maximum Degree Three

Distributed Process Discovery and Conformance Checking

Dinh Hong Giang 1,2, Ed Sarobol 2, * and Sutkhet Nakasathien 2 ABSTRACT

Ratio and Proportion

Module 5. Three-phase AC Circuits. Version 2 EE IIT, Kharagpur

Further applications of area and volume

Five-Layer Density Column

CHAPTER 31 CAPACITOR

Change Your History How Can Soccer Knowledge Improve Your Business Processes?

Attachment 1 Package D1-1 (Five (5) Locations) Revised

GENERAL REGULATIONS FOR DEGREES BY RESEARCH AND THESIS

1 Fractions from an advanced point of view

Transistor is a semiconductor device with fast respond and accuracy. There are two types

The example is taken from Sect. 1.2 of Vol. 1 of the CPN book.

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Homework 3 Solutions

Magic Message Maker Amaze your customers with this Gift of Caring communication piece

Applications: Lifting eyes are screwed or welded on a load or a machine to be used as lifting points.

CompactPCI Connectors acc. to PIGMG 2.0 Rev. 3.0

CPU. Rasterization. Per Vertex Operations & Primitive Assembly. Polynomial Evaluator. Frame Buffer. Per Fragment. Display List.

Firm Objectives. The Theory of the Firm II. Cost Minimization Mathematical Approach. First order conditions. Cost Minimization Graphical Approach

Network Analyzer Error Models and Calibration Methods

H SERIES. Area and Perimeter. Curriculum Ready.

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Volumes by Cylindrical Shells: the Shell Method

Summary of changes to Regulations recommended to the Senate by Graduate School Management Committee. Changed wording is shown in bold italics.

Outside Cut 1 of fabric Cut 1 of interfacing

How To Get A Usb Power Button On Your Computer (For A Free) For A Year (For Free) (For An Ipad) (Free) (Apple) (Mac) (Windows) (Power) (Net) (Winows

Solution to Problem Set 1

Process Mining Making Sense of Processes Hidden in Big Event Data

9 CONTINUOUS DISTRIBUTIONS

The art of Paperarchitecture (PA). MANUAL

A Note on Approximating. the Normal Distribution Function

Operations with Polynomials

Modeling Secure Connectivity of Self-Organized Wireless Ad Hoc Networks

Chapter. Contents: A Constructing decimal numbers

How To Find The Re Of Tringle

SecurView Antivirus Software Installation

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Econ 371: Answer Key for Problem Set 1 (Chapter 12-13)

Reasoning to Solve Equations and Inequalities

The Swedish Radiation Protection Institute s Regulations on X- ray Diagnostics;

Transcription:

Solutions to Smpl Finl Exm Prolms Mth 16 1 Mth 16 Solutions To Smpl Finl Exm Prolms 1. Fin th hromti polynomils o th thr grphs low. Clrly show your stps. G 1 G G () p = p p = k(k 1) k(k 1)(k ) () Atr simpliying, w s tht p G1 (k) = k(k 1) ( (k 1) (k ) ). p(g ) = p p = p p p + p = k(k 1) k(k 1) k(k 1)(k )(k 1) + k(k 1)(k ) = k(k 1) k(k 1) k(k 1) (k ) + k(k 1)(k ) () Not tht rmoving on o th intrior gs o G prous grph tht is isomorphi to G rom th prvious prt o th prolm. Thror, w hv p(g ) = p p = p(g ) p + p = p(g ) k k(k 1)(k ) + k(k 1)(k ), whih, whn omin with our nswr rom prt () n simplii it, yils p G (k) = k(k 1) k(k 1) k(k 1) (k ) + k(k 1)(k ) k (k 1)(k ).

Solutions to Smpl Finl Exm Prolms Mth 16. Givn to th right is grph (not rwn to sl) rprsnting ntwork o irt ros onnting 10 towns. Th g lls rprsnt istns twn towns, in mils. () Whih ros shoul pv so tht th istn rom th town ll u to ny othr town long pv ros is s smll s possil? Also init th minimum istn tht h town is wy rom u. u 6 7 5 10 1 1 () Whih ros shoul pv so tht it is possil to riv twn ny two towns on only pv ros, n so tht th highwy prtmnt pvs th minimum totl istn? Wht is th minimum totl istn tht must pv? Figur 1. Distn tr Figur. Minimum wight spnning tr u 6 (6) () (5) 7 (1) (1) (1) 5 1 (1) 10 () 1 u 6 7 5 10 1 1 () () Hr, w r ing sk to in minimum istn tr rom th vrtx u. Atr pplying Dijkstr s lgorithm, w n up pving th ros init y th sh gs in Figur 1 ov, n th istns rom u to h town r init y th numrs in prnthss. () In this s, w r ing sk to in minimum wight spnning tr. Applying Prim s lgorithm, w n up pving th ros init y th sh gs in Figur ov. By ing th g wights in th spnning tr, w s tht th totl istn tht ns to pv is + + + + 7 + + 1 + + = mils. Not tht th g wights ov r list in th orr in whih th gs wr slt y Prim s lgorithm.. For h o th itms low, w will rstrit ourslvs to grphs, not multigrphs or gnrl grphs. In othr wors, loops n/or multipl gs r not llow. () Consir th ollowing proprtis tht grph G my or my not hv: (i) G hs Hmilton yl, (ii) G is iprtit, (iii) G hs rig. Drw Vnn igrm to illustrt th rltionship twn ths thr proprtis. Thn, in n xmpl o grph in h o th istint zons rt y your Vnn igrm. (For xmpl, in grph whih is iprtit n hs rig, grph tht is not iprtit ut hs rig, t., until you v xhust ll possil omintions o proprtis.) () Rpt prt () with th ollowing proprtis: (i) G is plnr, (ii) G is iprtit, (iii) G is isomorphi to K n or som n.

Solutions to Smpl Finl Exm Prolms Mth 16 () Th Vnn igrm is shown to th right. Not tht th irls or proprtis (i) n (iii) o not intrst us it is not possil or grph to hv oth rig n Hmilton yl. Ths irls ivi th pln into 6 rgions, whih r numr in th igrm. W will now in xmpls o grphs tht it into h o th six zons. 1. C hs Hmilton yl ut is not iprtit n hs no rigs.. C hs Hmilton yl n is iprtit ut hs no rigs.. K, hs no Hmilton yl, is iprtit, ut hs no rigs.. K hs no Hmilton yl, is iprtit, n hs rig. 5. Th grph G 1 shown to th right hs no Hmilton yl, is not iprtit, ut hs rig. 6. Th grph G shown to th r right hs no Hmilton yl, is not iprtit, n hs no rig. (iii) (ii) (i) G 1 G 5 1 6 () Th Vnn igrm is shown to th right. Not tht thr r svn, not ight zons us it is not possil or grph to isomorphi to K n, iprtit, n not plnr ll t th sm tim. This is us, or K n to not plnr, w must hv n 5, mning tht K n will hv o yls (lik K ) s sugrphs, prvnting it rom ing iprtit. W will now in xmpls o grphs tht it into h o th svn zons. (i) 6 (iii) 1 5 7 (ii) 1. C 5 is plnr, not iprtit, n not omplt.. C is plnr, iprtit, ut not omplt.. K, is not plnr, is iprtit, ut is not isomorphi to K n or ny n.. K is plnr, not iprtit, ut is omplt. 5. K is plnr, iprtit, n omplt. 6. K 5 is not plnr, not iprtit, ut is omplt. 7. Th grph G shown to th right, whih is simply K 6 with on g rmov, is not plnr, not iprtit, n not omplt. Not tht it is not plnr y Kurtowski s Thorm (it hs K 5 s sugrph). G. Prov tht, i tr hs vrtx o gr p, thn it hs t lst p pnnt vrtis. Lt T ny tr o orr n tht hs vrtx o gr p. Lt k th numr o pnnt vrtis in T. W will show tht k p. Lt 1,,..., n rprsnt th vrtx grs, n suppos tht 1 through k giv th grs o th pnnt vrtis, n tht n orrspons to th vrtx hving gr p. Thn 1 = = = k = 1, n n = p, n i or ll i stisying k +1 i < n. W thror hv (n 1) = 1 + + + n = ( 1 + + + k ) + ( k+1 + k+ + + n 1 ) + n k + (n 1 k) + p = k + (n 1) k + p Atr sutrting (n 1) rom oth sis o th ov inqulity n simpliying, w otin 0 k +p, whih is quivlnt to k p. This omplts th proo.

Solutions to Smpl Finl Exm Prolms Mth 16 5. Dtrmin whih o th ollowing grphs r plnr. I thy r plnr, rw plnr rprsnttion. I thy r not plnr, show tht thy r not plnr using Kurtowski s Thorm or som othr mtho. () () () This grph is not plnr. To s this, not tht th grph hs = 1 gs n n = 6 vrtis, so n 6 = 1, whih mns tht > n 6. () g g () h i () This grph is plnr, s illustrt y th plnr rprsnttion to th right. Not tht this plnr rprsnttion n otin rom th originl grph y simply rrrnging th positions o th vrtis n llowing th gs to strth or shrink oringly. () This grph is not plnr. To s this, w highlight th gs o K 5 suivision sugrph in th originl grph (s th originl grph givn ov with th sttmnt o th prolm); th ol, soli gs r tul gs in th sir sugrph, whil th sh gs r th suivi gs. Not tht this sugrph is isomorphi to th K 5 suivision shown to th right, whih mns tht th givn grph is not plnr y Kurtowski s Thorm. g () This grph is not plnr. To s this, w highlight th gs o K, suivision sugrph in th originl grph (s th originl grph givn ov with th sttmnt o th prolm); th ol, soli gs r tul gs in th sir sugrph, whil th sh gs r th suivi gs. Not tht this sugrph is isomorphi to th K, suivision shown tothright,whihmnsthtthgivngrphisnotplnrykurtowski s Thorm. g h i 6. In th gm o Yhtz, iv stnr six-si i r roll simultnously. For simpliity, lt us ssum th i r irnt olors so tht w n tll thm prt. Dtrmin th numr o irnt wys in whih h o th ollowing outoms n our i th iv i r roll on. () ull hous (thr i shring on numr, two i shring son numr) () our o kin (our i shring th sm numr) () thr o kin (ut not our o kin, iv o kin, or ull hous) () lrg stright (iv onsutiv numrs) () smll stright (our onsutiv numrs, ut not iv onsutiv) () Yhtz (iv o kin) () W rk th tsk into svrl prts:

Solutions to Smpl Finl Exm Prolms Mth 16 5 Choos ommon numr or th thr i 6 wys (W n hoos thr 1 s, thr s, thr s,..., or thr 6 s, giving 6 hois.) Choos ommon numr or th two i 5 wys (W n hoos ny numr xpt th on hosn t th prvious stp.) Choos olors or th thr i C(5, ) wys Choos olors or th two i C(, ) wys (Thr r only olors lt to hoos rom tr th thr olors r hosn in th prvious stp.) 5 Thror, our nswr is 6 5. () W orgniz th tsk s ollows: Choos ommon numr or th our i 6 wys Choos olors or th our i C(5, ) wys Choos numr or th ith i 5 wys Choos olor or th ith i only 1 wy 5 Thror, our nswr is 6 5. () W orgniz th tsk s ollows: Choos ommon numr or th thr i 6 wys Choos two irnt numrs or th rmining two i C(5, ) wys Choos olors or th thr i hving ommon numr C(5, ) wys Choos olors or th two rmining i 1 wys (Atr th thr olors r hosn or th i in th prvious stp, thr r olor hois or th ourth i, n only 1 hoi or th ith i.) Thror, our nswr is 6 ( 5 () W rk into ss s ollows: ) ( 5 ). Cs 1. (Th lrg stright involvs th numrs 1,,,,5.) Sin th numrs r trmin, th only thing rmining to o is to ssign olors. Thr r 5 olor hois or th i with on on it, rmining olor hois or th i with two on it, t., own to only on olor hoi or th i with iv on it. Thror, thr r 5! suh lrg strights. Cs. (Th lrg stright involvs th numrs,,,5,6.) By th sm logi s ov, thr r 5! o this typ o lrg stright. Comining Css 1 n, w s tht our nswr is 5!. () W rk into ss s ollows: Cs 1. (Th smll stright involvs th numrs 1,,,.) W orgniz th tsk s ollows: Choos olors or th our squntil i P(5, ) wys Choos numr or th ith i 5 wys (Th ith i nnot iv; othrwis, w woul hv lrg stright. Thror, thr r only 5 numrs to hoos rom.) Choos olor or th ith i only 1 wy Thror, thr r 5 P(5,) suh smll strights. Cs. (Th smll stright involvs th numrs,,,5.) In this s, th tsk n rokn into th sm thr prts s in Cs 1 ov. Th only irn is in th son stp, whn w hoos numr or th ith i. This tim, it nnot on n it nnot six, sin oth o ths outoms woul giv us lrg stright. Thror, thr r only hois or th numr on th ith i, whih yils n nswr o P(5,) suh smll strights. Cs. (Th smll stright involvs th numrs,,5,6.) Using nlogous rsoning s in Cs 1, thr r 5 P(5,) suh smll strights. Comining th ov ss, our nswr is 5P(5,) + P(5,) + 5P(5,) = 1 P(5,).

Solutions to Smpl Finl Exm Prolms Mth 16 6 () Th only wys to gt iv o kin r iv ons, iv twos, iv thrs, iv ours, iv ivs, or iv sixs, so our nswr is just 6. 7. Lt P st o ny n intgrs, whr n. () Prov tht i non o th intgrs in P r multipls o n, thn thr r t lst two intgrs whos irn is multipl o n. (Hint: Think out rminrs whn iviing y n.) () Now, suppos tht w llow intgrs in P tht r multipls o n. Cn w still onlu tht thr r two intgrs whos irn is multipl o n? Justiy your nswr. () Lt P = {k 1,k,...,k n } ny st o n intgrs suh tht no k i is multipl o n. For h i, ivi th intgr k i y n to otin quotint q i n rminr r i, so tht k i = nq i + r i. Osrv tht, sin non o th k i s r multipls o n, non o th rminrs r i n zro, mning tht 1 r i n 1 or ll i. Thror, w hv n rminrs (r 1,r,...,r n ), ut only n 1 irnt vlus tht thy n hv. Thus, y th Pigonhol Prinipl, w must hv r i = r j or som i j, so k i k j = n(q i q j ) + (r i r j ) = n(q i q j ), sin r i = r j n w s tht th irn twn k i n k j is multipl o n. () No, w nnot rw th sm onlusion. For xmpl, i w hoos P = {1,,,...,n}, thn th irn twn ny two o th intgrs in P is twn 1 n n 1, so non o th irns is multipl o n.. For n, th whl grph, W n, is grph tht onsists o th yl C n 1 on th outsi, with th nth vrtx jnt to ll vrtis on th yl. Th grphs W n W 5 r shown to th right. In this prolm, you will in th hromti polynomil o W n. Assum tht thr r k olors vill. W W 5 () I w strt y oloring th ntr vrtx, how mny olor hois r thr? () Cn th sm olor tht ws us or th ntr vrtx us or ny o th rmining n 1 vrtis? () Using th multiplition prinipl n th rsult o Prolm 1.1 rom your txtook, writ own th hromti polynomil or W n. () Thr r k olor hois. () No, it nnot us, y inition o W n, th ntr vrtx is jnt to ll othr vrtis in th grph. () By Prolm 1.1, w hv p Cn (k) = (k 1) n + ( 1) n (k 1). Atr oloring th ntr vrtx o W n, thr r only k 1 olors lt with whih to olor th rmining n 1 vrtis o W n, mning tht th outr C n 1 sugrph n olor in p Cn 1 (k 1) wys. Thror, w hv p Wn (k) = (# wys to olor ntr vrtx) (# wys to olor outr C n 1 sugrph) = k p Cn 1 (k 1) = k ( (k ) n 1 + ( 1) n 1 (k ) ).

Solutions to Smpl Finl Exm Prolms Mth 16 7. In h o th ollowing itms, in th numr o 0-igit squns tht only ontin 0 s, 1 s, s, n/or s n hv th spii proprtis. () Th squn ontins t lst 1 zro. () Th squn ontins 5 zros, ons, twos, n thrs. () Th squn os not ontin onsutiv zros. (Hint: First, in n solv n pproprit rurrn rltion. To mk th lultions sir, you my us th t tht 0 = 1.) () First, w not tht, without ny rstritions, thr r hois or h igit, giving 0 totl squns. On th othr hn, thr r 0 totl squns with no zros, sin thr r only thr hois or h o th 0 igits. Thror, w hv # squns with t lst l zro = 0 (# squns hving no zros) = 0 0. () Think o rking this pross into squntil tsks: irst, w hoos 5 o 0 vill positions or th zros, whih n on in C(0,5) wys. Son, w hoos o th 15 rmining positions or th ons, whih n on in C(15,) wys. Continuing in this shion, thr r C(11,) wys to pl th twos, n C(,) = 1 wy to pl th thrs. On wy to omplt this pross is shown low: 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 This givs totl o C(0,5) C(15,) C(11,) C(,) totl squns. Anothr wy to look t this sm prolm is to osrv tht thr r 0! wys to rrng th 0 igits in row, ut 5!!!! o th rrngmnts will look th sm us o rpt igits. Thror, th totl numr o prmuttions n writtn s ithr ( 0 5 )( 15 )( 11 )( ) or 0! 5!!!!. () Lt n rprsnt th numr o th sir typs o igit strings o lngth n tht n m. First, w trmin our initil onitions. W wr sk to ssum tht 0 = 1, n not tht 1 = us thr r our squns o lngth on: 0, 1,, or. To trmin rurrn ormul, w us th igrm to th right s n i. I string o lngth n strts with ny igit othr thn 0, thn th rmining n 1 sps n ill in n 1 wys. On th othr hn, i string o lngth n strts with 0, thn th irst two igits must look lik 01,0, or 0 in orr to voi rpt zros. Eh o ths thr onigurtions n omplt in n wys, yiling th ollowing rursion ormul: n = n 1 + n or n. Lngth n string String Count 1 n 1 n 1 n 1 0 1 n 0 n 0 n Th hrtristi qution o this rurrn is x x = 0, whih, tr using th qurti ormul, yils th ollowing roots: x = ± (1)( ) = ± 1 Thror, th gnrl solution hs th orm ( + ) n ( 1 ) n 1 n = +.

Solutions to Smpl Finl Exm Prolms Mth 16 Using th initil onitions 0 = 1 n 1 =, w otin th ollowing: ( + ) 1 + + = 1 = 1 = + = 1 (+ 1) + ( 1) = Solving th irst qution or yils = 1, n sustituting into th son qution, w hv Thror, (+ 1) + ( 1)(1 ) = = + 1+ 1 + 1 = ( ) 1 + 5 = 1 = 1 = 1 = 1 + 5 1 + 5 = = 1 1 5 1. Thror, th numr o 0-igit squns with no onsutiv zros is givn y 0 = ( 1 + 5 + ) 0 1 + 1 ( 1 5 ) 0 1. 1 10. Suppos tht w hv plntiul supplis o ppls, lry stiks, wlnuts, n grps. Assum tht th ojts in h tgory r intil. () Us ounting thniqus to in th numr o irnt sltions o 0 o th vill oo itms in whih no mor thn ppls r hosn. () Fin gnrting untion or th numr o irnt sltions o n oo itms tht ontin no mor thn ppls. () Us lgr n your nswr to prt () to onirm your nswr to prt (). () W rk th pross into ss oring to how mny ppls r hosn. Cs 1. (0 ppls) In this s, w r trying to hoos 0 oo itms rom irnt tgoris: lry stiks, wlnuts, or grps. W thror hv 0 strs n rs, giving C(, 0) sltions. Cs. (1 ppl) W rk th tsk into two prts: Choos 1 ppl only 1 wy Choos th othr 1 itms C(1, 1) wys (In this s, thr r 1 rmining oo itms (strs) to pik, n sin th ppls r lry pik, thr r oo tgoris, giving rs.) Thror, thr r C(1, 1) suh sltions. Cs. ( ppls) W rk th tsk into two prts: Choos th ppls only 1 wy Choos th othr 1 itms C(0, 1) wys (Rsoning s in Cs, thr r 1 strs n rs.) Thror, thr r C(0, 1) suh sltions. 1 0 Aing, w otin n nswr o + +. 0 1 1

Solutions to Smpl Finl Exm Prolms Mth 16 () Our gnrting untion is givn y ppls lry wlnuts grps (x) = (1+x+x ) (1+x+x +x + ) (1+x+x +x + ) (1+x+x +x + ) = (1+x+x ) (1+x+x +x + ) = 1+x+x (1 x). () Our inl nswr will th oiint o th x 0 trm in our ormul or (x) rom prt (). Clulting, w hv 1 (1 x) ( +k 1 = (1+x+x ) k (x) = 1+x+x (1 x) = (1+x+x ) = (1+x+x ) k=0 k + x k, k n w not tht thr r thr wys to gt n x 0 trm in th ov xprssion: y tking 1 rom th (1+x+x ) portion o th xprssion tims th trm with k = 0 in th ininit summtion, y tking x rom th (1+x+x ) portion o th xprssion tims th trm with k = 1 in th ininit summtion, n y tking x rom th (1+x+x ) portion o th xprssion tims th trm with k = 1 in th ininit summtion. In othr wors, th thr trms in th xpnsion o (x) tht involv x 0 n orgniz s ollows: 1 0 x 0 + x 1 1 x 1 + x 0 x 1 = 1 k=0 [ + 0 ) x k 1 + 1 ] 0 x 0 1 W thror s tht th oiint on th x 0 trm grs with our nswr to prt (). 11. Lt m,n, n k positiv intgrs with k m n k n. Giv omintoril proo o th ollowing intity: m+n m n m n m n m n = + + + + k k 0 k 1 1 k 0 k Hint: Think o hoosing ommitts rom group o m mn n n womn. W lim tht oth sis o th intity ount th numr o wys to hoos ommitt o k popl rom group o m mn n n womn vill to srv on th ommitt. W monstrt low: Lt si: By inition, C(m+n, k) ounts th numr o wys to hoos k popl rom group o m+n totl popl, whih is xtly wht w lim ov. Right si: This si ounts th sir quntity y ss oring to how mny womn r on th ommitt. To s this, onsir ny vlu o i, whr 0 i k. W rk th tsk o hoosing k-prson ommitt with i womn into two prts: Choos th womn C(n, i) wys (Hr, w r hoosing i womn rom th n totl womn vill.) Choos th mn C(m,k i) wys (To omplt our ommitt, w n to hoos th rmining k i ommitt mmrs rom th m vill mn.)

Solutions to Smpl Finl Exm Prolms Mth 16 10 Thror, thr r ( m k i)( n i) suh ommitts with xtly i womn. Sin k-prson ommitt n hv nywhr rom i = 0 to i = k womn srving on it, w gt th totl numr o ommitts y lulting k i=0 ( m k i )( n i Sin this sum is qul to th right-hn si o our intity, this omplts our proo. ).