Lesson 2.1 Inductive Reasoning
|
|
|
- Frederick Kennedy
- 9 years ago
- Views:
Transcription
1 Lesson.1 Inutive Resoning Nme Perio Dte For Eerises 1 7, use inutive resoning to fin the net two terms in eh sequene. 1. 4, 8, 1, 16,,. 400, 00, 100, 0,,,. 1 8, 7, 1, 4,, 4.,,, 1, 1, 0,,. 60, 180, 10, 90,, 6. 1,, 9, 7, 81,, 7. 1,, 14, 0,,, For Eerises 8 10, use inutive resoning to rw the net two shpes in eh piture pttern ( 1, ) (, 1) (, 1) For Eerises 11 1, use inutive resoning to test eh onjeture. Deie if the onjeture seems true or flse. If it seems flse, give ounteremple. 11. he squre of numer is lrger thn the numer. 1. Ever multiple of 11 is plinrome, tht is, numer tht res the sme forwr n kwr. 1. he ifferene of two onseutive squre numers is n o numer. 10 CAPER Disovering Geometr Prtie Your Skills 008 Kenll unt Pulishing
2 Lesson. Fining the nth erm Nme Perio Dte For Eerises 1 4, tell whether the rule is liner funtion. 1.. f(n) h(n) g(n) j(n) For Eerises n 6, omplete eh tle.. 6. f(n) 7n 1 g(n) 8n For Eerises 7 9, fin the funtion rule for eh sequene. hen fin the 0th term in the sequene n... 0 f(n) n... 0 g(n) n... 0 h(n) Use the figures to omplete the tle.... n... 0 Numer of tringles Use the figures ove to omplete the tle. Assume tht the re of the first figure is 1 squre unit.... n... 0 Are of figure Disovering Geometr Prtie Your Skills CAPER Kenll unt Pulishing
3 Lesson. Mthemtil Moeling Nme Perio Dte 1. Drw the net figure in this pttern.. ow mn smll squres will there e in the 10th figure?. ow mn in the th figure?. Wht is the generl funtion rule for this pttern?. If ou toss oin, ou will get he or til. Cop n omplete the geometri moel to show ll possile results of three onseutive tosses.. ow mn sequenes of results re possile?. ow mn sequenes hve etl one til?. Assuming he or til is equll likel, wht is the proilit of getting etl one til in three tosses?. If there re 1 people sitting t roun tle, how mn ifferent pirs of people n hve onverstions uring inner, ssuming the n ll tlk to eh other? Wht geometri figure n ou use to moel this sitution? 4. ournment gmes n results re often isple using geometri moel. wo emples re shown elow. Sketh geometri moel for tournment involving tems n tournment involving 6 tems. Eh tem must hve the sme hne to win. r to hve s few gmes s possile in eh tournment. Show the totl numer of gmes in eh tournment. Nme the tems,,... n numer thegmes 1,, tems, gmes (roun roin) 4 tems, gmes (single elimintion) 1 CAPER Disovering Geometr Prtie Your Skills 008 Kenll unt Pulishing
4 Lesson.4 Deutive Resoning Nme Perio Dte 1. ABC is equilterl. Is ABD equilterl? Eplin our nswer. Wht tpe of resoning, inutive or eutive, o ou use when solving this prolem? B C A D. A n D re omplementr. A n E re supplementr. Wht n ou onlue out D n E? Eplin our nswer. Wht tpe of resoning, inutive or eutive, o ou use when solving this prolem?. Whih figures in the lst group re whtnots? Wht tpe of resoning, inutive or eutive, o ou use when solving this prolem?.... e. f. Whtnots Not whtnots Whih re whtnots? 4. Solve eh eqution for. Give reson for eh step in the proess. Wht tpe of resoning, inutive or eutive, o ou use when solving these prolems?. 4 ( ) ( 1). A sequene egins 4, 1, 6, Give the net two terms in the sequene. Wht tpe of resoning, inutive or eutive, o ou use when solving this prolem?. Fin rule tht genertes the sequene. hen give the 0th term in the sequene. Wht tpe of resoning, inutive or eutive, o ou use when solving this prolem? Disovering Geometr Prtie Your Skills CAPER Kenll unt Pulishing
5 Lesson. Angle Reltionships Nme Perio Dte For Eerises 1 6, fin eh lettere ngle mesure without using protrtor e e For Eerises 7 10, tell whether eh sttement is lws (A), sometimes (S), or never (N) true. 7. he sum of the mesures of two ute ngles equls the mesure of n otuse ngle. 8. If XAY n PAQ re vertil ngles, then either X, A, n P or X, A, n Q re olliner. 9. If two ngles form liner pir, then the re omplementr. 10. If sttement is true, then its onverse is true. For Eerises 11 1, fill in eh lnk to mke true sttement. 11. If one ngle of liner pir is otuse, then the other is. 1. If A B n the supplement of B hs mesure, then m A. 1. If P is right ngle n P n Q form liner pir, then m Q is. 14. If S n re omplementr n n U re supplementr, then U is (n) ngle. 1. Swithing the if n then prts of sttement hnges the sttement to its. 14 CAPER Disovering Geometr Prtie Your Skills 008 Kenll unt Pulishing
6 Lesson.6 Speil Angles on Prllel Lines Nme Perio Dte For Eerises 1, use our onjetures to fin eh ngle mesure For Eerises 4 6, use our onjetures to etermine whether 1, n eplin wh. If not enough informtion is given, write nnot e etermine Fin eh ngle mesure f e Fin. 9. Fin n Disovering Geometr Prtie Your Skills CAPER Kenll unt Pulishing
7 11. Kite 4. Possile nswers: B... Q P A LESSON 1.8 Spe Geometr 1.. LESSON.1 Inutive Resoning 1. 0, , , 4. 1, 1. 7, , , 140. Retngulr prism 4. Pentgonl prism ues 8., 1 (, 1) LESSON 1.9 A Piture Is Worth housn Wors m Possile lotions A 1 m. Dor, Ellen, Chrles, Ani, Fre, Brue Gs Power (1, ) 11. Flse; Flse; , rue LESSON. Fining the nth erm 1. Liner. Liner. Not liner 4. Liner. D E C A F B f (n) ringles Aute tringles 6. g(n) Isoseles tringles Slene tringles 7. f(n) 4n ; f(0) 0 8. f(n) n 11; f(0) 9 9. f(n) 1 n 6; f(0) 1 Disovering Geometr Prtie Your Skills ANSWERS Kenll unt Pulishing
8 n... 0 Numer n of tringles n... 0 Are of figure n Answers will vr. Possile nswers: e 7 9 tems, 10 gmes 1 4 e 6 f 7 6 tems, 7 gmes LESSON. Mthemtil Moeling f e f(n) n(n ), or f(n) n 4n. 8 sequenes. sequenes hve 1 til ifferent pirs. Use oegon showing sies n igonls. 6 tems, 6 gmes LESSON.4 Deutive Resoning 1. No. Eplntions will vr. Smple eplntion: Beuse ABC is equilterl, AB BC. Beuse C lies etween B n D, BD BC, so BD is not equl to AB. hus ABD is not equilterl, eutive resoning.. Answers will vr. m E m D (m E m D 90 ); eutive., e, f; inutive 4. Deutive. 4 ( ) 8 he originl eqution Distriutive propert. 6 8 Comining like terms. 6 8 Aition propert of equlit. Sutrtion propert of equlit. Division propert of equlit. 94 ANSWERS Disovering Geometr Prtie Your Skills 008 Kenll unt Pulishing
9 . 19 ( 1) he originl eqution. 19 ( 1) ( ) Multiplition propert of equlit Distriutive propert Comining like terms Aition propert of equlit Sutrtion propert of equlit. 1 Division propert of equlit... 16, 1; inutive. f(n) n 9; 41; eutive LESSON.1 Dupliting Segments n Angles 1. P. XY PQ RS X A Q. Possile nswer: Y R B B S LESSON. Angle Reltionships 1. 68, 11, , 40,, , 90, 4, 48, e 1. 0, 70, 0, 70, e ,, 7. Sometimes 8. Alws 9. Never 10. Sometimes 11. ute otuse 1. onverse LESSON.6 Speil Angles on Prllel Lines. 6. B C D C D D C D LESSON. Construting Perpeniulr Bisetors 1.. Squre 1. 4, 4, 4. 11, 6, 11, 6. 7, nnot e etermine 7. 10, 78, 8, 1, e 6, f , Disovering Geometr Prtie Your Skills ANSWERS Kenll unt Pulishing
Angles 2.1. Exercise 2.1... Find the size of the lettered angles. Give reasons for your answers. a) b) c) Example
2.1 Angles Reognise lternte n orresponing ngles Key wors prllel lternte orresponing vertilly opposite Rememer, prllel lines re stright lines whih never meet or ross. The rrows show tht the lines re prllel
Interior and exterior angles add up to 180. Level 5 exterior angle
22 ngles n proof Ientify interior n exterior ngles in tringles n qurilterls lulte interior n exterior ngles of tringles n qurilterls Unerstn the ie of proof Reognise the ifferene etween onventions, efinitions
The remaining two sides of the right triangle are called the legs of the right triangle.
10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right
MATH PLACEMENT REVIEW GUIDE
MATH PLACEMENT REVIEW GUIDE This guie is intene s fous for your review efore tking the plement test. The questions presente here my not e on the plement test. Although si skills lultor is provie for your
Lesson 4.1 Triangle Sum Conjecture
Lesson 4.1 ringle um onjecture Nme eriod te n ercises 1 9, determine the ngle mesures. 1. p, q 2., y 3., b 31 82 p 98 q 28 53 y 17 79 23 50 b 4. r, s, 5., y 6. y t t s r 100 85 100 y 30 4 7 y 31 7. s 8.
Maximum area of polygon
Mimum re of polygon Suppose I give you n stiks. They might e of ifferent lengths, or the sme length, or some the sme s others, et. Now there re lots of polygons you n form with those stiks. Your jo is
1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.
. Definition, Bsi onepts, Types. Addition nd Sutrtion of Mtries. Slr Multiplition. Assignment nd nswer key. Mtrix Multiplition. Assignment nd nswer key. Determinnt x x (digonl, minors, properties) summry
Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.
Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction
End of term: TEST A. Year 4. Name Class Date. Complete the missing numbers in the sequences below.
End of term: TEST A You will need penil nd ruler. Yer Nme Clss Dte Complete the missing numers in the sequenes elow. 8 30 3 28 2 9 25 00 75 25 2 Put irle round ll of the following shpes whih hve 3 shded.
Geometry 7-1 Geometric Mean and the Pythagorean Theorem
Geometry 7-1 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the
H SERIES. Area and Perimeter. Curriculum Ready. www.mathletics.com
Are n Perimeter Curriulum Rey www.mthletis.om Copyright 00 3P Lerning. All rights reserve. First eition printe 00 in Austrli. A tlogue reor for this ook is ville from 3P Lerning Lt. ISBN 78--86-30-7 Ownership
P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn
33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of
Ratio and Proportion
Rtio nd Proportion Rtio: The onept of rtio ours frequently nd in wide vriety of wys For exmple: A newspper reports tht the rtio of Repulins to Demorts on ertin Congressionl ommittee is 3 to The student/fulty
SOLVING EQUATIONS BY FACTORING
316 (5-60) Chpter 5 Exponents nd Polynomils 5.9 SOLVING EQUATIONS BY FACTORING In this setion The Zero Ftor Property Applitions helpful hint Note tht the zero ftor property is our seond exmple of getting
Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
Chapter. Contents: A Constructing decimal numbers
Chpter 9 Deimls Contents: A Construting deiml numers B Representing deiml numers C Deiml urreny D Using numer line E Ordering deimls F Rounding deiml numers G Converting deimls to frtions H Converting
Volumes by Cylindrical Shells: the Shell Method
olumes Clinril Shells: the Shell Metho Another metho of fin the volumes of solis of revolution is the shell metho. It n usull fin volumes tht re otherwise iffiult to evlute using the Dis / Wsher metho.
SECTION 7-2 Law of Cosines
516 7 Additionl Topis in Trigonometry h d sin s () tn h h d 50. Surveying. The lyout in the figure t right is used to determine n inessile height h when seline d in plne perpendiulr to h n e estlished
50 MATHCOUNTS LECTURES (10) RATIOS, RATES, AND PROPORTIONS
0 MATHCOUNTS LECTURES (0) RATIOS, RATES, AND PROPORTIONS BASIC KNOWLEDGE () RATIOS: Rtios re use to ompre two or more numers For n two numers n ( 0), the rtio is written s : = / Emple : If 4 stuents in
Operations with Polynomials
38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply
84 cm 30 cm. 12 in. 7 in. Proof. Proof of Theorem 7-4. Given: #QXY with 6 Prove: * RS * XY
-. Pln Ojetives o use the ie-plitter heorem o use the ringle-ngle- isetor heorem Emples Using the ie-plitter heorem el-worl onnetion Using the ringle-ngle- isetor heorem Mth kgroun - Wht ou ll Lern o use
UNCORRECTED SAMPLE PAGES
6 Chpter Length, re, surfe re n volume Wht you will lern 6A Length n perimeter 6B Cirumferene of irles n perimeter of setors 6C Are of qurilterls n tringles 6D Are of irles 6E Perimeter n re of omposite
Section 5-4 Trigonometric Functions
5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form
Reasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:
Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you
How To Find The Re Of Tringle
Heron s Formul for Tringulr Are y Christy Willims, Crystl Holom, nd Kyl Gifford Heron of Alexndri Physiist, mthemtiin, nd engineer Tught t the museum in Alexndri Interests were more prtil (mehnis, engineering,
Words Symbols Diagram. abcde. a + b + c + d + e
Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To
SOLVING QUADRATIC EQUATIONS BY FACTORING
6.6 Solving Qudrti Equtions y Ftoring (6 31) 307 In this setion The Zero Ftor Property Applitions 6.6 SOLVING QUADRATIC EQUATIONS BY FACTORING The tehniques of ftoring n e used to solve equtions involving
Review. Scan Conversion. Rasterizing Polygons. Rasterizing Polygons. Triangularization. Convex Shapes. Utah School of Computing Spring 2013
Uth Shool of Computing Spring 2013 Review Leture Set 4 Sn Conversion CS5600 Computer Grphis Spring 2013 Line rsteriztion Bsi Inrementl Algorithm Digitl Differentil Anlzer Rther thn solve line eqution t
The art of Paperarchitecture (PA). MANUAL
The rt of Pperrhiteture (PA). MANUAL Introution Pperrhiteture (PA) is the rt of reting three-imensionl (3D) ojets out of plin piee of pper or ror. At first, esign is rwn (mnully or printe (using grphil
1 Fractions from an advanced point of view
1 Frtions from n vne point of view We re going to stuy frtions from the viewpoint of moern lger, or strt lger. Our gol is to evelop eeper unerstning of wht n men. One onsequene of our eeper unerstning
Factoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
Section 7-4 Translation of Axes
62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the
Unit 6: Exponents and Radicals
Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -
. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2
7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6
Vectors Summary. Projection vector AC = ( Shortest distance from B to line A C D [OR = where m1. and m
. Slr prout (ot prout): = osθ Vetors Summry Lws of ot prout: (i) = (ii) ( ) = = (iii) = (ngle etween two ientil vetors is egrees) (iv) = n re perpeniulr Applitions: (i) Projetion vetor: B Length of projetion
AREA OF A SURFACE OF REVOLUTION
AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.
c b 5.00 10 5 N/m 2 (0.120 m 3 0.200 m 3 ), = 4.00 10 4 J. W total = W a b + W b c 2.00
Chter 19, exmle rolems: (19.06) A gs undergoes two roesses. First: onstnt volume @ 0.200 m 3, isohori. Pressure inreses from 2.00 10 5 P to 5.00 10 5 P. Seond: Constnt ressure @ 5.00 10 5 P, isori. olume
RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS
RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is
Answer, Key Homework 10 David McIntyre 1
Answer, Key Homework 10 Dvid McIntyre 1 This print-out should hve 22 questions, check tht it is complete. Multiple-choice questions my continue on the next column or pge: find ll choices efore mking your
Introduction. Teacher s lesson notes The notes and examples are useful for new teachers and can form the basis of lesson plans.
Introduction Introduction The Key Stge 3 Mthemtics series covers the new Ntionl Curriculum for Mthemtics (SCAA: The Ntionl Curriculum Orders, DFE, Jnury 1995, 0 11 270894 3). Detiled curriculum references
A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324
A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................
Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.
Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose
PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1
PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.
Or more simply put, when adding or subtracting quantities, their uncertainties add.
Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re
Homework 3 Solutions
CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.
Chapter. Fractions. Contents: A Representing fractions
Chpter Frtions Contents: A Representing rtions B Frtions o regulr shpes C Equl rtions D Simpliying rtions E Frtions o quntities F Compring rtion sizes G Improper rtions nd mixed numers 08 FRACTIONS (Chpter
Angles and Triangles
nges nd Tringes n nge is formed when two rys hve ommon strting point or vertex. The mesure of n nge is given in degrees, with ompete revoution representing 360 degrees. Some fmiir nges inude nother fmiir
CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001
CS99S Lortory 2 Preprtion Copyright W. J. Dlly 2 Octoer, 2 Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes to oserve logic
EQUATIONS OF LINES AND PLANES
EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint
Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
Quick Guide to Lisp Implementation
isp Implementtion Hndout Pge 1 o 10 Quik Guide to isp Implementtion Representtion o si dt strutures isp dt strutures re lled S-epressions. The representtion o n S-epression n e roken into two piees, the
Lecture 3 Gaussian Probability Distribution
Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike
Calculating Principal Strains using a Rectangular Strain Gage Rosette
Clulting Prinipl Strins using Retngulr Strin Gge Rosette Strin gge rosettes re used often in engineering prtie to determine strin sttes t speifi points on struture. Figure illustrtes three ommonly used
Further applications of area and volume
2 Further pplitions of re n volume 2A Are of prts of the irle 2B Are of omposite shpes 2C Simpson s rule 2D Surfe re of yliners n spheres 2E Volume of omposite solis 2F Error in mesurement Syllus referene
The Pythagorean Theorem
The Pythgoren Theorem Pythgors ws Greek mthemtiin nd philosopher, orn on the islnd of Smos (. 58 BC). He founded numer of shools, one in prtiulr in town in southern Itly lled Crotone, whose memers eventully
Graphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the
Learning Outcomes. Computer Systems - Architecture Lecture 4 - Boolean Logic. What is Logic? Boolean Logic 10/28/2010
/28/2 Lerning Outcomes At the end of this lecture you should: Computer Systems - Architecture Lecture 4 - Boolen Logic Eddie Edwrds [email protected] http://www.doc.ic.c.uk/~eedwrds/compsys (Hevily sed
Pure C4. Revision Notes
Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd
1.2 The Integers and Rational Numbers
.2. THE INTEGERS AND RATIONAL NUMBERS.2 The Integers n Rtionl Numers The elements of the set of integers: consist of three types of numers: Z {..., 5, 4, 3, 2,, 0,, 2, 3, 4, 5,...} I. The (positive) nturl
Practice Test 2. a. 12 kn b. 17 kn c. 13 kn d. 5.0 kn e. 49 kn
Prtie Test 2 1. A highwy urve hs rdius of 0.14 km nd is unnked. A r weighing 12 kn goes round the urve t speed of 24 m/s without slipping. Wht is the mgnitude of the horizontl fore of the rod on the r?
Radius of the Earth - Radii Used in Geodesy James R. Clynch Naval Postgraduate School, 2002
dius of the Erth - dii Used in Geodesy Jmes. Clynh vl Postgrdute Shool, 00 I. Three dii of Erth nd Their Use There re three rdii tht ome into use in geodesy. These re funtion of ltitude in the ellipsoidl
Module 5. Three-phase AC Circuits. Version 2 EE IIT, Kharagpur
Module 5 Three-hse A iruits Version EE IIT, Khrgur esson 8 Three-hse Blned Suly Version EE IIT, Khrgur In the module, ontining six lessons (-7), the study of iruits, onsisting of the liner elements resistne,
Thinking out of the Box... Problem It s a richer problem than we ever imagined
From the Mthemtics Techer, Vol. 95, No. 8, pges 568-574 Wlter Dodge (not pictured) nd Steve Viktor Thinking out of the Bo... Problem It s richer problem thn we ever imgined The bo problem hs been stndrd
Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
Active Directory Service
In order to lern whih questions hve een nswered orretly: 1. Print these pges. 2. Answer the questions. 3. Send this ssessment with the nswers vi:. FAX to (212) 967-3498. Or. Mil the nswers to the following
NQF Level: 2 US No: 7480
NQF Level: 2 US No: 7480 Assessment Guide Primry Agriculture Rtionl nd irrtionl numers nd numer systems Assessor:.......................................... Workplce / Compny:.................................
If two triangles are perspective from a point, then they are also perspective from a line.
Mth 487 hter 4 Prtie Prolem Solutions 1. Give the definition of eh of the following terms: () omlete qudrngle omlete qudrngle is set of four oints, no three of whih re olliner, nd the six lines inident
Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.
Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles
PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY
MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive
32. The Tangency Problem of Apollonius.
. The Tngeny olem of Apollonius. Constut ll iles tngent to thee given iles. This eleted polem ws posed y Apollinius of eg (. 60-70 BC), the getest mthemtiin of ntiquity fte Eulid nd Ahimedes. His mjo wok
Released Assessment Questions, 2015 QUESTIONS
Relesed Assessmet Questios, 15 QUESTIONS Grde 9 Assessmet of Mthemtis Ademi Red the istrutios elow. Alog with this ooklet, mke sure you hve the Aswer Booklet d the Formul Sheet. You my use y spe i this
MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!
MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more
MATH 150 HOMEWORK 4 SOLUTIONS
MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive
10.6 Applications of Quadratic Equations
10.6 Applictions of Qudrtic Equtions In this section we wnt to look t the pplictions tht qudrtic equtions nd functions hve in the rel world. There re severl stndrd types: problems where the formul is given,
Vectors 2. 1. Recap of vectors
Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms
PHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS
PHY 222 Lb 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS Nme: Prtners: INTRODUCTION Before coming to lb, plese red this pcket nd do the prelb on pge 13 of this hndout. From previous experiments,
1 GSW IPv4 Addressing
1 For s long s I ve een working with the Internet protools, people hve een sying tht IPv6 will e repling IPv4 in ouple of yers time. While this remins true, it s worth knowing out IPv4 ddresses. Even when
Rotating DC Motors Part II
Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors
Math Review for Algebra and Precalculus
Copyrigt Jnury 00 y Stnley Oken. No prt of tis doument my e opied or reprodued in ny form wtsoever witout epress permission of te utor. Mt Review for Alger nd Prelulus Stnley Oken Deprtment of Mtemtis
Experiment 6: Friction
Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht
Orthopoles and the Pappus Theorem
Forum Geometriorum Volume 4 (2004) 53 59. FORUM GEOM ISSN 1534-1178 Orthopoles n the Pppus Theorem tul Dixit n Drij Grinerg strt. If the verties of tringle re projete onto given line, the perpeniulrs from
Solving BAMO Problems
Solving BAMO Problems Tom Dvis [email protected] http://www.geometer.org/mthcircles Februry 20, 2000 Abstrct Strtegies for solving problems in the BAMO contest (the By Are Mthemticl Olympid). Only
Physics 43 Homework Set 9 Chapter 40 Key
Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of
5.6 POSITIVE INTEGRAL EXPONENTS
54 (5 ) Chpter 5 Polynoils nd Eponents 5.6 POSITIVE INTEGRAL EXPONENTS In this section The product rule for positive integrl eponents ws presented in Section 5., nd the quotient rule ws presented in Section
2. Properties of Functions
2. PROPERTIES OF FUNCTIONS 111 2. Properties of Funtions 2.1. Injetions, Surjetions, an Bijetions. Definition 2.1.1. Given f : A B 1. f is one-to-one (short han is 1 1) or injetive if preimages are unique.
KEY SKILLS INFORMATION TECHNOLOGY Level 3. Question Paper. 29 January 9 February 2001
KEY SKILLS INFORMATION TECHNOLOGY Level 3 Question Pper 29 Jnury 9 Ferury 2001 WHAT YOU NEED This Question Pper An Answer Booklet Aess to omputer, softwre nd printer You my use ilingul ditionry Do NOT
9 CONTINUOUS DISTRIBUTIONS
9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete
WHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS?
WHAT HAPPES WHE YOU MIX COMPLEX UMBERS WITH PRIME UMBERS? There s n ol syng, you n t pples n ornges. Mthemtns hte n t; they love to throw pples n ornges nto foo proessor n see wht hppens. Sometmes they
Integration by Substitution
Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is
4.11 Inner Product Spaces
314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces
Brillouin Zones. Physics 3P41 Chris Wiebe
Brillouin Zones Physics 3P41 Chris Wiebe Direct spce to reciprocl spce * = 2 i j πδ ij Rel (direct) spce Reciprocl spce Note: The rel spce nd reciprocl spce vectors re not necessrily in the sme direction
www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)
www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input
Review Problems for the Final of Math 121, Fall 2014
Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since
