Upward Planar Drawings of Series-Parallel Digraphs with Maximum Degree Three

Size: px
Start display at page:

Download "Upward Planar Drawings of Series-Parallel Digraphs with Maximum Degree Three"

Transcription

1 Upwr Plnr Drwins of ris-prlll Dirps wit Mximum Dr Tr (Extn Astrt) M. Aul Hssn m n M. iur Rmn Dprtmnt of Computr in n Eninrin, Bnls Univrsity of Eninrin n Tnoloy (BUET). {sm,siurrmn}@s.ut.. Astrt. An upwr plnr rwin of irp G is plnr rwin of G wr vry is rwn s simpl urv monoton in t vrtil irtion. A irp is upwr plnr if it s n min tt mits n upwr plnr rwin. T prolm of tstin wtr irp is upwr plnr is NP-omplt. In tis ppr w iv linr-tim loritm to tst t upwr plnrity of sris-prlll irp G wit mximum r tr n otin n upwr plnr rwin of G if G mits on. Ky wors: Grp Drwin, Upwr Plnr Drwin, Dirt Ayli Grp, ris-prlll Grp, Aloritm, PQ-tr. 1 Introution In n upwr plnr rwin of irp, vry vrtx is mpp to point in t Eulin pln n vry is rwn s simpl urv monoton in t vrtil irtion witout prouin ny rossin wit otr s, s illustrt in Fi. 1(). Upwr plnr rwins of irps fin importnt pplitions in visuliztion of t irril ntwork struturs wi frquntly ris in softwr ninrin, projt mnmnt n visul lnus [BDMT98]. Unfortuntly, not ll irps v upwr plnr rwin. On n sily unrstn tt if irp ontins yl, tn on of t s on t yl nnot rwn monotonilly in t upwr irtion (s t yl inu y vrtis,, n of irp G in Fi. 1()). A irp is upwr plnr if it s n min wi mits n upwr plnr rwin. Ayliity is nssry onition for irp to upwr plnr. Trouout tis ppr, wrvr w rfr to irp, w mn n yli irp. Howvr, yliity is not suffiint onition for upwr plnrity. For xmpl, t yli irp G in Fi. 1() is not upwr plnr; tr r four possil upwr plnr M. Kyko n M. iur Rmn (Es.): WALCOM 2007, pp , 2007.

2 Upwr Plnr Drwins 29 f f f G G () () () G Fi.1. () An upwr plnr irp G, () irp G wi ontins yl n trfor is not upwr plnr n () n yli irp G wi is not upwr plnr. () () () () Fi.2. T four possil mins of f F 1 of irp G. mins of t unirt yl inu y t vrtis,, n (s Fi. 2), n strtin wit ny of ts four mins, t rminin s nnot in ny wy to otin n upwr plnr rwin of G. T prolm of tstin upwr plnrity of irp is on of t most llnin prolms in t r of rp rwin n s n stui wit xtnsiv ffort. Linr-tim loritms r known for tstin wtr irp mits plnr rwin [HT74,BL76]. Tstin wtr irp mits n upwr rwin n lso solv in linr-tim usin t wll-known topoloil sortin tniqu [CLR01]. Nvrtlss, ominin ts two proprtis mks t prolm NP-r [GT94]. T prolm n stui ot in t fix min sttin n in t vril min sttin. In t fix min sttin, t loritm nnot ltr t ivn min, n if tt prtiulr min is not upwr plnr, t output must ntiv ltou som otr min of t sm rp oul upwr plnr. Fi. 3() sows n upwr plnr min of irp G wos min in Fi. 3() is not upwr plnr. Fi. 3() is notr upwr plnr min of G. Brtolzzi t l. [BDLM94] v ivn n loritm to tst upwr plnrity in tim O(n 2 ) in t fix min sttin. In t vril min sttin, t loritm n iv ntiv output only if tr is no upwr plnr min of t input rp. Gr n Tmssi [GT01] prov tt it is n NP-omplt prolm to trmin wtr irp s n upwr plnr rwin in t vril min sttin. Nvrtlss, t prolm s n stui in t vril min sttin for som rstrit lsss of irps [Pp95,HL96,BDMT98]. Gr n Tmssi

3 30 M. A. H. m n M. iur Rmn i f j () i j () f j () i f Fi. 3. () An upwr plnr irp G n n upwr plnr min of G, () non-upwr plnr min of G, n () notr upwr plnr min of G. [GT95] prov tt sris-prlll irp wit sinl sour n sinl sink is lwys upwr plnr. Unfortuntly, sris-prlll irp G wit multipl sours n sinks my not upwr plnr, n tstin upwr plnrity for irps wit multipl sours n sinks is mor iffiult. Rntly, Diimo t l. [DGL06] provi n loritm tt tsts upwr plnrity of sris-prlll irps in tim O(n 4 ) in t vril min sttin. In tis ppr, w stuy upwr plnr rwins of sris-prlll irps of 3 wit multipl sours n sinks in t vril min sttin. For su irp G, w iv linr-tim loritm to onstrut n upwr plnr rwin of G if G mits on. T ppro of our loritm is iffrnt from t on prsnt in [DGL06] n t loritm in [DGL06] rquirs tim O(n 4 ) vn for sris-prlll irp wit t mximum r tr. T min i of our loritm is s follows. Our loritm works in two pss, nmly tstin ps n onstrution ps. W in wit omposition tr ll PQ-tr T of G. In t tstin ps, w trvrs T ottom-up n tst t fsiility of otinin n upwr plnr rwin of G. If tis ps fils, w lr tt G is not n upwr plnr irp. If t tstin ps sus, w strt t onstrution ps n usin t informtion otin in t tstin ps, w otin n upwr plnr min of G in top-own trvrsl of T. T rst of t ppr is orniz s follows. tion 2 sris som finitions n prsnts prliminry rsults. In tion 3 w sri our primry finins on upwr plnrity of sris-prlll irps wit 3. tion 4 prsnts our loritm to tst upwr plnrity n fin n upwr plnr rwin of ionnt sris-prlll irp wit 3. Finlly, tion 5 is onlusion. 2 Prliminris In tis stion w iv som finitions n prsnt prliminry rsults. Lt G = (V, E) onnt rp wit vrtx st V n st E. T r of vrtx v, (v) is t numr of s inint to v in G. W not

4 Upwr Plnr Drwins 31 t mximum of t r of t vrtis of G y (G). T onntivity κ(g) of rp G is t minimum numr of vrtis wos rmovl rsults in isonnt rp or sinl-vrtx rp K 1. W sy tt G is k-onnt if κ(g) k. A plnr rwin of G prtitions t pln into topoloilly onnt rions ll fs. T unoun f is ll t outr f, t rminin fs r ll innr fs. A pt in G is n orr list of istint vrtis v 1, v 2,...,v q V su tt (v i 1, v i ) E for ll i, 2 i q. A pt P is ll u, v-pt if u n v r t first n lst vrtis in P rsptivly. A rp G = (V, E) is ll sris-prlll rp (wit sour s n sink t) if itr G onsists of pir of vrtis onnt y sinl or tr xist two sris-prlll rps G i = (V i, E i ), i = 1, 2, wit sour s i n sink t i su tt V = V 1 V 2, E = E 1 E 2, n itr s = s 1, t 1 = s 2 n t = t 2 or s = s 1 = s 2 n t = t 1 = t 2 [REN05]. A pir {u, v} of vrtis of onnt rp G is split pir if tr xist two surps G 1 = (V 1, E 1 ) n G 2 = (V 2, E 2 ) stisfyin t followin two onitions: 1. V = V 1 V 2, V 1 V 2 = {u, v}; n 2. E = E 1 E 2, E 1 E 2 =, E 1 1, E 2 1. Tus vry pir of jnt vrtis is split pir. A split omponnt of split pir {u, v} is itr n (u, v) or mximl onnt surp H of G su tt {u, v} is not split pir of H. Lt G ionnt sris-prlll rp. Lt (s, t) n of G. T PQ-tr T of G wit rspt to rfrn = (s, t) sris rursiv omposition of G inu y its split pirs [GL99]. Tr T is root orr tr wos nos r of tr typs:, P n Q. E no x of T orrspons to surp of G, ll its prtinnt rp G(x). E no x of T s n ssoit ionnt multirp, ll t sklton of x n not y sklton(x). Tr T is rursivly fin s follows. Trivil Cs: In tis s, G onsists of xtly two prlll s n joinin s n t. T onsists of sinl Q-no x, n t sklton of x is G itslf. T prtinnt rp G(x) onsists of only t. Prlll Cs: In tis s, t split pir {s, t} s tr or mor split omponnts G 0, G 1,, G k, k 2, n G 0 onsists of only rfrn = (s, t). T root of T is P-no x. T sklton(x) onsists of k + 1 prlll s 0, 1,, k joinin s n t, wr 0 = = (s, t) n i, 1 i k, orrspons to G i. T prtinnt rp G(x) = G 1 G 2 G k is union of G 1, G 2,, G k. As n xmpl, t sklton of P-no P 2 in Fi. 4 onsists of tr prlll s joinin vrtis n n Fiur 4() pits t prtinnt rp of P 2. ris Cs: In tis s t split pir {s, t} s xtly two split omponnts, n on of tm onsists of t rfrn. On my ssum tt t otr split omponnt s ut-vrtis 1, 2,, k 1, k 2, tt prtition t omponnt into its loks G 1, G 2,, G k in tis orr from s to t. Tn t root of T is n -no x. T sklton of x is yl 0, 1,, k wr 0 =, 0 = s, k = t, n i joins i 1 n i, 1 i k. T prtinnt rp G(x) of no x is union of G 1, G 2,, G k. For xmpl, t sklton of -no 3 in

5 32 M. A. H. m n M. iur Rmn m n l k i j () f () i l G () f f f () f (f) j k (i,n) i n i P1 1 m l 2 3 l P1 (n,m) (l,m) i 1 i 2 3 P2 (,l) (j,i) (k,j)(l,k) (,i) x l (,l) l P2 4 5 (i,n)(n,m)(l,m) (j,i) (k,j)(l,k) (,i) x P3 4 5 (,)(,)(,) (,) 6 7 P3 (,)(,)(,) (,) (,)(,) (,)(f,)(f,) 6 7 () (,)(,) (,) (f,)(f,) f () Fi.4. ()A ionnt sris-prlll rp G wit = 3, () PQ-tr T of G wit rspt to rfrn (i, n), n skltons of P- n -nos, () t prtinnt rp G( 3) of -no 3, () t prtinnt rp G(P 2) of P-no P 2, () t prtinnt rp G( 5) of -no 5, (f) t prtinnt rp G(P 3) of P-no P 3, () PQ-tr T of G wit P-no P 1 s t root Fi. 4 is t yl, i, l,, n Fiur 4() pits t prtinnt rp G( 3 ) of 3. In of t ss mntion ov, w ll t t rfrn of no x. Expt for t trivil s, no x of T s ilrn x 1, x 2,, x k in tis orr; x i is t root of t PQ-tr of rp G(x i ) i wit rspt to t rfrn i, 1 i k. W ll i t rfrn of no x i, n ll t npoints of i t pols of no x i. T tr otin so fr s Q-no ssoit wit of G, xpt t rfrn. W omplt t PQ-tr T y in Q-no, rprsntin t rfrn, n mkin it t prnt of x so tt it oms t root of T. An xmpl of t PQ-tr of ionnt sris-prlll rp in Fi. 4() is illustrt in Fi. 4(), wr t rwn y tik lin in sklton is t rfrn of t sklton. T PQ-tr T fin ov is t on us in [REN05] n is spil s of n PQR-tr [DT96,GL99] wr tr is no R-no n t root of t tr is Q-no orrsponin to t rfrn. On n sily moify T to n PQ-tr T wit n ritrry P-no s t root s illustrt in Fi. 4(). Lt G plnr irp. G is sris-prlll irp if t unrlyin unirt rp of G is sris-prlll rp. T PQ-tr of sris-prlll irp G is xtly t sm s t on of t unrlyin unirt srisprlll rp of G. In t rminr of tis ppr, w onsir n PQ-tr

6 Upwr Plnr Drwins 33 T of sris-prlll irp G wit P-no s t root. If (G) = 2, tn t unrlyin unirt rp of G is yl n E V = 0. It s n sown in [HL05] tt ll yli irps wit E V < 2 r upwr plnr. Hn, for (G) = 2, G is lwys upwr plnr. On my tus ssum tt (G) 3, n tt t root P-no of T s tr or mor ilrn. Tn t prtinnt irp G(x) of no x is t surp of G inu y t s orrsponin to ll snnt Q-no of x. Bs on t ssumption tt (G) = 3, t followin fts ol [REN05]. Ft 1 Lt (s, t) t rfrn of n -no x of T, n lt x 1, x 2,, x k t ilrn of x in tis orr from s to t. Tn (i) il x i of x is itr P-no or Q-no; (ii) ot x 1 n x k r Q-nos; n (iii) x i 1 n x i+1 must Q-nos if x i is P-no wr 2 i k 1. Ft 2 E non-root P-no of T s xtly two ilrn. A il of nonroot P-no n n - or Q-no. A P-no in n PQ-tr T is primitiv if it os not v ny snnt P-no in T. Lt x primitiv P-no in T. Lt x l n x r t lft n rit il of x in T rsptivly. Tn t unrlyin unirt rp of G(x) = G(x l ) G(x r ) is yl n n t irp G(x) is upwr plnr [HL05]. Trfor, t prtinnt irp G(x) of vry primitiv P-no x in T is lwys upwr plnr. W fin tt t it of primitiv P-no is zro. T it of ny otr P-no is (i + 1) if t mximum of t its of its snnt P-nos is i. T P-no P 3 in Fi. 4() is primitiv P-no. T its of t otr two P-nos P 2 n P 1 in Fi. 4() r 1 n 2 rsptivly. Lt G plnr irp. A rwin Γ of G is n upwr plnr rwin if it s no -rossin n ll t s of G r rwn s simpl urvs monotonilly inrsin in t vrtil irtion. G is n upwr plnr irp if G mits n upwr plnr rwin. On n osrv tt t followin lmm ols for n upwr plnr irp G. Lmm 1. A irp G is upwr plnr if n only if vry surp H of G is upwr plnr. Lt G irp wit fix plnr min. A vrtx v of G is imol if t irulr list of s inint to v n prtition into two (possily mpty) lists, on onsistin of inomin s n t otr onsistin of outoin s. If ll vrtis of G r imol tn G is ll imol. Ayliity n imolity r nssry onitions for t upwr plnrity of n m plnr irp [BDLM94]. Howvr, ty r not suffiint onitions. Lt f f of n m plnr imol irp G n suppos tt t ounry of f is visit lokwis if f is n innr f, n ountrlokwis if f is t outr f. Lt α = ( 1, v, 2 ) triplt su tt v is vrtx of t ounry of f n 1, 2 r two inint s of v tt r onsutiv on t ounry of f. Triplt α is ll n nl of f. W ll n nl α swit

7 34 M. A. H. m n M. iur Rmn nl of f if itr t irtion of 1 is opposit to t irtion of 2 on t ounry of f or 1 n 2 oini. Not tt if 1 n 2 oini tn G is not ionnt. If 1 n 2 r ot inomin in v, tn α is sink-swit of f n if ty r ot outoin, tn α is sour-swit of f. A sour or sink of G is ll swit vrtx of G n vrtx tt is not swit vrtx is ll n orinry vrtx of G. In t rminr of tis ppr w rfr to swit nl of f f y llin it simply swit of f. Lt G n m plnr irp. Lt Γ n upwr plnr rwin of G n lt α n nl of f f of G. W ssin ll F to t nl α in f f if α is not swit of f. Otrwis α is swit of f, n w ll α in f wit lttr L if α s vlu rtr tn π in Γ n wit lttr if t vlu of α in Γ is lss tn π. W ssin lls to ll nls of G s mntion ov n otin ll m irp. W ll tis ll m irp n upwr plnr rprsnttion of G n not it y U G. T rwin Γ is si to n upwr plnr rwin tt prsrvs U G [DGL06]. Fiur 5() illustrts U G of t rp G in Fi. 5() for t upwr plnr rwin Γ in Fi. 5(). It is mntionl tt ny ritrry llin of t swits of G my not v orrsponin upwr plnr rwin n n my not rr s n upwr plnr rprsnttion of G. T onitions wi must mt in orr to otin U G r sri low. v1 v7 v2 v5 v3 v6 v4 v11 v8 () v10 v9 v7 L F L v2 v5 F F v1 F () F v3 F v6 L F F v4 Lv11 F F v8 L v10 v9 L v1 v2 v5 v6 () v10 v3 v11 v4 v8 v9 v7 Fi.5. Illustrtion of upwr plnr rprsnttion n upwr plnr rwin. Lt G irp wit fix plnr min. Lt Φ n ssinmnt wi ssins ll of itr L,, or F to nl of vry f of G. For vrtx v of G, w not y L(v), (v), n F(v) t numr of nls t v tt Φ lls wit L,, n F rsptivly. For f f of G, w not y L(f), (f), n F(f) t numr of nls of f tt r ll y Φ wit L,, n F rsptivly. W ll t ssinmnt Φ n upwr onsistnt ssinmnt if t followin two onitions ol for Φ: (i) for swit vrtx v of G, L(v) = 1, (v) = (v) 1, F(v) = 0, n for orinry vrtx v of G, L(v) = 0, (v) = (v) 2, F(v) = 2; n (ii) for innr f f, (f) L(f) = 2 n for t outr f f, (f) L(f) = 2.

8 Upwr Plnr Drwins 35 1 Pl (y p ) : Pr (y p ) : P l (x 1 ) : Pr (x 1 ) : P l (r) : 14 Pr (r) = P l (y p ) : () () () (f) y 1 P r y P P 4 x x y 3 x 3 x 4 x 5 x 6 T () y 1 r y p y 2 y 3 T () Fi.6. () A ionnt sris-prlll rp G, () n PQ-tr T of G, () T wit ummy P-no y p, () (f) pol-pts of no x 1, y p n r rsptivly. On n intuitivly unrstn t nssity of onitions (i) n (ii) for n upwr plnr rwin. Conition (i) must ol u to t nssity of imolity, wil onition (ii) must ol u to si omtri onsirtion for upwr plnrity. Conitions (i) n (ii) r lso suffiint for upwr plnrity of G s stt in [DGL06]. Hn t followin lmm ols. Lmm 2. Lt G n yli plnr imol m irp su tt nl of G is ssin ll L, or F unr som ssinmnt Φ. Tn t lllins of t nls in G fin n upwr plnr rprsnttion U G of G if n only if Φ is upwr onsistnt. Givn n upwr plnr rprsnttion U G of G, it is lwys possil to onstrut n upwr plnr strit-lin rwin of G in linr-tim [DGL06]. 3 Fsil Lllins In tis stion, w introu t notion of fsil st of vlus for lllin t nls of G to otin n upwr plnr min of G. Lt T ivn PQ-tr of G wit P-no r s its root. Tn r s tr ilrn n vry otr P-no of T s xtly two ilrn. Lt y 1, y 2 n y 3 t tr ilrn of r. W insrt ummy P-no y p s il of r n mk y 2 n y 3 t two ilrn of y p. Lt T t rsultin tr (s Fi. 6() n ()). Evry P-no of T s xtly two ilrn n t pols of r n y p in T r t sm now. For ny two P-nos z 1 n z 2 in T, w sy tt z 1 is t prnt P-no of z 2 (quivlntly, z 2 is il P-no of z 1 ) if

9 36 M. A. H. m n M. iur Rmn z 2 is snnt of z 1 n tr is no otr P-no twn z 1 n z 2 on t z 1, z 2 -pt in T. By tis finition, y p is il P-no of r. Lt x P-no wit pols u, v. Lt x l n x r t lft n rit il of x rsptivly. W fin two -isjoint u, v-pts P l (x) n P r (x) s follows: (i) if x is primitiv, tn of G(x l ) n G(x r ) is pt. In tis s, P l (x) = G(x l ), P r (x) = G(x r ) (s Fi. 6()). (ii) if x is not primitiv n is not t root of T, tn lt y not il P-no of x in t lft sutr of x n y not il P-no of x in t rit sutr of x. In tis s, P l (x) will onsist of ll t il Q-nos of x l n P l (y), for il P-no y in t lft sutr. imilrly, P r (x) will onsist of ll t il Q-nos of x r n P l (y ), for il P-no y in t rit sutr (s Fi. 6()). (iii) if x is t root of T, tn x l is itr n - or Q-no n x r is t ummy P-no. In tis s, P l (x) is fin s in s (ii) ov n P r (x) = P l (x r ). (s Fi. 6(f)). W ll of P l (x) n P r (x) pol pt of x. In t rminr of tis ppr, w us C(x) to not t yl P l (x) P r (x) n F(x) to not t f oun y C(x). Lt x non-primitiv P-no in T n y not il P-no of x. W ll swit of F(x) fr swit of F(x) if t swit is nitr on P l (y) nor t t pols of y for ny il P-no y of x. W now introu t notion of fsil llin of P l (x) n t fsil st of P-no x in T. Lt U G(x) n upwr plnr rprsnttion of G(x). Tn n upwr plnr rprsnttion of C(x) n otin from U G(x). Tis n on y simply ltin ll tos vrtis n s of G(x) wi r not in C(x). Lt U C(x) not tis upwr plnr rprsnttion of C(x) n Φ t orrsponin upwr onsistnt ssinmnt. Lt L(x) n (x) not t numr of L- n - lls ssin y Φ to tos swits of F(x) wi r on t pt P l (x). If L(x) = p n (x) = p + q, tn (x) L(x) = q. W sy tt q is fsil vlu of L for llin t swits of F(x) on pt P l (x). Lt Fsil(x) not t st of ll fsil vlus of L for llin t swits on pt P l (x). W rr Fsil(x) s t fsil st of t P- no x. An ssinmnt of lls to t swits on P l (x) is fsil llin of P l (x) if (x) L(x) = q for som q Fsil(x). T followin ft follows t finition of fsil llin. Ft 3 For ivn fsil vlu q Fsil(x), tr is orrsponin upwr plnr rprsnttion of G(x). Lt x non-primitiv P-no in T n y il P-no of x in T. in G(y) is surp of G(x), ivn U G(x) w n otin n upwr plnr rprsnttion U G(y) of G(y) n n t followin ft ols. Ft 4 For ivn fsil vlu q Fsil(x), tr is orrsponin fsil vlu q Fsil(y) for il P-no y of x. W now v t followin lmm.

10 Upwr Plnr Drwins 37 Lmm 3. G(x) s n upwr plnr rprsnttion if n only if P l (x) n ivn fsil llin. Proof. Nssity. T nssity of t onition follows from t finition of fsil llin. uffiiny. Lt us ssum tt P l (x) is ivn fsil llin orin to fsil vlu q Fsil(x). Tn it follows from Ft 3 n Ft 4 tt tr xists n ssinmnt Φ of - n L- lls to t swits of F(x) su tt ) P l (x) is ll orin to t fsil vlu q, ) for il P-no y of x, P l (y) rivs fsil llin, ) for y, swits of F(x) t t pols of y (if ny) r ssin lls in su wy tt P r (y) n m insi t f wr P l (y) is ivn fsil llin, n ) (F(x)) L(F(x)) = 2 from t finition of upwr onsistnt ssinmnt. in Φ xists, on n fin it y tryin vlu from t fsil st Fsil(y) of il P-no y. Tn tis sm pross my ppli rursivly on P l (y) for il P-no y of x n finlly U G(x) n omput. Q.E.D. W immitly t t followin orollry from Lmm 3. Corollry 1. Lt x P-no in T. Tn t prtinnt irp G(x) of x s no upwr plnr rprsnttion if n only if t st Fsil(x) is mpty. Lt u pol of y su tt tr is swit nl u x of F(x) t vrtx u. As mntion in onition () in t proof of Lmm 3, w n to ll u x in su wy tt P r (y) n m insi t f in wi P l (y) is ivn fsil llin. At t sm tim, w must lso nsur tt t llin of t swits t vrtx u stisfis onition (i) of n upwr onsistnt ssinmnt. in (G) = 3 n G is ionnt, t r of vry vrtx in G is itr two or tr. Any ll ssin to swit t vrtx of r two of G lwys stisfis onition (i) of upwr onsistnt ssinmnt. W trfor n to onntrt on llin t swits t t vrtis of r tr of G. in G is sris-prlll irp, only t pols of t P-nos of T n v r tr. In rr to llin t swits t t pols of t P-nos of T, w v t followin lmm. Lmm 4. Lt x n y two P-nos in T su tt x is t prnt of y. Lt u pol of y su tt tr is swit nl u x of F(x) t vrtx u. Tn u x must ll wit n L-ll wn P r (y) is m insi t f F(x) n wit n -ll wn P r (y) is m in t xtrior of t f F(x) if t followin () or () ol. () u is n orinry vrtx of G n, () u is swit vrtx of G n itr P r (y) is m insi t f F(x) wit lr nl t t swit of F(y) t pol u or P r (y) is m in t xtrior of t f F(x) wit smll nl t t swit of F(y) t pol u. W v omitt t proof of Lmm 4 in tis xtn strt. In of t two ss of Lmm 4, w fin u s n L-pol of no y. T followin lmm is irt onsqun of Lmm 4.

11 38 M. A. H. m n M. iur Rmn Lmm 5. Lt x n y two P-nos in T su tt x is t prnt of y in T. If ot t pols of y r L-pols, tn in orr to otin n upwr plnr rwin, ot t swits of F(x) t t pols of y must ssin t sm ll. T lls ssin to t swits (if ny) of F(y) t t pols of y ply importnt rols in upwr plnrity tstin s sri in t followin fts. Ft 5 Lt swit vrtx u of G pol of no y, n lt u y t swit nl of F(y) t pol u. Tn u is n L-pol of no y if () u y is ll wit L n F(y) is m s n innr f, n () u y is ll wit n F(y) is m s t outr f. Ft 6 Lt n orinry vrtx u of G pol of no y. Lt u ontin swit nl of F(y). Tn () F(y) must m s t outr f if u y is ll wit L, n () F(y) must m s n innr f if u y is ll wit. W omit t proofs of Ft 5 n Ft 6 r sin t fts r intuitiv onsquns of t finition of L-pols. Lt x P-no of T n y il P-no of x. W now fin litimt llin for no y wi will us xtnsivly trouout t rminr of tis ppr. A llin of t swits of F(x) on P l (y) n t t pols of y is ll litimt llin for no y if t followin () n () ol: () P l (y) is ivn fsil llin n () if pol u of y is n L-pol tn t llin of u x stisfis Lmm 4, otrwis ot n L lls r onsir for llin u x. In t rminr of tis ppr, w us Litimt(y) to not t st of vlus of L insi F(x) orrsponin to litimt llin for no y. W fin llin of t swits on P r (x) to litimt llin of P r (x) if it prforms litimt llin for il P-no y of x in t rit sutr of x n it onsirs ot n L lls for t fr swits on P r (x). W similrly fin litimt llin of P l (x). In t rminr of tis ppr, w us q r n q l to not t vlu of L insi F(x) for litimt llin of P r (x) n P l (x), rsptivly, n w us q pol to not t vlu of L insi F(x) for llin t swits (if ny) of F(x) t t two pols of x. W sy tt 2 (q pol + q r ) is possil fsil vlu of x. If w n fin litimt llin of P l (x) for wi q l = 2 (q pol + q r ), tn q l will fsil vlu of no x n will inlu in t fsil st Fsil(x) of x. As stt rlir, our ojtiv is to omput Fsil(x) for P-no x in T. Givn Fsil(y) for il P-no y of x, w n lwys omput Fsil(x). For tis purpos, on soul fin possil ssinmnt of lls to t swits of F(x) tt nsurs t onitions () () mntion in t proof of Lmm 3. Any loritm followin rut-for ppro to omplis tis woul yil xponntil tim omplxity. T ppro for onstrutin U G(x) outlin in t proof of Lmm 3 woul lso yil xponntil tim omplxity. In our loritm wi w sri in t nxt stion, w sow tt w n omput Fsil(x) in linr-tim y usin t onpts introu tus fr. Furtrmor, if G(x) is upwr plnr, tn w n lso otin U G(x) in linr-tim.

12 4 An Upwr Plnr Drwin Aloritm Upwr Plnr Drwins 39 In tis stion w iv linr-tim loritm to tst t upwr plnrity of ionnt sris-prlll irp G wit (G) = 3. If G is upwr plnr, tn w lso onstrut n upwr plnr rprsnttion of G in linr-tim. An outlin of our loritm is ivn low. Our loritm onsists of two pss, nmly, t tstin ps n t onstrution ps. In t tstin ps, w trvrs t P-nos of T in ottom-up fsion n t P-no x, w tst t upwr plnrity of G(x). For tis purpos, w omput t fsil st Fsil(x) of no x. If x is primitiv, tn omputin Fsil(x) is quit strit forwr. On t otr n, if x is non-primitiv, tn w n omput Fsil(x) from t fsil sts of t il P-nos of x. If w su in tis ottom-up trvrsl to fin Fsil(r), wr r is t root of T, tn w lr G s n upwr plnr irp n strt our son ps in wi w onstrut n upwr plnr rprsnttion of G. On t otr n, if w fin tt Fsil(x)= for ny P-no x in T, tn from Corollry 1 n Lmm 1, w lr tt G is not upwr plnr. On n sily unrstn tt if w onsir only t omintoril mins of t sklton of P-no of T, tn our ision rrin t upwr plnrity of G tt w mk in sinl trvrsl of T my inorrt. Trfor, w nsur tt our mto onsirs vry plnr min of t sklton of P-no of T ; nvrtlss, our loritm ivs linr-tim s w will sow in tis stion. In t onstrution ps, w prform top-own trvrsl of t P-nos of T. W strt t onstrution ps wit fsil llin of P l (r) wr r is t root of T. Tn in top-own trvrsl of T, t P-no x w ssin lls to t swits of F(x) su tt t ssinmnt stisfis onitions () () ivn in t proof of Lmm 3. Tis prour is rri on t sis of informtion tr in t tstin ps. At t n of tis trvrsl w otin t finl upwr plnr rprsnttion U G of G. W now strt wit t sription of our prour to trmin t fsil st of primitiv P-no. Lt x P-no in T. In t rminr of tis ppr, w us t symols n r, n l n n x to not t numr of swits of F(x) on t pt P r (x), on t pt P l (x) n t t two pols of x, rsptivly. W lso opt t nottion [low.. i] to not t st of intrs in wi t numrs r list in snin orr n t first numr is low, t lst numr is i n if not mntion xpliitly, t prioiity of t numrs is 2. Lt x primitiv P-no n q possil fsil vlu of x. Tn q will fsil vlu of x n inlu in Fsil(x) if q n l. Lt I 0 = [ n r n r + 2], I = [ n r +(2 n x ).. n r +(2 n x )] n I + = [ n r +(2+n x ).. n r +(2+n x )]. Tn w v t followin lmms rrin t possil fsil vlus of primitiv P-no x in T wos proofs r omitt in tis xtn strt. Lmm 6. Lt x primitiv P-no of T. Lt I innr n I outr t st of possil fsil vlus of no x for min F(x) s n innr f n t outr f, rsptivly. Tn t followin () n () ol.

13 40 M. A. H. m n M. iur Rmn () I innr = I outr = I 0 = [ n r n r + 2], if n x = 0; n () I innr = I = [ n r + (2 n x ).. n r + (2 n x )] n I outr = I + = [ n r + (2 + n x ).. n r + (2 + n x )], if n x > 0 n of ts n x pols of x is n orinry vrtx of G. Lmm 7. Lt x primitiv P-no of T. Lt I innr n I outr t st of possil fsil vlus of no x for min F(x) s n innr f n t outr f, rsptivly. If n x = 2 n on of t two pols of x is swit vrtx of G n t otr is n orinry vrtx of G, tn t followin () n () ol. () I innr = I I 0 = [ n r.. n r + 2] n I outr = I + I 0 = [ n r n r + 4]; n () For vry q I 0, t pol of x wi is lso swit vrtx of G is n L-pol. Lmm 8. Lt x primitiv P-no of T. Lt I innr n I outr t st of possil fsil vlus of no x for min F(x) s n innr f n t outr f, rsptivly. If n x > 0 n of ts n x pols of x is swit vrtx of G, tn t followin () () ol. () For n x = 1, I innr = I outr = I I + n for n x = 2, I innr = I outr = I I + I 0. () For vry q I, of t n x pols of x is n L-pol if F(x) is m s t outr f. () For vry q I +, of t n x pols of x is n L-pol if F(x) is m s n innr f. () For vry q I 0, on of t pols of x is n L-pol if n x = 2. Hvin omput t fsil st for primitiv P-no, w now pro towrs t omputtion of fsil st of ny P-no in T. To omput fsil vlu for non-primitiv P-no x in T, w must nsur tt for vry il P-no y of x, w r prformin litimt llin. Trfor, w first monstrt ow w n fin t st Litimt(y) for il P-no y of x. Lt q Fsil(y). By ivin fsil llin to P l (y) stisfyin q Fsil(y), w n otin tr possil mins of F(y) s sown in Fi. 7() (). In Fi. 7() n () F(y) is m s n innr f. Hn, in ts two ss, xtly on of P r (y) n P l (y), ut not ot, pprs t t outr f. On t otr n, in Fi. 7(), F(y) is m s t outr f, n n ot P l (y) n P r (y) v n rwn rwn t t outr f. From mor tortil point of viw, t tr fiurs in Fi. 7() () tully orrspon to tr possil plnr mins of t sklton of no y. W n isr t otr tr possil plnr mins of t sklton of no y us ty r just t mirror rfltions of t tr mins sown. In orr to otin n min s sown in Fi. 7() w v to ll t swits on P l (y) in su wy tt t lls of ts swits yil L = q insi f F(x). imilrly, in orr to otin t mins sown in Fi. 7() n ()

14 Upwr Plnr Drwins 41 u F(x) v () u u u u u u u u u u u v Pl(y) v Pl(y) Pr(y) Pr(y) Pl(y) F(y) Pr(y) v v v v v v v v () () () v Pl(y) Fi.7. Tr possiilitis to onsir from P-no x to m t fil yl F(y). t lls of t swits on P l (y) soul yil L = q insi f F(x). W n trmin t litimt vlus of L insi F(x) for t tr snrios sown in Fi. 7 y onsirin t followin tr possil ss: (i) Bot t pols of y r L-pols: for t tr mins in Fi. 7() (), w soul v 2 q, 2 + q, 2 + q rsptivly s t vlu of L insi F(x). (ii) Extly on of t pols of y is n L-pol: w soul v 1 q, 1+q, 1+q rsptivly for t mins in Fi. 7() (). (iii) Non of t pols of y is n L-pol: w soul v q, +q, +q rsptivly for t mins in Fi. 7() (). For t ss (ii) n (iii), if pol of y ontins fr swit of F(x), tn t vlu of L insi F(x) for llin tt swit woul ±1, sin it n ssin itr of t two possil lls. W now sow ow w n omput Litimt(y) wn y is primitiv P-no. In t followin w first onsir only t litimt vlus rsultin from min F(y) s n innr f. Lt q m not t mximum of ts litimt vlus. In Lmm 10 w sow tt, if F(y) is m s t outr f, tn t most two nw litimt vlus n otin, nmly, q m +2 n q m + 4. W v sn in Lmm 6, 7 n 8 tt t st of fsil vlus wi n stisfi for min F(y) s n innr f is of t form: [lo.. i]. W now v t followin lmm rrin t litimt vlus for primitiv P-no y wn F(y) is m s n innr f. Lmm 9. Lt y primitiv P-no in T n x t prnt P-no of y in T. Lt n Lpol not t numr of L-pols of no y. Lt Fsil(y)= [lo.. i] n k not t numr of swits of F(x) t tos pols of y wi r not L-pols. Tn for min F(y) s n innr f t followin () n () ol. () If lo = i = 0 n n Lpol = 2 tn Litimt(y)= { 2, +2}; n () Otrwis, Litimt(y)= [ (mx + k).. (mx + k)], wr mx is t mximum of n Lpol lo n n Lpol i. W now v t followin lmm rrin t litimt vlus of primitiv P-no x wn F(x) is m s t outr f.

15 42 M. A. H. m n M. iur Rmn Lmm 10. Lt x primitiv P-no in T. Lt q m t mximum of ll t litimt vlus otin y min F(x) s n innr f. Tn t most two nw litimt vlus, nmly, q m + 2 n q m + 4 n otin y min F(x) s t outr f. In t followin lmm, w rss t issu of omputin Fsil(x) for non-primitiv P-no x in T. Lmm 11. Lt x non-primitiv P-no in T. Lt y 1,...,y l t il P-nos of x in T. Tn Fsil(x) n omput from Fsil(y 1 ),..., Fsil(y l ). Proof. Lt y 1, y 2,..., y lft t il P-nos in t lft sutr of x n y 1, y 2,...,y rit t il P-nos in t rit sutr of x. Lt not t it of t P-no x in T. W prov t lim y inution on. W first ssum tt = 1. Tn vry il P-no of x is primitiv. Lt y il P-no of x. Aorin to Lmm 6, 7 n 8, y s two typs of fsil vlus, nmly, t fsil vlus stisfyin wi F(y) n m s n innr f n t fsil vlus stisfyin wi F(y) n m s t outr f. Amon ll t il P-nos y of x, for t most on y, w n m F(y) s t outr f sin plnrity woul violt otrwis. Hn, for y, w first onsir tos vlus from Fsil(y) stisfyin wi w n m F(y) s n innr f, ltr w nl t fsil vlus stisfyin wi w n m F(y) s t outr f. As w v sown in Lmm 9, if y i is il P-no of x in t lft sutr of x, tn t st of litimt vlus for min F(y) s n innr f is [ p i.. p i ] wit prioiity of itr 2 or 4 for som intr p i (1 i lft). imilrly, if y i is il P-no of x in t rit sutr of x, tn t st of litimt vlus for min F(y) s n innr f is [ p i.. p i ] wit prioiity of itr 2 or 4 for som intr p i (1 i rit). Lt p not t numr of fr swits of F(x) on pt P r (x). in llin of of ts fr swits n yil L = ±1 insi F(x), w woul v [ p.. p ] s t st of vlus for llin ts swits. Trfor, t st of litimt vlus for llin of P r (x) will of t form [ (p + p i ).. (p + p i )] wit prioiity of itr 2 or 4. Tkin k = p + p i, w n otin [ k.. k] s t st of litimt vlus for llin of P r (x). From tis st of vlus, w n otin t st of possil fsil vlus of x (i.., w n otin I innr n I outr ) xtly in t sm wy s w v sri in Lmm 6, 7 n 8. It now rmins to trmin wi of ts possil fsil vlus will t fsil vlus of x. For tis purpos, w first trmin t litimt llin of P l (x) xtly in t sm wy s w trmin t litimt vlus for llin of P r (x). Evry possil fsil vlu of x wi is lso litimt vlu for llin of P l (x), will fsil vlu of x n n, will inlu in Fsil(x). It is mntionl tt, in tis omputtion, w o not n to k vry vlu from t formr st wit vry vlu of t lttr st. Rtr, w n otin t wol informtion in tim O(1) from t prioiity n t first n lst vlus of ts two sts. Hvin omput Fsil(x), w

16 Upwr Plnr Drwins 43 n omput Litimt(x) for min F(x) s n innr f s illustrt in Lmm 9 for primitiv P-no n w n lso omput t possil ns in ts litimt vlus if F(x) is m s t outr f s illustrt in Lmm 10 for primitiv P-no. W now onsir tos fsil vlus of il P-no y of x stisfyin wi F(y) n m s t outr f. W si prviously tt ny su min n inrs t litimt vlus for y y t most +2 n +4. Hn, rrlss of t oi of y, ny su min n us n of i {±2, ±4} in t litimt vlus for x. Lt Extrnl(x) t st of possil ns in t litimt vlus for x if F(x) or F(z) is m s t outr f wr z is snnt P-no of x. Tn Extrnl(x) {i + j : i {±2, ±4} n j {2, 4}} = [ ]. Alon wit Litimt(x), w pss tis st of possil ns to t prnt P-no of x in T. W nxt ssum tt > 1 n tt t ilrn of x v n t followin two quntitis to x. (i) Litimt(y) for vry il P-no y of x n (ii) t possil ns in t litimt vlus for no y tt n otin y min itr F(y) s t outr f, or F(z) s t outr f wr z is snnt P-no of y. In mnnr xtly similr to t s for = 1, w n omput t fsil vlus of x first y onsirin only tos fsil vlus of il P-no y of x wi n stisfi wil min F(y) s n innr f. From tis w trmin t st Litimt(x). Nxt w trmin t possil ns in t litimt vlus for no x tt r otinl y min itr F(x) s t outr f, or F(z) s t outr f wr z is snnt P-no of x. By oin so, w v in quipp ourslvs wit Fsil(x) n lso wit t ov two quntitis () n () wi w woul pss to t prnt of x if x is not t root of T, or if x is t root of T, tn w n strt our son ps of onstrutin U G y usin fsil vlu from Fsil(x). Q.E.D. W ll t loritm outlin in t proofs of Lmm 6, Lmm 7, Lmm 8 n Lmm 11 Aloritm UP-Tstr. W now v t followin torm. Torm 1. Lt G sris-prlll irp wit (G) 3. Tn t upwr plnrity of G n tst in linr-tim. Proof. Lt T t PQ-tr of G. From Lmm 6, Lmm 7, Lmm 8 n Lmm 11, w n fin Fsil(x) for ny P-no x in T y pplyin Aloritm UP-Tstr. If UP-Tstr fins Fsil(x) =, tn from Corollry 1, G(x) is not upwr plnr n n, from Lmm 1 G itslf is not upwr plnr. W n sow tt t oprtions rquir y Aloritm UP-Tstr to omput t fsil sts of ll t P-nos of T n prform in tim linr to t numr of P-nos in T. T tils of ts omputtions r omitt in tis xtn strt. in t numr of P-nos of T is linr in t numr of vrtis of G, t upwr plnrity of G n tst in tim O(n). Q.E.D. Finlly, w iv t followin torm rrin t onstrution of n upwr plnr rprsnttion of G, U G.

17 44 M. A. H. m n M. iur Rmn Torm 2. Lt r t root of t PQ-tr T of G. If G is upwr plnr, tn strtin wit fsil llin of P l (r), n upwr plnr rprsnttion of G n onstrut in linr-tim. Proof. Our proof is onstrutiv. W sow r ow w n prform fsil llin of P l (y) for il P-no y of x ivn tt P l (x) s n ll wit fsil vlu. Lt q t fsil vlu stisfi for llin P l (x). If q rquirs tt for som snnt P-no z of x, F(z) soul m s t outr f, tn t first w trmin tt P-no. Dpnin on t stisfi fsil vlu q, w know wt lls soul ssin to t swits (if ny) t t pols of x. Hn w ll t swits (if ny) t t pols of x. Lt L = q p insi F(x) for t lls ssin to t swits (if ny) t t pols of x. As sown in t proof of Lmm 11, w n sily omput t sts Litimt(y) tt ltotr yil t st Fsil(x). Lt t st of ll possil vlus for llin t swits on P l (x) [l.. ]. Tn lt i = q. W itrt trou of t omput litimt sts. Lt Litimt(y) =[l y.. y ]. If i > ( y l y ) tn w stisfy t fsil vlu orrsponin to l y for no y n ru i y y l y. Tn w pro wit t nxt no. Wn w fin i ( y l y ) t no y, w stisfy t fsil vlu orrsponin to ( y i) for tt P-no. For of t rminin P- nos in t lft sutr of x, w stisfy t fsil vlu orrsponin to y. W tn prform t sm oprtions in orr to stisfy t vlu 2 q q p for t swits on P r (x). Clrly, t wol tr n trvrs in linr-tim wil prformin ts oprtions t x wil t ompltion of t trvrsl inits tt w v otin n upwr plnr min of G in wi t swits v n ll orin to n upwr onsistnt ssinmnt. Tis omplts t proof of t lim. Q.E.D. 5 Conlusion In tis ppr, w v simpl linr-tim loritm to tst upwr plnrity n in t positiv s, otin n upwr plnr rwin of sris-prlll irp wit t mximum r tr. in our ttntion ws onfin to sris-prlll irps wit t mximum r tr, it looks iffiult to xtn tis loritm in strit forwr wy for mor nrl lsss of irps n lso for sris-prlll irps wit ir rs. It is lft s futur work to fin otr rtriztions of upwr plnrity of sris-prlll irps n vis ffiint loritms for upwr plnrity tstin n upwr plnr rwins of sris-prlll irps wit ir rs. Rfrns [BCDTT94] P. Brtolzzi, R. F. Con, G. Di Bttist, R. Tmssi, n I. G. Tollis, How to rw sris-prlll irp, Intrntionl Journl of Computtionl Gomtry n Applitions, 4 (4), pp , 1994.

18 Upwr Plnr Drwins 45 [BDLM94] P. Brtolzzi, G. Di Bttist, G. Liott, n C. Mnnino, Upwr rwins of trionnt irps, Aloritmi, 6 (12), pp , [BDMT98] P. Brtolzzi, G. Di Bttist, C. Mnnino n R. Tmssi Optiml upwr plnrity tstin of sinl-sour irps, IAM Journl on Computin, 27, pp , [BL76] K.. Boot n G.. Lukr, Tstin t onsutiv ons proprty, intrvl rps, n rp plnrity usin PQ-tr loritms, J. Comp. ys. i., 13, pp , [CDTT94] R. F. Con, G. Di Bttist, R. Tmssi, n I. G. Tollis, Dynmi rp rwin:trs, sris-prlll irps, n plnr st-irps, IAM Journl on Computin, 24 (5), pp , [CLR01] T. H. Cormn, C. E. Lisrson, R. L. Rivst, n C. tin, Introution to Aloritms, MGrw-Hill Book Compny, on Eition, [DGL06] W. Diimo, F. Giorno, G. Liott, Upwr spirlity n upwr plnrity tstin, Pro. of GD 05, Ltur Nots in Computr in, 3843, pp prinr-vrl, [DT96] G. Di Bttist n R. Tmssi, On-lin plnrity tstin, IAM J. Comput., 25(5), pp , [GL99] A. Gr n G. Liott, Almost n-optiml plnr ortoonl rwins of ionnt r-3 plnr rps in qurti tim, Pro. of GD 99, Lt. Nots in Computr in, 1731, pp.38 48, [GT94] A. Gr n R. Tmssi, On t omputtionl omplxity of upwr n rtilinr plnrity tstin Pro. Grp Drwin 1994, Ltur Nots in Computr in, 894, pp prinr-vrl, [GT95] A. Gr n R. Tmssi, Upwr plnrity tstin, Orr, 12, pp , [GT01] A. Gr n R. Tmssi, On t omputtionl omplxity of upwr n rtilinr plnrity tstin, IAM Journl on Computin, 31(2), pp , [HL96] M. D. Hutton n A. Luiw, Upwr plnrity tstin of sinl-sour yli irps, IAM Journl on Computin, 25(2), pp , [HL05] P. Hly n K. Lyn, Fix-prmtr trtl loritms for tstin upwr plnrity, Proins of OFEM 05, Ltur Nots in Computr in, 3381, pp , [HT74] J. Hoproft n R. E. Trjn, Effiint plnrity tstin, Journl of t ACM, 21(4), pp , [Pp95] A. Ppkosts, Upwr plnrity tstin of outrplnr s, Pro. of GD 95, Ltur Nots in Computr in, 894, pp , [REN05] M.. Rmn, N. Ei, n T. Nisizki, No-n ortoonl rwins of sris-prlll rps, Pro. of GD 05, Ltur Nots in Computr in, 3843, pp prinr-vrl, [VTL82] J. Vls, R. E. Trjn n E. L. Lwlr, T Ronition of ris-prlll Dirps, IAM J. Comput., 11 (2), pp , 1982.

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6 Rin Stion 9.6 Minimum Spnnin Trs Outlin Minimum Spnnin Trs Prim s Alorithm Kruskl s Alorithm Extr:Distriut Shortst-Pth Alorithms A Fil Shrin Prolm Sy unh o usrs wnt to istriut il monst thmslvs. Btwn h

More information

Link-Disjoint Paths for Reliable QoS Routing

Link-Disjoint Paths for Reliable QoS Routing Link-Disjoint Pths or Rlil QoS Routing Yuhun Guo, Frnno Kuiprs n Pit Vn Mighm # Shool o Eltril n Inormtion Enginring, Northrn Jiotong Univrsity, Bijing, 000, P.R. Chin Fulty o Inormtion Thnology n Systms,

More information

Back left Back right Front left Front right. Blue Shield of California. Subscriber JOHN DOE. a b c d

Back left Back right Front left Front right. Blue Shield of California. Subscriber JOHN DOE. a b c d Smpl ID r n sription o trms Bk lt Bk right Front lt Front right Provirs: Pls il ll lims with your lol BluCross BluShil lins in whos srvi r th mmr riv srvis or, whn Mir is primry, il ll Mir lims with Mir.

More information

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993 (Rul 5(10)) Shul C Noti in trms o Rul 5(10) o th Cpitl Gins Ruls, 1993 Sttmnt to sumitt y trnsror o shrs whr thr is trnsr o ontrolling intrst Prt 1 - Dtils o Trnsror Nm Arss ROC No (ompnis only) Inom Tx

More information

11 + Non-verbal Reasoning

11 + Non-verbal Reasoning Prti Tst + Non-vrl Rsoning R th instrutions rfully. Do not gin th tst or opn th ooklt until tol to o so. Work s quikly n s rfully s you n. Cirl th orrt lttr from th options givn to nswr h qustion. You

More information

Graph Theoretical Analysis and Design of Multistage Interconnection Networks

Graph Theoretical Analysis and Design of Multistage Interconnection Networks 637 I TRNSTIONS ON OMPUTRS, VOL. -32, NO. 7, JULY 1983 [39].. svnt,.. jski, n. J. Kuck, "utomtic sign wit pnnc grps," in Proc. 17t s. utomt. on, I omput. Soc. TMSI, 1980, pp. 506-515. [40] M.. Mcrln, "

More information

A122 MARION COUNTY HEALTH BUILDING HVAC, GLAZING AND LIGHTING RENOVATION 75% DOCUMENTS 08/31/2015

A122 MARION COUNTY HEALTH BUILDING HVAC, GLAZING AND LIGHTING RENOVATION 75% DOCUMENTS 08/31/2015 7 ' 7 /" ' " ' /" ' 9 /" ' 0" ' 0" ' 0" ' 0" ' " ' /" 0 NRL SHT NOTS IL VRIY XISTIN PRIOR TO WORK N NOTIY RHITT/NINR O ISRPNIS TWN RWINS N XISTIN ONITIONS. 0 0 0 PTH LOTIONS N IR PROOIN WHR XISTIN WLLS

More information

Where preparation meets opportunity. My Academic Planner. Early Academic Outreach Program (EAOP)

Where preparation meets opportunity. My Academic Planner. Early Academic Outreach Program (EAOP) Whr prprtion mts opportunity. My Ami Plnnr Erly Ami Outrh Prorm (EAOP) Follow this 4-stp pln to prpr or mission to th Univrsity o Cliorni (UC), Cliorni Stt Univrsity (CSU) n mny inpnnt olls with similr

More information

Usability Test Checklist

Usability Test Checklist Crtifi Profssionl for Usility n Usr Exprin Usility Tsting (CPUX-UT) Vrsion.0, Jun 0 Pulishr: UXQB. V. Contt: [email protected] www.uxq.org Autorn: R. Molih, T. Gis, B. Rumml, O. Klug, K. Polkhn Contnt Lgn...

More information

Process Mining Making Sense of Processes Hidden in Big Event Data

Process Mining Making Sense of Processes Hidden in Big Event Data Pross Minin Mkin Sns o Prosss Hin in Bi Evnt Dt EIS Colloquium, 7-12-2012, TU/, Einovn Wil vn r Alst www.prossminin.or omplin-orint qustions, prolms n solutions prormn-orint qustions, prolms n solutions

More information

Hospitals. Internal Revenue Service Information about Schedule H (Form 990) and its instructions is at www.irs.gov/form990.

Hospitals. Internal Revenue Service Information about Schedule H (Form 990) and its instructions is at www.irs.gov/form990. SCHEDULE H Hospitls OMB No. 1545-0047 (Form 990) Complt if th orgniztion nswr "Ys" to Form 990, Prt IV, qustion 20. Atth to Form 990. Opn to Puli Dprtmnt of th Trsury Intrnl Rvnu Srvi Informtion out Shul

More information

Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems. Distributed File Systems. Example: NFS Architecture

Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems. Distributed File Systems. Example: NFS Architecture Distriut Systms Prinipls n Prigms Mrtn vn Stn VU mstrm, Dpt. Computr Sin [email protected] Chptr 11: Vrsion: Dmr 10, 2012 1 / 14 Gnrl gol Try to mk fil systm trnsprntly vill to rmot lints. 1. Fil mov to lint

More information

Operational Procedure: ACNC Data Breach Response Plan

Operational Procedure: ACNC Data Breach Response Plan OP 2015/03 Oprtionl Prour: ACNC Dt Brh Rspons Pln This Oprtionl Prour is issu unr th uthority of th Assistnt Commissionr Gnrl Counsl n shoul r togthr with th ACNC Poliy Frmwork, whih sts out th sop, ontxt

More information

Diagram Editing with Hypergraph Parser Support

Diagram Editing with Hypergraph Parser Support Copyright 1997 IEEE. Pulish in th Proings o VL 97, Sptmr 23-26, 1997 in Cpri, Itly. Prsonl us o this mtril is prmitt. Howvr, prmission to rprint/rpulish this mtril or vrtising or promotionl purposs or

More information

Uses for Binary Trees -- Binary Search Trees

Uses for Binary Trees -- Binary Search Trees CS122 Algorithms n Dt Struturs MW 11:00 m 12:15 pm, MSEC 101 Instrutor: Xio Qin Ltur 10: Binry Srh Trs n Binry Exprssion Trs Uss or Binry Trs Binry Srh Trs n Us or storing n rtriving inormtion n Insrt,

More information

Algorithmic Aspects of Access Networks Design in B3G/4G Cellular Networks

Algorithmic Aspects of Access Networks Design in B3G/4G Cellular Networks Algorithmi Aspts o Ass Ntworks Dsign in BG/G Cllulr Ntworks Dvi Amzllg, Josph (Si) Nor,DnnyRz Computr Sin Dprtmnt Thnion, Hi 000, Isrl {mzllg,nny}@s.thnion..il Mirosot Rsrh On Mirosot Wy, Rmon, WA 980

More information

MANAGEMENT OF INFORMATION SECURITY AND FORENSICS

MANAGEMENT OF INFORMATION SECURITY AND FORENSICS MANAGEMENT OF INFORMATION SECURITY AND FORENSICS CS 307 Ctlog Dsription PREREQUISITE: CS 0. Stuy of informtion surity n igitl fornsis using prtil s stuis. Emphsis is on vloping surity poliis, surity mngmnt

More information

SKILL TEST IR(H) HELICOPTER SE ME Application and report form A. Udfyldes af ansøgeren/to be filled out by the applicant:

SKILL TEST IR(H) HELICOPTER SE ME Application and report form A. Udfyldes af ansøgeren/to be filled out by the applicant: SKILL TEST IR(H) HELICOPTER SE ME Applition n rport orm A. Uyls nsørn/to ill out y th pplint: CPR-nr./Dt o Birth: Crtiikt nr./lin no.: (I ny) Ustn Stt/Stt o Lin Issu: Fornvn/First nm(s): Etrnvn/Lst nm:

More information

CompactPCI Connectors acc. to PIGMG 2.0 Rev. 3.0

CompactPCI Connectors acc. to PIGMG 2.0 Rev. 3.0 Ctlog E 074486 08/00 Eition ComptPCI Conntors. to PIGMG.0 Rv. 3.0 Gnrl Lt in 999 PCI Inustril Computr Mnufturrs Group (PICMG) introu th nw rvision 3.0 of th ComptPCI Cor Spifition. Vrsion 3.0 of this spifition

More information

A simple algorithm to generate the minimal separators and the maximal cliques of a chordal graph

A simple algorithm to generate the minimal separators and the maximal cliques of a chordal graph A smpl lgortm to gnrt t mnml sprtors nd t mxml lqus o ordl grp Ann Brry 1 Romn Pogorlnk 1 Rsr Rport LMOS/RR-10-04 Fbrury 11, 20 1 LMOS UMR CNRS 6158, Ensmbl Sntqu ds Cézux, F-63 173 Aubèr, Frn, [email protected]

More information

How To Understand The Rules Of A Game Of Chess

How To Understand The Rules Of A Game Of Chess On t Rprsnttionl Bis in Pross Minin W.M.P. vn r Alst Dprtmnt of Mtmtis n Computr Sin Einovn Univrsity of Tnoloy, Einovn, T Ntrlns Emil: [email protected], WWW: vlst.om Astrt Pross minin srvs ri twn t

More information

Oracle PL/SQL Programming Advanced

Oracle PL/SQL Programming Advanced Orl PL/SQL Progrmming Avn In orr to lrn whih qustions hv n nswr orrtly: 1. Print ths pgs. 2. Answr th qustions. 3. Sn this ssssmnt with th nswrs vi:. FAX to (212) 967-3498. Or. Mil th nswrs to th following

More information

Change Your History How Can Soccer Knowledge Improve Your Business Processes?

Change Your History How Can Soccer Knowledge Improve Your Business Processes? Symposium Inuurl Lctur o Hjo Rijrs, VU, 26-6-2015 Chn Your History How Cn Soccr Knowl Improv Your Businss Procsss? Wil vn r Alst TU/ n DSC/ 1970 born Oostrbk 1988-1992 CS TU/ 1992-1994 TS TU/ 1994-1996

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

Network Decoupling for Secure Communications in Wireless Sensor Networks

Network Decoupling for Secure Communications in Wireless Sensor Networks Ntwork Doupling for Sur Communitions in Wirlss Snsor Ntworks Wnjun Gu, Xiol Bi, Srirm Chllppn n Dong Xun Dprtmnt of Computr Sin n Enginring Th Ohio-Stt Univrsity, Columus, Ohio 43210 1277 Emil: gu, ixi,

More information

Othello: A Minute to Learn... A Lifetime to Master. Brian Rose

Othello: A Minute to Learn... A Lifetime to Master. Brian Rose Otllo: A Minut to Lrn... A Litim to Mstr Brin Ros Otllo n A Minut to Lrn...A litim to Mstr r Ristr Trmrks o Anjr Co., 9, 00 Anjr Co., All Rits Rsrv Copyrit 00 y Brin Ros Aknowlmnts Mu o tis ook is s on

More information

Predicting Current User Intent with Contextual Markov Models

Predicting Current User Intent with Contextual Markov Models Priting Currnt Usr Intnt with Contxtul Mrkov Mols Juli Kislv, Hong Thnh Lm, Mykol Phnizkiy Dprtmnt of Computr Sin Einhovn Univrsity of Thnology P.O. Box 513, NL-5600MB, th Nthrlns {t.l.hong, j.kislv, m.phnizkiy}@tu.nl

More information

- ASSEMBLY AND INSTALLATION -

- ASSEMBLY AND INSTALLATION - - SSEMLY ND INSTLLTION - Sliin Door Stm Mot Importnt! Ti rmwork n ml to uit 100 mm ini wll tikn (75 mm tuwork) or 125 mm ini wll tikn (100 mm tuwork) HOWEVER t uppli jm kit i pii to itr 100 mm or 125 mm

More information

Recall from Last Time: Disjoint Set ADT

Recall from Last Time: Disjoint Set ADT Ltur 21: Unon n Fn twn Up-Trs Toy s An: Plntn n rown orst o Up-Trs Unon-n n Fn-n Extn xmpl Implmntn Unon/Fn Smrt Unon n Fn Unon-y-sz/t n Pt Comprsson Run Tm Anlyss s tou s t ts! Covr n Cptr 8 o t txtook

More information

Distributed Process Discovery and Conformance Checking

Distributed Process Discovery and Conformance Checking Distriut Pross Disovry n Conormn Chkin Wil M.P. vn r Alst 1,2 1 Einhovn Univrsity o Thnoloy, Einhovn, Th Nthrlns 2 Qunsln Univrsity o Thnoloy, Brisn, Austrli www.vlst.om Astrt. Pross minin thniqus hv mtur

More information

Discovering Petri Nets From Event Logs

Discovering Petri Nets From Event Logs Disovring Ptri Nts From Evnt Logs W.M.P. vn r Alst n B.F. vn Dongn Dprtmnt of Mthmtis n Computr Sin, Thnish Univrsitit Einhovn, Th Nthrlns. {W.M.P.v..Alst,B.F.v.Dongn}@tu.nl Astrt. As informtion systms

More information

/* ------------------------------------------------------------------------------------

/* ------------------------------------------------------------------------------------ Pr o g r a m v a r e fo r tr a fik k b e r e g n in g e r b a s e r t p å b a s is k u r v e m e to d e n n M a tr ix * x M a tr ix E s ta lp h a B e ta ; n M a tr ix * z M a tr ix ; g e n M a tr ix X

More information

SCO TT G LEA SO N D EM O Z G EB R E-

SCO TT G LEA SO N D EM O Z G EB R E- SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e

More information

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

More information

Revised Conditions (January 2009) LLOYDS BANKING GROUP SHARE ISA CONDITIONS

Revised Conditions (January 2009) LLOYDS BANKING GROUP SHARE ISA CONDITIONS Rvis Conitions (Jnury 2009) LLOYDS BANKING GROUP SHARE ISA CONDITIONS Contnts 1 Who r th prtis?... 2 Wht o wors n phrss in ol typ mn?... 3 Whn i my pln strt?... 4 How o I invst in my pln?... 5 Who owns

More information

AdvancedTCA Connectors acc. to PICMG 3.0

AdvancedTCA Connectors acc. to PICMG 3.0 AvnTCA Conntors. to PICMG 3.0 ERNI is nxious to support ustomrs xtnsivly n is rully ompltin t prout rn or intronnt pltorms. Tis lso inlus t ATCA (Avn Tlom Computin Arittur) stnr. Tis stnr (lso known s

More information

Cloud and Big Data Summer School, Stockholm, Aug., 2015 Jeffrey D. Ullman

Cloud and Big Data Summer School, Stockholm, Aug., 2015 Jeffrey D. Ullman Cloud and Big Data Summr Scool, Stockolm, Aug., 2015 Jffry D. Ullman Givn a st of points, wit a notion of distanc btwn points, group t points into som numbr of clustrs, so tat mmbrs of a clustr ar clos

More information

Binary Search Trees. Definition Of Binary Search Tree. Complexity Of Dictionary Operations get(), put() and remove()

Binary Search Trees. Definition Of Binary Search Tree. Complexity Of Dictionary Operations get(), put() and remove() Binary Sar Trs Compxity O Ditionary Oprations t(), put() and rmov() Ditionary Oprations: ƒ t(ky) ƒ put(ky, vau) ƒ rmov(ky) Additiona oprations: ƒ asnd() ƒ t(indx) (indxd inary sar tr) ƒ rmov(indx) (indxd

More information

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES A

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES A 0V TO 0V SUPPLY +0V TO +0V RS85 ONVRTR 9 TO OM PORT ON P TO P OM PORT US 9600 U 8IT, NO PRITY, STOP, NO FLOW TRL. OPTO SNSOR # +0V TO +0V RS85 RS85 OPTO SNSOR # PHOTO TRNSISTOR OPTO SNSOR # L TO OTHR Z

More information

PRESENTED TO. Data Leakage Worldwide: The Effectiveness of Corporate Security Policies

PRESENTED TO. Data Leakage Worldwide: The Effectiveness of Corporate Security Policies PRSNTD TO Dt Lk Worlw: T tvnss o Corport Surty Pols UUST 2008 Ovrvw Rsr Otvs Cso ontrt nst xprss to xut n ntrntonl survy wt ous on t ollown otvs: xplor mploy us o ompny vs, nlun ommunton srvs n vs us,

More information

B a rn e y W a r f. U r b a n S tu d ie s, V o l. 3 2, N o. 2, 1 9 9 5 3 6 1 ±3 7 8

B a rn e y W a r f. U r b a n S tu d ie s, V o l. 3 2, N o. 2, 1 9 9 5 3 6 1 ±3 7 8 U r b a n S tu d ie s, V o l. 3 2, N o. 2, 1 9 9 5 3 6 1 ±3 7 8 T e le c o m m u n ic a t io n s a n d th e C h a n g in g G e o g r a p h ie s o f K n o w le d g e T r a n s m is s io n in th e L a te

More information

Form: Parental Consent for Blood Donation

Form: Parental Consent for Blood Donation A R C Wt, C 20006 Ptl Ct f B i Ifi T f t y t ll f i y tl t q y t l A R C ly. Pl ll 1-800-RE-CROSS (1-800-733-2767) v. if y v q r t t i I iv t f yr,, t, y v t t: 1. Y y t t l i ly, 2. Y y t t t l i ( k

More information

Last time Interprocedural analysis Dimensions of precision (flow- and context-sensitivity) Flow-Sensitive Pointer Analysis

Last time Interprocedural analysis Dimensions of precision (flow- and context-sensitivity) Flow-Sensitive Pointer Analysis Flow-Insnsitiv Pointr Anlysis Lst tim Intrprocurl nlysis Dimnsions of prcision (flow- n contxt-snsitivity) Flow-Snsitiv Pointr Anlysis Toy Flow-Insnsitiv Pointr Anlysis CIS 570 Lctur 12 Flow-Insnsitiv

More information

Important result on the first passage time and its integral functional for a certain diffusion process

Important result on the first passage time and its integral functional for a certain diffusion process Lcturs Mtmátics Volumn 22 (21), págins 5 9 Importnt rsult on th first pssg tim nd its intgrl functionl for crtin diffusion procss Yousf AL-Zlzlh nd Bsl M. AL-Eidh Kuwit Univrsity, Kuwit Abstrct. In this

More information

WAVEGUIDES (& CAVITY RESONATORS)

WAVEGUIDES (& CAVITY RESONATORS) CAPTR 3 WAVGUIDS & CAVIT RSONATORS AND DILCTRIC WAVGUIDS OPTICAL FIBRS 導 波 管 & 共 振 腔 與 介 質 導 波 管 光 纖 W t rqu is t irowv rg >4 G? t losss o wv i two-odutor trsissio li du to iprt odutor d loss diltri o

More information

Operation Transform Formulae for the Generalized. Half Canonical Sine Transform

Operation Transform Formulae for the Generalized. Half Canonical Sine Transform Appl Mhmcl Scnc Vol 7 3 no 33-4 HIKARI L wwwm-hrcom Opron rnorm ormul or h nrl Hl Cnoncl Sn rnorm A S uh # n A V Joh * # ov Vrh Inu o Scnc n Humn Amrv M S In * Shnrll Khnlwl Coll Aol - 444 M S In luh@mlcom

More information

PIN #1 ID FIDUCIAL LOCATED IN THIS AREA TOP VIEW. ccc C SIDE VIEW

PIN #1 ID FIDUCIAL LOCATED IN THIS AREA TOP VIEW. ccc C SIDE VIEW Packag iagrams ruary 20 all W Packag Option : i0 P imnsions in illimtrs ata ht r PI # I IUI OT I TI R (X) 2 OTTO VIW. X Ø s TOP VIW Ø.0 Ø.0 I VIW OT:. IIO TOR PR Y. 99. 2. IIO R I IITR. IIO I UR T T XIU

More information

The Swedish Radiation Protection Institute s Regulations on X- ray Diagnostics;

The Swedish Radiation Protection Institute s Regulations on X- ray Diagnostics; SSI FS 2000:2 Th Swish Rition Prottion Institut s Rgultions on X- ry Dignostis; issu on April 28, 2000. On th sis of 7 of th Rition Prottion Orinn (1988:293) n ftr onsulttion with th Ntionl Bor of Hlth

More information

MODULE 3. 0, y = 0 for all y

MODULE 3. 0, y = 0 for all y Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)

More information

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST: .4 Eponntial Functions: Diffrntiation an Intgration TOOTLIFTST: Eponntial functions ar of th form f ( ) Ab. W will, in this sction, look at a spcific typ of ponntial function whr th bas, b, is.78.... This

More information

A New Efficient Distributed Load Balancing Algorithm for OTIS-Star Networks

A New Efficient Distributed Load Balancing Algorithm for OTIS-Star Networks Int'l Con. Pr. n Dst. Pro. T. n Appl. PDPTA' A Nw Ent Dstrut Lo Blnn Alortm or OTIS-Str Ntwors A. Aww 1, J. Al-S 1 Dprtmnt o CS, Unvrsty o Ptr, Ammn, Jorn Dprtmnt o ITC, Ar Opn Unvrsty, Ammn, Jorn Astrt

More information

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct H ig h L e v e l O v e r v iew S te p h a n M a rt in S e n io r S y s te m A rc h i te ct OPEN XCHANGE Architecture Overview A ge nda D es ig n G o als A rc h i te ct u re O ve rv i ew S c a l a b ili

More information

Discovering Block-Structured Process Models From Event Logs Containing Infrequent Behaviour

Discovering Block-Structured Process Models From Event Logs Containing Infrequent Behaviour Disovring Blok-Strutur Pross Mols From Evnt Logs Contining Infrqunt Bhviour Snr J.J. Lmns, Dirk Fhln, n Wil M.P. vn r Alst Einhovn Univrsity of Thnology, th Nthrlns {s.j.j.lmns,.fhln, w.m.p.v..lst}@tu.nl

More information

Binary Search Trees. Definition Of Binary Search Tree. The Operation ascend() Example Binary Search Tree

Binary Search Trees. Definition Of Binary Search Tree. The Operation ascend() Example Binary Search Tree Binary Sar Trs Compxity O Ditionary Oprations t(), put() and rmov() Ditionary Oprations: ƒ t(ky) ƒ put(ky, vau) ƒ rmov(ky) Additiona oprations: ƒ asnd() ƒ t(indx) (indxd inary sar tr) ƒ rmov(indx) (indxd

More information

Homeomorphic Alignment of Weighted Trees

Homeomorphic Alignment of Weighted Trees Author mnusript, pulish in "Pttrn Rogn., 8 (00) 97--99" DOI : 0.06/j.ptog.00.0.05 Homomorphi Alignmnt o Wight Trs Bnjmin Rynl, Mihl Coupri, Vnsls Biri Univrsité Pris-Est,Lortoir Inormtiqu Gspr Mong, Equip

More information

Matching Execution Histories of Program Versions

Matching Execution Histories of Program Versions Mt Exuto Hstors o Prorm Vrsos Xyu Z Rv Gupt Dprtmt o Computr S T Uvrsty o Arzo Tuso, Arzo 85721 {xyz,upt}@s.rzo.u ABSTRACT W vlop mto or mt ym stors o prorm xutos o two prorm vrsos. T mts prou usul my

More information

Scholarship Help for Technology Students

Scholarship Help for Technology Students i NOVEMBER 2014 Sli Hl f Tl S S i il ili l j i il i v f $150000 i li VN l f li Pl Tl N f xl i ii f v Pi Oli i N fi f i f vl i v f f li f i v f Viii Sli f vill f flli j: Pl Tl Mi Alli Hl li A Ifi Tl li

More information

1. Number of questions to be answered: ALL Multiple Choice (Section A) and 3 from 5 of the short answer questions (Section B)

1. Number of questions to be answered: ALL Multiple Choice (Section A) and 3 from 5 of the short answer questions (Section B) LEEDS METROPOLITAN UNIVERSITY UK Cntr for Evnts Mngmnt (RESIT) Moul Titl: Evnts Mrkting Ativitis Ami Yr: 2011/12 Lvl: 4 Smstr: 2 Cours: BA(Hons)/ HND Evnt Mngmnt Intrnl Exminrs: Exmintion Dt: 2 n July

More information

Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage

Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage CAS Loss Reserve Seminar 23 Session 3 Private Passenger Automobile Insurance Frank Cacchione Carlos Ariza September 8, 23 Today

More information

Fundamentals of Tensor Analysis

Fundamentals of Tensor Analysis MCEN 503/ASEN 50 Chptr Fundmntls of Tnsor Anlysis Fll, 006 Fundmntls of Tnsor Anlysis Concpts of Sclr, Vctor, nd Tnsor Sclr α Vctor A physicl quntity tht cn compltly dscrid y rl numr. Exmpl: Tmprtur; Mss;

More information

Ethical and Professional Standards

Ethical and Professional Standards STUDY SESSION 1 Etil n Prossionl Stnrs T rins in tis stuy sssion prsnt rmwork or til onut in t invstmnt prossion y ousin on t CFA Institut Co o Etis n Stnrs o Prossionl Conut (t Co n Stnrs) s wll s t CFA

More information

Dinh Hong Giang 1,2, Ed Sarobol 2, * and Sutkhet Nakasathien 2 ABSTRACT

Dinh Hong Giang 1,2, Ed Sarobol 2, * and Sutkhet Nakasathien 2 ABSTRACT Kstsrt J. (Nt. Si.) 49 : 1-12 (215) Et o Plnt Dnsity n Nitrogn Frtilizr Rt on Growth, Nitrogn Us Eiiny n Grin Yil o Dirnt Miz Hyris unr Rin Conitions in Southrn Vitnm Dinh Hong Ging 1,2, E Srool 2, * n

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

fun www.sausalitos.de

fun www.sausalitos.de O ily i f www.lit. Ctt. Cy... 4 5 Rtt... 6 7 B... 8 11 Tt... 12 13 Pt... 14 15. 2 Ctt. Cy. Rtt. B. Tt. Pt Ctt. Cy. Rtt. B. Tt. Pt. 3 Ti t f vyy lif, ity viti. AUALITO i l t t fi, t ty, t t, jy ktil jt

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling. Interval Scheduling: Greedy Algorithms

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling. Interval Scheduling: Greedy Algorithms 1 ptr 4 41 Intrvl Suln ry lortms Sls y Kvn Wyn opyrt 5 Prson-son Wsly ll rts rsrv Intrvl Suln Intrvl Suln: ry lortms Intrvl suln Jo strts t s n nss t Two os omptl ty on't ovrlp ol: n mxmum sust o mutully

More information

B rn m e d s rlig e b e h o v... 3 k o n o m i... 6. S s k e n d e tils k u d o g k o n o m is k frip la d s... 7 F o r ld re b e ta lin g...

B rn m e d s rlig e b e h o v... 3 k o n o m i... 6. S s k e n d e tils k u d o g k o n o m is k frip la d s... 7 F o r ld re b e ta lin g... V e lf rd s s e k re ta ria te t S a g s n r. 1 4 3 4 1 5 B re v id. 9 9 3 9 7 4 R e f. S O T H D ir. tlf. 4 6 3 1 4 0 0 9 s o fie t@ ro s k ild e.d k G o d k e n d e ls e s k rite rie r fo r p riv a tin

More information

Learning Schemas for Unordered XML

Learning Schemas for Unordered XML Lning Shms fo Unodd XML Rdu Ciunu Univsity of Lill & INRIA, Fn [email protected] S lwk Stwoko Univsity of Lill & INRIA, Fn [email protected] Astt W onsid unodd XML, wh th ltiv od mong silings is ignod, nd

More information

MPLS FOR MISSION-CRITICAL MICROWAVE NETWORKS BUILDING A HIGHLY RESILIENT MICROWAVE NETWORK WITH MULTI-RING TOPOLOGY

MPLS FOR MISSION-CRITICAL MICROWAVE NETWORKS BUILDING A HIGHLY RESILIENT MICROWAVE NETWORK WITH MULTI-RING TOPOLOGY MPLS FOR MISSION-CRITICAL MICROWAVE NETWORKS BUILDING A HIGHLY RESILIENT MICROWAVE NETWORK WITH MULTI-RING TOPOLOGY TECHNICAL WHITE PAPER H rslny n srv vllty r ky sn onsrtons wn uln msson-rtl mrowv ntworks.

More information

Campus Sustainability Assessment and Related Literature

Campus Sustainability Assessment and Related Literature Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626

More information

P U B L I C A T I O N I N T E R N E 1800 PARTIAL ORDER TECHNIQUES FOR DISTRIBUTED DISCRETE EVENT SYSTEMS: WHY YOU CAN T AVOID USING THEM

P U B L I C A T I O N I N T E R N E 1800 PARTIAL ORDER TECHNIQUES FOR DISTRIBUTED DISCRETE EVENT SYSTEMS: WHY YOU CAN T AVOID USING THEM I R I P U B L I C A T I O N I N T E R N E 1800 N o S INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES A PARTIAL ORDER TECHNIQUES FOR DISTRIBUTED DISCRETE EVENT SYSTEMS: WHY YOU CAN T AVOID

More information

Maximum area of polygon

Maximum area of polygon Mimum re of polygon Suppose I give you n stiks. They might e of ifferent lengths, or the sme length, or some the sme s others, et. Now there re lots of polygons you n form with those stiks. Your jo is

More information

SUPERCEDED BY T1-Q12

SUPERCEDED BY T1-Q12 b STOP HERE SIZE SIZE B WHEN DIRECTED 900 1200 b 600 750 25 25 70 95 110DN 140DN SUPERCEDED BY T1-Q12 65 70 Rtrorltiv whit Rtrorltiv r Blk Nots: 1. This sin my b us t roworks urin tri ontrollr oprtions

More information

Summary of changes to Regulations recommended to the Senate by Graduate School Management Committee. Changed wording is shown in bold italics.

Summary of changes to Regulations recommended to the Senate by Graduate School Management Committee. Changed wording is shown in bold italics. Summry of hngs to Rgultions rommn to th Snt y Grut Shool Mngmnt Committ. Chng woring is shown in ol itlis. Gnrl Rgultions for Dgrs y Rsrh n Thsis 1. Inlusion of th Dotor of Miin (MD) wr throughout. 2.

More information

Functional Valuation of Ecosystem Services on Bonaire

Functional Valuation of Ecosystem Services on Bonaire Funtionl Vlution of Eosystm Srvis on Bonir - An ologil nlysis of osystm funtions provi y orl rfs - Ingri J.M. vn Bk MS Aquultur n Fishris Spilistion Mrin Rsours n Eology Wgningn Univrsity Th Nthrlns MS-

More information

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES V TO 0V SUPPLY TO P OM PORT GROUN +0V TO +0V RS85 ONVRTR 9 TO OM PORT ON P US 9600 U 8IT, NO PRITY, STOP, NO FLOW TRL. NOT: INSTLL SHORTING JUMPR ON FOR V-5V OPRTION. JUMPR MUST RMOV FOR VOLTGS >5V TO

More information

SecurView 6-0-6 Antivirus Software Installation

SecurView 6-0-6 Antivirus Software Installation SurViw 6-0-6 Antivirus Sotwr Instlltion 1. Introdution Antivirus sotwr is n tiv wy to ombt omputr viruss, trojns, worms, nd othr mliious sotwr tht my ttmpt to ompromis th intgrity o systm. It is ssntil

More information

A n d r e w S P o m e r a n tz, M D

A n d r e w S P o m e r a n tz, M D T e le h e a lth in V A : B r in g in g h e a lth c a r e to th e u n d e r s e r v e d in c lin ic a n d h o m e A n d r e w S P o m e r a n tz, M D N a tio n a l M e n ta l H e a lth D ir e c to r f

More information

One Ring to Rule them All: Service Discovery and Binding in Structured Peer-to-Peer Overlay Networks

One Ring to Rule them All: Service Discovery and Binding in Structured Peer-to-Peer Overlay Networks On Ring to Rul thm All: Srvi Disovry n Bining in Strutur Pr-to-Pr Ovrly Ntworks Migul Cstro Mirosot Rsrh, J J Thomson Clos, Cmrig, CB 0FB, UK. [email protected] Ptr Drushl Ri Univrsity, 100 Min Strt, MS-1,

More information

T c k D E GR EN S. R a p p o r t M o d u le Aa n g e m a a k t o p 19 /09 /2007 o m 09 :29 u u r BJB 06 013-0009 0 M /V. ja a r.

T c k D E GR EN S. R a p p o r t M o d u le Aa n g e m a a k t o p 19 /09 /2007 o m 09 :29 u u r BJB 06 013-0009 0 M /V. ja a r. D a t a b a n k m r in g R a p p o r t M Aa n g e m a a k t o p 19 /09 /2007 o m 09 :29 u u r I d e n t if ic a t ie v a n d e m S e c t o r BJB V o lg n r. 06 013-0009 0 V o o r z ie n in g N ie u w la

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus Section 5.4 Te Funmentl Teorem of Clculus Kiryl Tsiscnk Te Funmentl Teorem of Clculus EXAMPLE: If f is function wose grp is sown below n g() = f(t)t, fin te vlues of g(), g(), g(), g(3), g(4), n g(5).

More information

EM EA. D is trib u te d D e n ia l O f S e rv ic e

EM EA. D is trib u te d D e n ia l O f S e rv ic e EM EA S e c u rity D e p lo y m e n t F o ru m D e n ia l o f S e rv ic e U p d a te P e te r P ro v a rt C o n s u ltin g S E p p ro v a rt@ c is c o.c o m 1 A g e n d a T h re a t U p d a te IO S Es

More information

SPRINGWELLS AND NORTHEAST WATER TREATMENT PLANTS SLUDGE REMOVAL AND DISPOSAL SERVICES

SPRINGWELLS AND NORTHEAST WATER TREATMENT PLANTS SLUDGE REMOVAL AND DISPOSAL SERVICES ITY O TROIT SPRINGWLLS N NORTHST WTR TRTMNT PLNTS ONTRT NO. WS-898 ook 2 of 2 MIK UGGN, MYOR TROIT ITY OUNSIL OR O WTR OMMISSIONRS ORHR LK RO MILLT RO NORTHWSTRN HWY. SHIWSS NWURGH R. 696 TLGRPH RO 24

More information

The art of Paperarchitecture (PA). MANUAL

The art of Paperarchitecture (PA). MANUAL The rt of Pperrhiteture (PA). MANUAL Introution Pperrhiteture (PA) is the rt of reting three-imensionl (3D) ojets out of plin piee of pper or ror. At first, esign is rwn (mnully or printe (using grphil

More information

i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner

i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner í d : r ' " B o m m 1 E x p e r i e n c e L : i i n g S e c u r it y. 1-1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his g u id e å ] - ew i c h P e t e r M u la e n PACKT ' TAÞ$Æo

More information

w ith In fla m m a to r y B o w e l D ise a se. G a s tro in te s tin a l C lin ic, 2-8 -2, K a s h iw a z a, A g e o C ity, S a ita m a 3 6 2 -

w ith In fla m m a to r y B o w e l D ise a se. G a s tro in te s tin a l C lin ic, 2-8 -2, K a s h iw a z a, A g e o C ity, S a ita m a 3 6 2 - E ffic a c y o f S e le c tiv e M y e lo id L in e a g e L e u c o c y te D e p le tio n in P y o d e r m a G a n g re n o su m a n d P so r ia sis A sso c ia te d w ith In fla m m a to r y B o w e l D

More information

Erfa rin g fra b y g g in g a v

Erfa rin g fra b y g g in g a v Erfa rin g fra b y g g in g a v m u ltim e d ia s y s te m e r Eirik M a u s e irik.m a u s @ n r.n o N R o g Im e d ia N o rs k R e g n e s e n tra l fo rs k n in g s in s titu tt in n e n a n v e n d

More information

Economics 340: International Economics Andrew T. Hill Nontariff Barriers to Trade

Economics 340: International Economics Andrew T. Hill Nontariff Barriers to Trade Eonomis 340: Intrntionl Eonomis Anrw T. Hill Nontri Brrirs to Tr Txtook Rings: ugl & Linrt, Intrntionl Eonomis, 11th Eition, pp. 139-162. 10th Eition, pp. 133-153. Txtook W Sit: Ky Grph 3 t http://www.mhh.om/onomis/pugl

More information

A Quick Guide to Colleges. Offering Engineering Degrees

A Quick Guide to Colleges. Offering Engineering Degrees Qk gs ffg gg Dgs Fby 2007 www.dgs.g Qk gs ffg gg Dgs Ts qk f g ps sy sg (by s) f U.S. gs ss ffg b s (4-y) gs gg 363 ss, spg 50 ss ps Ds f b R. Ts sy s s gg g pgs by f gg Tgy (T, gz f g sy pgs pp s, pg,

More information

Paper Technics Orientation Course in Papermaking 2009:

Paper Technics Orientation Course in Papermaking 2009: P P Otto Cou Pmkg 2009: g to mk u tt you ol o tgt P Wo ould ttd? Otto Cou Pmkg wll b of vlu to t followg gou of ol:- 1. P mll mloy, wo dl dtly wt t o of mkg d w to mov t udtdg of t o d t mll oto t bod

More information

Roof Terraces. Structural assemblies 04-2012

Roof Terraces. Structural assemblies 04-2012 C Roo Trrs Strutur ssms 04-2012 Prt soutons rom n xprt sour Sütr-Systms s n rn nm or ntnt strutur ssms on ons n trrs sn 1983. Tt yr, Wrnr Sütr nvnt t Sütr -TROBA mt, t rst rn mt or t r rn o ons n trrs.

More information

motori asincroni monofase asynchronous single phase motors moteurs asynchrones monophasés einphasige Asynchronmotoren

motori asincroni monofase asynchronous single phase motors moteurs asynchrones monophasés einphasige Asynchronmotoren moori sinroni monos synronous sinl ps moors mours synrons monopsés inpsi synronmoorn sri oori sinroni monos synronous sinl ps moors ours synrons monopss inpsi synronmoorn onnsor prmnn iusi vnili srnmn

More information

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review Hrvrd College Mth 21: Multivrible Clculus Formul nd Theorem Review Tommy McWillim, 13 [email protected] December 15, 2009 1 Contents Tble of Contents 4 9 Vectors nd the Geometry of Spce 5 9.1

More information