# Operations with Polynomials

Size: px
Start display at page: Transcription

1 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply polynomils Use specil products to multiply polynomils Use opertions with polynomils in ppliction problems Why you should lern it: Opertions with polynomils enble you to model vrious spects of the physicl world, such s the position of free-flling object, s shown in Eercises on pge 50. Bsic Definitions An lgebric epression contining only terms of the form k, where is ny rel number nd k is nonnegtive integer, is clled polynomil in one vrible or simply polynomil. Here re some emples of polynomils in one vrible. 3 8, , In the term k, is clled the coefficient, nd k the degree, of the term. Note tht the degree of the term is 1, nd the degree of constnt term is 0. Becuse polynomil is n lgebric sum, the coefficients tke on the signs between the terms. For instnce, hs coefficients 1, 4, 0, nd 3. Polynomils re usully written in order of descending powers of the vrible. This is referred to s stndrd form. For emple, the stndrd form of is Stndrd form The degree of polynomil is defined s the degree of the term with the highest power, nd the coefficient of this term is clled the leding coefficient of the polynomil. For instnce, the polynomil , is of fourth degree nd its leding coefficient is 3. nd 9 5 Definition of Polynomil in Let 0, 1, 2, 3,..., n be rel numbers nd let n be nonnegtive integer. A polynomil in is n epression of the form n n n1 n where n 0. The polynomil is of degree n, nd the number n is clled the leding coefficient. The number is clled the constnt term. 0 The following re not polynomils, for the resons stted. The epression is not polynomil becuse the eponent in The epression is not polynomil becuse the eponent in integer. is negtive is not nonnegtive

2 Section P.4 Opertions with Polynomils 39 Emple 1 Identifying Leding Coefficients nd Degrees Write the polynomil in stndrd form nd identify the degree nd leding coefficient of the polynomil. () (b) (c) Leding Polynomil Stndrd Form Degree Coefficient () (b) (c) Now try Eercise 7. A polynomil with only one term is monomil. Polynomils with two unlike terms re binomils, nd those with three unlike terms re trinomils. Here re some emples. Monomil: 5 3 Binomil: 4 3 Trinomil: The prefi mono mens one, the prefi bi mens two, nd the prefi tri mens three. Emple 2 Evluting Polynomil Find the vlue of when 4. When 4, the vlue of is Now try Eercise 27. Substitute 4 for. Evlute terms. Simplify. Adding nd Subtrcting Polynomils To dd two polynomils, simply combine like terms. This cn be done in either horizontl or verticl formt, s shown in Emples 3 nd 4. Emple 3 Adding Polynomils Horizontlly Use horizontl formt to dd nd Write originl polynomils Group like terms Now try Eercise 31.

3 40 Chpter P Prerequisites To use verticl formt to dd polynomils, lign the terms of the polynomils by their degrees, s shown in the following emple. Emple 4 Using Verticl Formt to Add Polynomils Use verticl formt to dd , , Now try Eercise 33. nd To subtrct one polynomil from nother, dd the opposite. You cn do this by chnging the sign of ech term of the polynomil tht is being subtrcted nd then dding the resulting like terms. Emple 5 Subtrcting Polynomils Horizontlly Use horizontl formt to subtrct from Now try Eercise 39. Write originl polynomils. Add the opposite. Group like terms. Study Tip The common error illustrted to the right is forgetting to chnge two of the signs in the polynomil tht is being subtrcted. When subtrcting polynomils, remember to dd the opposite of every term of the subtrcted polynomil. Be especilly creful to get the correct signs when you re subtrcting one polynomil from nother. One of the most common mistkes in lgebr is to forget to chnge signs correctly when subtrcting one epression from nother. Here is n emple. Wrong sign Wrong sign Emple 6 Using Verticl Formt to Subtrct Polynomils Use verticl formt to subtrct from Now try Eercise 45. Common error

4 Multiplying Polynomils Section P.4 Opertions with Polynomils 41 The simplest type of polynomil multipliction involves monomil multiplier. The product is obtined by direct ppliction of the. For instnce, to multiply the monomil 3 by the polynomil , multiply ech term of the polynomil by Emple 7 Finding Products with Monomil Multipliers Multiply the polynomil by the monomil. () 2 73 (b) () Properties of eponents (b) Properties of eponents Now try Eercise 71. Outer First Inner Lst FOIL Digrm To multiply two binomils, you cn use both (left nd right) forms of the. For emple, if you tret the binomil 2 7 s single quntity, you cn multiply 3 2 by 2 7 s follows Product of First terms Product of Outer terms Product of Inner terms Product of Lst terms The four products in the boes bove suggest tht you cn put the product of two binomils in the FOIL form in just one step. This is clled the FOIL Method. Note tht the words first, outer, inner, nd lst refer to the positions of the terms in the originl product (see digrm t the left). Emple 8 Multiplying Binomils () Use the to multiply 2 by Now try Eercise 77.

5 42 Chpter P Prerequisites Emple 9 Multiplying Binomils (FOIL Method) Use the FOIL method to multiply the binomils. () 3 9 (b) F O I L () F O I L (b) Now try Eercise 81. To multiply two polynomils tht hve three or more terms, you cn use the sme bsic principle tht you use when multiplying monomils nd binomils. Tht is, ech term of one polynomil must be multiplied by ech term of the other polynomil. This cn be done using either horizontl or verticl formt. Emple 10 Multiplying Polynomils (Horizontl Formt) Now try Eercise 97. When multiplying two polynomils, it is best to write ech in stndrd form before using either the horizontl or verticl formt. This is illustrted in the net emple. Emple 11 Multiplying Polynomils (Verticl Formt) Write the polynomils in stndrd form nd use verticl formt to multiply With verticl formt, line up like terms in the sme verticl columns, much s you lign digits in whole-number multipliction Write in stndrd form Write in stndrd form Now try Eercise 101.

6 Section P.4 Opertions with Polynomils 43 EXPLORATION Use the FOIL Method to find the product of where is constnt. Wht do you notice bout the number of terms in your product? Wht degree re the terms in your product? Polynomils re often written with eponents. As shown in the net emple, the properties of lgebr re used to simplify these epressions. Emple 12 Multiplying Polynomils Epnd Now try Eercise 129. Write ech fctor. Associtive Property of Multipliction Multiply 4 4. Emple 13 An Are Model for Multiplying Polynomils Show tht An pproprite re model to demonstrte the multipliction of two binomils would be A lw, the re formul for rectngle. Think of rectngle whose sides re 2 nd 2 1. The re of this rectngle is Are widthlength Another wy to find the re is to dd the res of the rectngulr prts, s shown in Figure P.11. There re two squres whose sides re, five rectngles whose sides re nd 1, nd two squres whose sides re 1. The totl re of these nine rectngles is Are sum of rectngulr res Figure P Becuse ech method must produce the sme re, you cn conclude tht Now try Eercise 155. Specil Products Some binomil products hve specil forms tht occur frequently in lgebr. For instnce, the product 3 3 is clled the product of the sum nd difference of two terms. With such products, the two middle terms subtrct out, s follows Sum nd difference of two terms Product hs no middle term.

7 44 Chpter P Prerequisites Another common type of product is the squre of binomil. With this type of product, the middle term is lwys twice the product of the terms in the binomil Squre of binomil Outer nd inner terms re equl. Middle term is twice the product of the terms in the binomil. Specil Products Let u nd v be rel numbers, vribles, or lgebric epressions. Then the following formuls re true. Sum nd Difference of Sme Terms Emple u vu v u 2 v Squre of Binomil Emple u v 2 u 2 2uv v u v 2 u 2 2uv v b b The squre of binomil cn lso be demonstrted geometriclly. Consider squre, ech of whose sides re of length b. (See Figure P.12). The totl re includes one squre of re 2, two rectngles of re b ech, nd one squre of re b 2. So, the totl re is 2 2b b 2. + b Emple 14 Finding Specil Products b b + b Figure P.12 b 2 Multiply the polynomils. () (b) (c) 2 b 2 () Sum nd difference of sme terms Simplify. (b) Squre of binomil Simplify. (c) 2 b b b 2 Squre of binomil b 4b b 2 Simplify. Now try Eercise 107.

8 Applictions Section P.4 Opertions with Polynomils 45 There re mny pplictions tht require the evlution of polynomils. One commonly used second-degree polynomil is clled position polynomil. This polynomil hs the form 16t 2 v 0 t s 0 Position polynomil where t is the time, mesured in seconds. The vlue of this polynomil gives the height (in feet) of free-flling object bove the ground, ssuming no ir resistnce. The coefficient of t, v 0, is clled the initil velocity of the object, nd the constnt term, s 0, is clled the initil height of the object. If the initil velocity is positive, the object ws projected upwrd (t t 0), if the initil velocity is negtive, the object ws projected downwrd, nd if the initil velocity is zero, the object ws dropped. t = 0 t = ft t = 2 t = 3 Figure P.13 Emple 15 Finding the Height of Free-Flling Object An object is thrown downwrd from the top of 200-foot building. The initil velocity is 10 feet per second. Use the position polynomil 16t 2 10t 200 to find the height of the object when t 1, t 2, nd t 3 (see Figure P.13). When t 1, the height of the object is Height feet. When t 2, the height of the object is Height feet. When t 3, the height of the object is Height feet. Now try Eercise 167. In Emple 15, the initil velocity is 10 feet per second. The vlue is negtive becuse the object ws thrown downwrd. If it hd been thrown upwrd, the initil velocity would hve been positive. If it hd been dropped, the initil velocity would hve been zero. Use your clcultor to determine the height of the object in Emple 15 when t Wht cn you conclude?

9 46 Chpter P Prerequisites Emple 16 Using Polynomil Models The numbers of vehicles (in thousnds) fueled by compressed nturl gs G nd by electricity E in the United Sttes from 1995 to 2003 cn be modeled by G 0.079t t 3.2, 5 t 13 Vehicles fueled by nturl gs E 1.090t t 51.6, 5 t 13 Vehicles fueled by electricity where t represents the yer, with t 5 corresponding to Find model tht represents the totl numbers T of vehicles fueled by compressed nturl gs nd by electricity from 1995 to Then estimte the totl number T of vehicles fueled by compressed nturl gs nd by electricity in (Source: Science Applictions Interntionl Corportion nd Energy Informtion Administrtion) The sum of the two polynomil models is s follows. G E 0.079t t t t 51.6 So, the polynomil tht models the totl numbers of vehicles fueled by compressed nturl gs nd by electricity is T G E 1.169t t t t 54.8 Using this model, nd substituting t 12, you cn estimte the totl number of vehicles fueled by compressed nturl gs nd by electricity in 2002 to be T thousnd vehicles. Now try Eercise Figure P.14 A 1. Emple 17 Geometry: Finding the Are of Shded Region Find n epression for the re of the shded portion in Figure P.14. First find the re of the lrge rectngle A 1 nd the re of the smll rectngle A 2. A nd A Then to find the re A of the shded portion, subtrct A 2 from A A 1 A Write formul. Substitute Use FOIL Method nd 9 specil product formul Now try Eercise 149.

10 Section P.4 Opertions with Polynomils 47 P.4 Eercises VOCABULARY CHECK: Fill in the blnks. 1. The epression n n n1 n n 0 is clled. 2. The of polynomil is the degree of the term with the highest power, nd the coefficient of this term is the of the polynomil. 3. A polynomil with one term is clled, while polynomil with two unlike terms is clled, nd polynomil with three unlike terms is clled. 4. The letters in FOIL stnd for the following. F O I L 5. The product u vu v u 2 v 2 is clled the nd of terms. 6. The product u v 2 u 2 2uv v 2 is clled the of. 7. The epression 16t 2 v 0 t s 0 is clled the, nd v 0 is the initil nd s 0 is the initil. In Eercises 1 12, write the polynomil in stndrd form, nd find its degree nd leding coefficient y z 16z t 16t t 4t 5 t z 2 8z 4z In Eercises 13 18, determine whether the polynomil is monomil, binomil, or trinomil y t u 7 9u z 2 In Eercises 19 26, give n emple of polynomil in one vrible stisfying the conditions. (There re mny correct nswers.) 19. A monomil of degree A trinomil of degree A trinomil of degree 4 nd leding coefficient A binomil of degree 2 nd leding coefficient A monomil of degree 1 nd leding coefficient A binomil of degree 5 nd leding coefficient A monomil of degree A monomil of degree 2 nd leding coefficient 9 In Eercises 27 30, evlute the polynomil for ech specified vlue of the vrible () 2 (b) () 2 (b) () 1 (b) 30. 3t 4 4t 3 () t 1 (b) t 2 3 In Eercises 31 34, perform the ddition using horizontl formt y 6 4y 2 6y 3 9 2y 11y 2 In Eercises 35 38, perform the ddition using verticl formt b 3 b 2 2b 7 b v 2 v 3 4v 1 2v 2 3v In Eercises 39 42, perform the subtrction using horizontl formt y 4 2 3y y 2 3y 4 y 4 y 2 In Eercises 43 46, perform the subtrction using verticl formt z 2 z z 3 2z 2 z t 4 5t 2 t 4 0.3t

11 48 Chpter P Prerequisites In Eercises 47 68, perform the indicted opertion(s) s 12s s 2 6s y 4 18y 18 11y 4 8y s 6s 30s y 2 2y y 2 y 3y 2 6y y 2 3y 9 34y 4 5y 2 2y t t 2 5 6t v 2 8v 1 3v z 2 z 11 3z 2 4z 5 22z 2 5z 10 73t 4 2t 2 t 5t 4 9t 2 4t 38t 2 5t t 3 2t 2 t 8 3t 3 t 2 4t 2 42t 2 3t 1 t y y y k k 14.61k k In Eercises 69 96, perform the multipliction nd simplify n3n y5 y 72. 5z2z y 2 3y 2 7y y 2y y4 y 81. 2t 1t z 52z b 5 13b y3 2y y3 2y y 2 y b b y 1 312y 9 5t 3 42t t3tt t 1t 1 32t y 3 2y 1y 7 In Eercises , perform the multipliction using horizontl formt t 3t 2 5t u 52u 2 3u In Eercises , perform the multipliction using verticl formt s 2 5s 63s 4 In Eercises , perform the multipliction y 7y c 6c n m8n m t 92t z 15z t t b4 0.1b b y y 7 4z t 2 5t 12t 2 5 2z 2 3z 73z y y t 2 2t 72t 2 8t y y z y u v 3 2

12 Section P.4 Opertions with Polynomils 49 In Eercises , perform the indicted opertions nd simplify k 8k 8 k 2 k t 3 2 t Geometry In Eercises , write n epression for the perimeter or circumference of the figure y Geometric Modeling In Eercises , () perform the multipliction lgebriclly nd (b) use geometric re model to verify your solution to prt () yy t 3t z 5z 1 Geometric Modeling In Eercises 157 nd 158, use the re model to write two different epressions for the totl re. Then equte the two epressions nd nme the lgebric property tht is illustrted b + b 2y y y Geometry In Eercises , write n epression for the re of the shded portion of the figure y t 7t t 2 6t 159. Geometry The length of rectngle is times its width w. Write epressions for () the perimeter nd (b) the re of the rectngle Geometry The bse of tringle is 3 nd its height is 5. Write n epression for the re A of the tringle Compound Interest After 2 yers, n investment of \$1000 compounded nnully t n interest rte of r will yield n mount r 2. Find this product Compound Interest After 2 yers, n investment of \$1000 compounded nnully t n interest rte of 3.5% will yield n mount Find this product

13 50 Chpter P Prerequisites Free-Flling Object In Eercises , use the position polynomil to determine whether the free-flling object ws dropped, thrown upwrd, or thrown downwrd. Then determine the height of the object t time t t t 2 50t t 2 24t t 2 32t Free-Flling Object An object is thrown upwrd from the top of 200-foot building (see figure). The initil velocity is 40 feet per second. Use the position polynomil 16t 2 40t 200 to find the height of the object when t 1, t 2, nd t ft 250 ft Per cpit consumption (in gllons) (b) During the given time period, the per cpit consumption of beverge milks ws decresing nd the per cpit consumption of bottled wter ws incresing (see figure). Ws the combined per cpit consumption of both beverge milks nd bottled wter incresing or decresing over the given time period? y Figure for 169 Beverge milks Bottled wter Yer (5 1995) t Synthesis Figure for 167 Figure for Free-Flling Object An object is thrown downwrd from the top of 250-foot building (see figure). The initil velocity is 25 feet per second. Use the position polynomil 16t 2 25t 250 to find the height of the object when t 1, t 2, nd t Beverge Consumption The per cpit consumption of ll beverge milks M nd bottled wter W in the United Sttes from 1995 to 2003 cn be pproimted by the following two polynomil models. M t t Beverge milks W t t 9.40 Bottled wter In these models, the per cpit consumption is given in gllons nd t5 t 13 represents the yer, with t 5 corresponding to (Source: USDA/Economic Reserch Service) () Find polynomil model tht represents the per cpit consumption of both beverge milks nd bottled wter during the given time period. Use this model to find the per cpit consumption of beverge milks nd bottled wter in 1999 nd Writing Eplin why y 2 is not equl to 2 y Think About It Is every trinomil seconddegree polynomil? Eplin Think About It Cn two third-degree polynomils be dded to produce second-degree polynomil? If so, give n emple Perform the multiplictions. () 1 1 (b) (c) From the pttern formed by these products, cn you predict the result of ? 174. Writing Eplin why is not polynomil.

### P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn 33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

### Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

### SPECIAL PRODUCTS AND FACTORIZATION MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

### Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

### Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

### Exponential and Logarithmic Functions Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define

### PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

### Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

### Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

### Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

### Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

### Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right. Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction

### 5.6 POSITIVE INTEGRAL EXPONENTS 54 (5 ) Chpter 5 Polynoils nd Eponents 5.6 POSITIVE INTEGRAL EXPONENTS In this section The product rule for positive integrl eponents ws presented in Section 5., nd the quotient rule ws presented in Section

### Polynomials. Common Mistakes Polnomils Polnomils Definition A polnomil is single term or sum or difference of terms in which ll vribles hve whole-number eponents nd no vrible ppers in the denomintor. Ech term cn be either constnt,

### 10.6 Applications of Quadratic Equations 10.6 Applictions of Qudrtic Equtions In this section we wnt to look t the pplictions tht qudrtic equtions nd functions hve in the rel world. There re severl stndrd types: problems where the formul is given,

### 9 CONTINUOUS DISTRIBUTIONS 9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

### Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

### Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

### Section 7-4 Translation of Axes 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

### Basic Analysis of Autarky and Free Trade Models Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently

### Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding 1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

### 9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

### LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

### Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

### AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

### Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

### PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1 PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.

### Integration. 148 Chapter 7 Integration 48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

### Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic

### Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

### ALGEBRAIC FRACTIONS,AND EQUATIONS AND INEQUALITIES INVOLVING FRACTIONS CHAPTER ALGEBRAIC FRACTIONS,AND EQUATIONS AND INEQUALITIES INVOLVING FRACTIONS Although people tody re mking greter use of deciml frctions s they work with clcultors, computers, nd the metric system, common

### Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

### 4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

### The remaining two sides of the right triangle are called the legs of the right triangle. 10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right

### 1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.

### Warm-up for Differential Calculus Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:

### MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

### MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent! MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more

### Linear Equations in Two Variables Liner Equtions in Two Vribles In this chpter, we ll use the geometry of lines to help us solve equtions. Liner equtions in two vribles If, b, ndr re rel numbers (nd if nd b re not both equl to 0) then

### Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

### 6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

### Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

### Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period: Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A

### Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity Bbylonin Method of Computing the Squre Root: Justifictions Bsed on Fuzzy Techniques nd on Computtionl Complexity Olg Koshelev Deprtment of Mthemtics Eduction University of Texs t El Pso 500 W. University

### Rotating DC Motors Part II Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors

### Lecture 3 Gaussian Probability Distribution Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

### Review Problems for the Final of Math 121, Fall 2014 Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since

### Geometry 7-1 Geometric Mean and the Pythagorean Theorem Geometry 7-1 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the

### Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

### Applications to Physics and Engineering Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics

### COMPLEX FRACTIONS. section. Simplifying Complex Fractions 58 (6-6) Chpter 6 Rtionl Epressions undles tht they cn ttch while working together for 0 hours. 00 600 6 FIGURE FOR EXERCISE 9 95. Selling. George sells one gzine suscription every 0 inutes, wheres Theres

### Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a. Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles

### Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives

### Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3. The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only

### FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation FUNCTIONS AND EQUATIONS. SETS AND SUBSETS.. Definition of set. A set is ny collection of objects which re clled its elements. If x is n element of the set S, we sy tht x belongs to S nd write If y does

### RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

### A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324 A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

### and thus, they are similar. If k = 3 then the Jordan form of both matrices is Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

### 15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style The men vlue nd the root-men-squre vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time

### www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values) www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input

### 2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting

### Numerical Methods of Approximating Definite Integrals 6 C H A P T E R Numericl Methods o Approimting Deinite Integrls 6. APPROXIMATING SUMS: L n, R n, T n, AND M n Introduction Not only cn we dierentite ll the bsic unctions we ve encountered, polynomils,

### Version 001 Summer Review #03 tubman (IBII20142015) 1 Version 001 Summer Reiew #03 tubmn (IBII20142015) 1 This print-out should he 35 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. Concept 20 P03

### Thinking out of the Box... Problem It s a richer problem than we ever imagined From the Mthemtics Techer, Vol. 95, No. 8, pges 568-574 Wlter Dodge (not pictured) nd Steve Viktor Thinking out of the Bo... Problem It s richer problem thn we ever imgined The bo problem hs been stndrd

### AP STATISTICS SUMMER MATH PACKET AP STATISTICS SUMMER MATH PACKET This pcket is review of Algebr I, Algebr II, nd bsic probbility/counting. The problems re designed to help you review topics tht re importnt to your success in the clss.

### Section 5-4 Trigonometric Functions 5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

### Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

### Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1. Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

### The Definite Integral Chpter 4 The Definite Integrl 4. Determining distnce trveled from velocity Motivting Questions In this section, we strive to understnd the ides generted by the following importnt questions: If we know

### Econ 4721 Money and Banking Problem Set 2 Answer Key Econ 472 Money nd Bnking Problem Set 2 Answer Key Problem (35 points) Consider n overlpping genertions model in which consumers live for two periods. The number of people born in ech genertion grows in

### Repeated multiplication is represented using exponential notation, for example: Appedix A: The Lws of Expoets Expoets re short-hd ottio used to represet my fctors multiplied together All of the rules for mipultig expoets my be deduced from the lws of multiplictio d divisio tht you

### Lesson 4.1 Triangle Sum Conjecture Lesson 4.1 ringle um onjecture Nme eriod te n ercises 1 9, determine the ngle mesures. 1. p, q 2., y 3., b 31 82 p 98 q 28 53 y 17 79 23 50 b 4. r, s, 5., y 6. y t t s r 100 85 100 y 30 4 7 y 31 7. s 8.

### Chapter 2 The Number System (Integers and Rational Numbers) Chpter 2 The Number System (Integers nd Rtionl Numbers) In this second chpter, students extend nd formlize their understnding of the number system, including negtive rtionl numbers. Students first develop

### Introduction to Integration Part 2: The Definite Integral Mthemtics Lerning Centre Introduction to Integrtion Prt : The Definite Integrl Mr Brnes c 999 Universit of Sdne Contents Introduction. Objectives...... Finding Ares 3 Ares Under Curves 4 3. Wht is the

### Answers (Anticipation Guide and Lesson 7-1) Answers (Anticiption Guide nd Lesson 7-) NAME DATE PERID 7 Anticiption Guide Rdicl Equtions STEP Chpter 7 Glencoe Algebr Answers Chpter Resources Before ou begin Chpter 7 Red ech sttement. Decide whether

### 5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

### NQF Level: 2 US No: 7480 NQF Level: 2 US No: 7480 Assessment Guide Primry Agriculture Rtionl nd irrtionl numers nd numer systems Assessor:.......................................... Workplce / Compny:.................................

### AAPT UNITED STATES PHYSICS TEAM AIP 2010 2010 F = m Exm 1 AAPT UNITED STATES PHYSICS TEAM AIP 2010 Enti non multiplicnd sunt preter necessittem 2010 F = m Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD

### Lectures 8 and 9 1 Rectangular waveguides 1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves

### Helicopter Theme and Variations Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the

### A.3. Polynomials and Factoring. Polynomials. What you should learn. Definition of a Polynomial in x. Why you should learn it Appendi A.3 Polynomials and Factoring A23 A.3 Polynomials and Factoring What you should learn Write polynomials in standard form. Add,subtract,and multiply polynomials. Use special products to multiply LECTURE COMPONENTS: COMBINED LOADING Third Edition A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering 24 Chpter 8.4 by Dr. Ibrhim A. Asskkf SPRING 2003 ENES 220 Mechnics of

### CHAPTER 11 Numerical Differentiation and Integration CHAPTER 11 Numericl Differentition nd Integrtion Differentition nd integrtion re bsic mthemticl opertions with wide rnge of pplictions in mny res of science. It is therefore importnt to hve good methods

### Distributions. (corresponding to the cumulative distribution function for the discrete case). Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive

### MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL - INDICES, LOGARITHMS AND FUNCTION This is the oe of series of bsic tutorils i mthemtics imed t begiers or yoe wtig to refresh themselves o fudmetls.

### Review guide for the final exam in Math 233 Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

### Increasing Q of Waveguide Pulse-Compression Cavities Circuit nd Electromgnetic System Design Notes Note 61 3 July 009 Incresing Q of Wveguide Pulse-Compression Cvities Crl E. Bum University of New Mexico Deprtment of Electricl nd Computer Engineering Albuquerque

### SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 1470 - COLLEGE ALGEBRA (4 SEMESTER HOURS) SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 470 - COLLEGE ALGEBRA (4 SEMESTER HOURS). COURSE DESCRIPTION: Polynomil, rdicl, rtionl, exponentil, nd logrithmic functions

### Week 7 - Perfect Competition and Monopoly Week 7 - Perfect Competition nd Monopoly Our im here is to compre the industry-wide response to chnges in demnd nd costs by monopolized industry nd by perfectly competitive one. We distinguish between

### 1.00/1.001 Introduction to Computers and Engineering Problem Solving Fall 2011 - Final Exam 1./1.1 Introduction to Computers nd Engineering Problem Solving Fll 211 - Finl Exm Nme: MIT Emil: TA: Section: You hve 3 hours to complete this exm. In ll questions, you should ssume tht ll necessry pckges

### Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006 dius of the Erth - dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.

### Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Friday 16 th May 2008. Time: 14:00 16:00 COMP20212 Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Digitl Design Techniques Dte: Fridy 16 th My 2008 Time: 14:00 16:00 Plese nswer ny THREE Questions from the FOUR questions provided

### SOLUTIONS TO CONCEPTS CHAPTER 5 1. m k S 10m Let, ccelertion, Initil velocity u 0. S ut + 1/ t 10 ½ ( ) 10 5 m/s orce: m 5 10N (ns) 40000. u 40 km/hr 11.11 m/s. 3600 m 000 k ; v 0 ; s 4m v u ccelertion s SOLUIONS O CONCEPS CHPE 5 0 11.11

### Answer, Key Homework 10 David McIntyre 1 Answer, Key Homework 10 Dvid McIntyre 1 This print-out should hve 22 questions, check tht it is complete. Multiple-choice questions my continue on the next column or pge: find ll choices efore mking your

### Pure C4. Revision Notes Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd

### Ratio and Proportion Rtio nd Proportion Rtio: The onept of rtio ours frequently nd in wide vriety of wys For exmple: A newspper reports tht the rtio of Repulins to Demorts on ertin Congressionl ommittee is 3 to The student/fulty Sclr nd Vector Quntities : VECTO NLYSIS Vector lgebr sclr is quntit hving onl mgnitude (nd possibl phse). Emples: voltge, current, chrge, energ, temperture vector is quntit hving direction in ddition to MATH PLACEMENT REVIEW GUIDE This guie is intene s fous for your review efore tking the plement test. The questions presente here my not e on the plement test. Although si skills lultor is provie for your