ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Basic Analog Electronic Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585) 4752035 Email: Lynn.Fuller@rit.edu MicroE webpage: http://www.microe.rit.edu 2192016 Basic_Analog_Circuits.ppt Page 1
OUTLINE Introduction Op Amp Comparator Bistable Multivibrator RC Oscillator RC Integrator Peak Detector Switched Capacitor Amplifier Capacitors Design Examples References Homework Page 2
INTRODUCTION Analog electronic circuits are different from digital circuits in that the signals are expected to have any value rather than two discrete values. Primitive analog components include the diode, mosfet, BJT, resistor, capacitor, etc,. Analog circuit building blocks include single stage amplifiers, differential amplifiers, constant current sources, voltage references, etc. Basic analog electronic ciruits include the operational amplifier, inverting amplifier, noninverting amplifier, integrator, bistable multivibrator, peak detector, comparator, RC oscillator, etc. Mixedmode analog integrated circuits include DtoA, AtoD, etc. This document will introduce some Basic analog electronic circuits. Page 3
BASIC TWO STAGE OPERATIONAL AMPLIFIER Page 4
BASIC TWO STAGE OPERATIONAL AMPLIFIER Gain = 1.5K V/V Page 5
BASIC TWO STAGE OPERATIONAL AMPLIFIER Page 6
BASIC TWO STAGE OPERATIONAL AMPLIFIER Small Signal gain ~ 60 db Frequency Response Page 7
OPERATIONAL AMPLIFIER LAYOUT 100um Page 8
RIT OP AMP WITH OUTPUT STAGE 99 M6 M5 M8 M11 M15 W/L 100/2 W/L 100/2 W/L 100/2 W/L 282/2 9 W/L 686/2 M19 Vin 1 40/2 M1 3 V V M2 40/2 2 Vin 7 W/L 100/2 M12 10 M16 W/L 336/2 12 M18 W/L 3800/2 14 M7 6 20/40 5 M3 90/2 4 M4 90/2 M9 30/2 8 M10 90/2 M13 30/2 M14 11 90/2 M17 13 W/L 645/2 W/L 100/2 M20 W/L 2600/2 RL W/L 98 Page 9
RIT OP AMP WITH OUTPUT STAGE Page 10
RIT OP AMP WITH OUTPUT STAGE Page 11
OPERATIONAL AMPLIFERS The 741 Op Amp is a general purpose bipolar integrated circuit that has input bias current of 80nA, and input voltage of / 15 volts @ supply maximum of / 18 volts. The output voltage can not go all the way to the and supply voltage. At a minimum supply of / 5 volts the output voltage can go ~6 volts pp. The newer Op Amps have railrail output swing and supply voltages as low as / 1.5 volts. The MOSFET input bias currents are ~ 1pA. The NJU7031 is an example of this type of Op Amp. Page 12
LOW VOLTAGE, RAILTORAIL OP AMP Page 13
SOME BASIC ANALOG ELECTRONIC CIRCUITS These circuits should be familiar: R1 R1 R2 R2 Vin Vin = Vin R2/R1 = Vin (1 R2/R1) Inverting Amplifier NonInverting Amplifier C Vin Unity Gain Buffer = Vin Vin R = 1/RC Vin dt Integrator Page 14
SOME BASIC ANALOG ELECTRONIC CIRCUITS R1 V1 V2 R1 R3 Inverting Summer = ( R3/R1) (V1 V2) Rin V2 V1 Rin Rf Rf = Rf/Rin (V1V2) Difference Amplifier Page 15
COMPARATOR Vin V V Theoretical Vref V V Vref V Vin V Measured Page 16
BISTABLE CIRCUIT WITH HYSTERESIS R1 R2 V V Theoretical Vin V V TL V TH Vin V Measured Sedra and Smith pg 1187 Page 17
RC INTEGRATOR Va Va Vin t1 Vin t R C ut ut Va Va Smaller RC t ut = (Va) [2Va(1e t/rc )] for 0<t<t1 If R=1MEG and C=10pF find RC=10us so t1 might be ~20us Page 18
OSCILLATOR (MULTIVIBRATOR) R1 V T R2 V V V t1 t C V R Period = T = 2RC ln 1Vt/V 1Vt/V Bistable Circuit with Hysteresis and RC Integrator Page 19
PEAK DETECTOR Variable Vin C Diode reverse leakage current ~100nA Page 20
CAPACITORS Capacitor a two terminal device whose current is proportional to the time rate of change of the applied voltage; I = C dv/dt a capacitor C is constructed of any two conductors separated by an insulator. The capacitance of such a structure is: C = eo er Area/d d where eo is the permitivitty of free space Area er is the relative permitivitty Area is the overlap area of the two conductor separated by distance d eo = 8.85E14 F/cm er air = 1 er SiO 2 = 3.9 C I V Page 21
DIELECTRIC CONSTANT OF SELECTED MATERIALS Vacuum 1 Air 1.00059 Acetone 20 Barium strontium titanate 500 Benzene 2.284 Conjugated Polymers 6 to 100,000 Ethanol 24.3 Glycerin 42.5 Glass 510 Methanol 30 Photoresist 3 Plexiglass 3.4 Polyimide 2.8 Rubber 3 Silicon 11.7 Silicon dioxide 3.9 Silicon Nitride 7.5 Teflon 2.1 Water 8088 http://www.asiinstruments.com/technical/dielectric%20constants.htm Page 22
CALCULATIONS Page 23
DESIGN EXAMPLE Square Wave Generator RC Integrator & Capacitor Sensor Peak Detector Comparator Page 24
DESIGN EXAMPLE CAPACITOR SENSOR R1 R2 V V R C C Vref V C R Square Wave Generator RC Integrator & Capacitor Sensor Buffer Peak Detector Comparator Display Page 25
EXAMPLE LABORATORY RESULTS Smaller Capacitance Larger Capacitance Square Wave Generator Output Buffer Output Display Page 26
CAPACITOR MICROPHONE PLUS AMPLIFIER i R i 3.3V V C NJU703 3.3 = i R i = d (CV)/dt, V is constant C = Co Cm sin (2pft) i = V Cm 2 p f cos (2pft) Page 27
PHOTODIODE I TO V LINEAR AMPLIFIER 3.3V R1 10K I p n R2 20K 3.3V NJU703 3.3 R3 10K IR LED R4 100K 3.3V NJU703 3.3 ut 0 to 1V Gnd Gnd Page 28
Output ltage (V) PHOTO DIODE I TO V LOG AMPLIFIER 3.3V R1 20K IR LED I n p 3.3V NJU703 1N4448 3.3 ut 0 to 1V Linear amplifier uses 100K ohm in place of the 1N4448 ut vs. Diode Current Gnd Gnd 3.5 3.0 Linear Amplifier Log Amplifier 2.5 2.0 1.5 1.0 Photodiode 0.5 0.0 0.01 0.1 1 10 100 1000 10000 Diode Current (ua) Page 29
PHOTO DIODE I TO V INTEGRATING AMPLIFIER Reset C Internal 100 pf Ri Rf Analog ut Integrator and amplifier allow for measurement at low light levels Page 30
DIODE AS A TEMPERATURE SENSOR P N Poly Heater, Buried pn Diode, N Poly to Aluminum Thermocouple Compare with theoretical 2.2mV/ C Page 31
SIGNAL CONDITIONING FOR TEMPERATURE SENSOR 3.3V R1 20K I p n 0.2 < ut < 0.7V Gnd Page 32
Load Basic Analog Electronic Circuits I = Vs/R Load OP AMP CONSTANT CURRENT SOURCE Floating Load Grounded Load Vs Vs R1 R2 Rx R3 Rx/R1=R3/R2 R I = Vs/R2 Page 33
RESISTIVE PRESSURE SENSOR 5 lts 2 5 lts R1 R3 R2 R4 R1=427 R3=427 1=2.5v 2=2.5v 1 Gnd R2=427 R4=427 Resistors on a Diaphragm Gnd No Pressure 21 = 0 Page 34
INSTRUMENTATION AMPLIFIER R1=427.6 5 lts R3=426.4 V1 R1 R2 1 R3 R4 1=2.4965v R2=426.4 2=2.5035v R4=427.6 V2 R2 2 R3 Gnd R4 Gnd With Pressure 21 = 0.007v =7 mv = (V2V1) 2 R4 R3 1 R2 R1 Page 35
POWER OUTPUT STAGE V V Vin V Rload V Page 36
REFERENCES 1. Switched Capacitor Circuits, Phillip E. Allen and Edgar SanchezSinencio, Van Nostrand Reinhold Publishers, 1984. 2. Active Filter Design Using Operational Transconductance Amplifiers: A Tutorial, Randall L. Geiger and Edgar SanchezSinencio, IEEE Circuits and Devices Magazine, March 1985, pg. 2032. 3. Microelectronic Circuits, 5 th Edition, Sedra and Smith Page 37
HOMEWORK BASIC ANALOG CIRCUITS 1. Create one good homework problem and the solution related to the material covered in this document. (for next years students) 2. Design a bistable multivibrator with Vth of / 7.5 volts and frequency of 5 Khz. 3. Design a temperature sensor circuit that will shut down a heater if the temperature exceeds 90 C 4. Design a peak detector that will respond to changes in input in less than one second. 5. Derive the equation for the oscillator on page 15 (multivibrator). 6. Derive the voltage gain equation for the difference amplifier. Page 38
DERIVE GAIN EQUATION FOR DIFFERENCE AMP V2 V1 Rin Rin I Vx Rf Rf I = Rf/Rin (V1V2) I = (V2Vx)/Rin Rf Vx = V1 Rf Rin = I Rf Vx Difference Amplifier Page 39