Hey, That s Not Fair! (Or is it?)

Similar documents
That s Not Fair! ASSESSMENT #HSMA20. Benchmark Grades: 9-12

Factors Galore C: Prime Factorization

Probability, statistics and football Franka Miriam Bru ckler Paris, 2015.

Ready, Set, Go! Math Games for Serious Minds

MATHS ACTIVITIES FOR REGISTRATION TIME

Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014

RACE TO CLEAR THE MAT

EXAMPLES OF ASSIGNING DEPTH-OF-KNOWLEDGE LEVELS ALIGNMENT ANALYSIS CCSSO TILSA ALIGNMENT STUDY May 21-24, 2001 version 2.0

Game 9. Overview. Materials. Recommended Grades 3 5 Time Instruction: minutes Independent Play: minutes

Probability Using Dice

6.042/18.062J Mathematics for Computer Science. Expected Value I

Using games to support. Win-Win Math Games. by Marilyn Burns

Sue Fine Linn Maskell

Hooray for the Hundreds Chart!!

Session 8 Probability

Current California Math Standards Balanced Equations

How To Play The Math Game

Mathematical goals. Starting points. Materials required. Time needed

Section 6.2 Definition of Probability

Math Games For Skills and Concepts

PROBABILITY SECOND EDITION

Lesson 4 What Is a Plant s Life Cycle? The Seasons of a Tree

Everyday Math Online Games (Grades 1 to 3)

Curriculum Design for Mathematic Lesson Probability

Third Grade Math Games

Ch. 13.2: Mathematical Expectation

7.S.8 Interpret data to provide the basis for predictions and to establish

Statistics and Probability

Betting systems: how not to lose your money gambling

Financial Literacy Meeting Ideas Daisy Financial Literacy Games and Activities

Directions: Place greater than (>), less than (<) or equal to (=) symbols to complete the number sentences on the left.

Are You Game? Explorations in Probability. Math

Foundation 2 Games Booklet

The Science of Golf. Test Lab Toolkit The Score: Handicap. Grades 6-8

Stat 20: Intro to Probability and Statistics

MATH 140 Lab 4: Probability and the Standard Normal Distribution

Mental Computation Activities

Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.

Fundamentals of Probability

1000-Grid Banner Set. This Really Good Stuff product includes: 1000-Grid Banner Set This Really Good Stuff Activity Guide

Played With Five Standard Six-Sided Dice. by Paul Hoemke

Grade 7 & 8 Math Circles October 19, 2011 Prime Numbers

Prime Time: Homework Examples from ACE

Intro to Simulation (using Excel)

Tasks to Move Students On

What is the Probability of Pigging Out

7 th Grade Integer Arithmetic 7-Day Unit Plan by Brian M. Fischer Lackawanna Middle/High School

Math 728 Lesson Plan

Acing Math (One Deck At A Time!): A Collection of Math Games. Table of Contents

Question 1 Formatted: Formatted: Formatted: Formatted:

A Prime Investigation with 7, 11, and 13

The GMAT Guru. Prime Factorization: Theory and Practice

Lab 11. Simulations. The Concept

Money Unit $$$$$$$$$$$$$$$$$$$$$$$$ First Grade

Probabilistic Strategies: Solutions

Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4?

Expected Value and the Game of Craps

Self-Acceptance. A Frog Thing by E. Drachman (2005) California: Kidwick Books LLC. ISBN Grade Level: Third grade

Project Maths. Mathematics Resources for Students. Junior Certificate Strand 1. Statistics and Probability

The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS NUMBER OF TOSSES

Tasks in the Lesson. Mathematical Goals Common Core State Standards. Emphasized Standards for Mathematical Practice. Prior Knowledge Needed

5544 = = = Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1

Add or Subtract Bingo

by Teresa Evans Copyright 2005 Teresa Evans. All rights reserved.

We { can see that if U = 2, 3, 7, 11, or 12 then the round is decided on the first cast, U = V, and W if U = 7, 11 X = L if U = 2, 3, 12.

Unit 19: Probability Models

MATHEMATICS. Y5 Multiplication and Division 5330 Square numbers, prime numbers, factors and multiples. Equipment. MathSphere

MA 1125 Lecture 14 - Expected Values. Friday, February 28, Objectives: Introduce expected values.

Bayesian Tutorial (Sheet Updated 20 March)

MATHEMATICS Y3 Using and applying mathematics 3810 Solve mathematical puzzles and investigate. Equipment MathSphere

CONNECTING THE DOTS DOMINO MATH GAMES STEPHANIE GARCIA

1 Combinations, Permutations, and Elementary Probability

Algebra Unit Plans. Grade 7. April Created By: Danielle Brown; Rosanna Gaudio; Lori Marano; Melissa Pino; Beth Orlando & Sherri Viotto

Decimals and Percentages

Mathematical goals. Starting points. Materials required. Time needed

The mathematical branch of probability has its

In the situations that we will encounter, we may generally calculate the probability of an event

Chapter 16: law of averages

Problem of the Month: Fair Games

MAKING MATH MORE FUN BRINGS YOU FUN MATH GAME PRINTABLES FOR HOME OR SCHOOL

An Australian Microsoft Partners in Learning (PiL) Project

Number Factors. Number Factors Number of factors , 2, 4, 8, , , , , 2, 3, 6, 9, , 2, , 19 2

Solution. Solution. (a) Sum of probabilities = 1 (Verify) (b) (see graph) Chapter 4 (Sections ) Homework Solutions. Section 4.

Chapter What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.

AP Stats - Probability Review

Gaming the Law of Large Numbers

Algebra 1: Basic Skills Packet Page 1 Name: Integers ( 30) ( 4)

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! 314

Math Board Games. For School or Home Education. by Teresa Evans. Copyright 2005 Teresa Evans. All rights reserved.

Factor Game. Overview of Lesson. Duration. Materials. Vocabulary. Math Solutions Lesson from the Classroom. A Lesson for Grade 5

Maths Targets for pupils in Year 2

Responsible Gambling Education Unit: Mathematics A & B

Evaluating Trading Systems By John Ehlers and Ric Way

GRADE 5 SUPPLEMENT. Set A2 Number & Operations: Primes, Composites & Common Factors. Includes. Skills & Concepts

Section 7C: The Law of Large Numbers

Probability and Expected Value

Permission is given for the making of copies for use in the home or classroom of the purchaser only.

Paper 1. Calculator not allowed. Mathematics test. First name. Last name. School. Remember KEY STAGE 3 TIER 6 8

Math Quizzes Winter 2009

SKILL BUILDING MATH GAMES & ACTIVITIES

Transcription:

Concept Probability and statistics Number sense Activity 9 Hey, That s Not Fair! (Or is it?) Students will use the calculator to simulate dice rolls to play two different games. They will decide if the games give each player an equally likely chance of winning. Skills Determining fair and unfair games Collecting and organizing data Predicting possible outcomes Examining sums and products of even and odd numbers Calculator skills: 1, rand (random number generator) Materials Student Activity sheets (page 46) TI-73 calculator for each group of 2 students Activity Tip: You may want to do this activity with real dice first to get students acquainted with probability and dice rolls. Ask students: What does fair mean? Have you ever played a game that you felt wasn t fair? What made it unfair? Tell them the definition of fair and unfair games: When everyone playing a game has an equally likely chance of winning, it is said to be a fair game. (For example, if 5 people play, each has a 1 5 or 20% chance of winning.) If someone has a clear advantage to win due to the rules of the game, it is an unfair game. (For example, if 2 people play, one has a greater than 50% chance of winning.) Have the students pair up in groups of two. One player will be player A and one will be player B. (They will decide.) They will be playing two different games involving dice rolls on the calculator. They will need one calculator and a Student Activity sheet to record the rolls.

42 Discovering Mathematics with the TI-73: Activities for Grades 5 and 6 Note: If you have never used the calculators for any random numbers before this activity, seed the random sets in each calculator before you begin by selecting a different number for each calculator and storing it to rand. Otherwise, all the calculators will select the same numbers in the same sequence. To seed a calculator: 1. Press any number, then press X. (Each calculator should have a different number.) 2. Press 1, press " to move to PRB, select 1:rand, and press b. (1:rand is the default selection.) Using a ViewScreen unit, show students how to set up the calculator to roll dice. 1. Make sure you are in the Home screen. (If necessary, press - l and : to get a blank screen.) 2. Press 1 and press " to move over to PRB. 3. Press J to choose dice. This will paste dice( on the Home screen. 4. Since the games require rolling 3 dice, press [ E and b. Three numbers will appear in brackets. These are the three numbers from the first simulated dice roll. Continue pressing b for each roll. Game 1: Use the calculator to roll 3 dice at once. If the sum of the three numbers is odd, player A gets a point, if the sum is even, player B gets a point. Do 20 tosses on the calculator. The winner is the player with the most points at the end. Students should record their points on the Student Activity sheet. To verify the validity of games, have students write the 3 numbers and their sum in the appropriate cell. For example, write 3+2+6=11 in the Player A column. Game 2: Use the calculator to roll all 3 dice at once. Multiply all three numbers. If the answer is odd, player A scores a point and if it is even, player B scores a point. Do 20 tosses on the calculator. The winner is the player with the most points in the end. Students should record their points on the Student Activity sheet.

Activity 9: Hey, That s Not Fair! (Or is it?) 43 Ask the groups: Who won game 1, player A or B? (Write the class results on the board in form of a T-chart.) Do you think Game 1 is fair or unfair? Does each player have an equally likely chance of winning? Why or why not? How can we determine if this is a fair game? (By writing out all the possible outcomes or doing a probability tree.) Who won game 2, player A or B? (Write the class results on the board.) Do you think Game 2 is fair or unfair? Why or why not? How can we determine if this is a fair game? (By writing out all the possible outcomes.) How can we list all the possible outcomes? Should we make a chart? Should we use a particular order? What elements should we include in our chart? One way to analyze the game to determine fairness is to list all of the possible outcomes. Then you can find the fraction of outcomes that are odd and even. This fraction then is the probability of Player A or Player B winning. You may want to guide the class through the process of writing out all the possible outcomes for Game 1. To list all the possible outcomes, encourage them to use an organized list beginning with a roll of all 1 s, and so on. All outcomes need to be considered, for example: 1 1 2, 1 2 1, and 2 1 1 are three different rolls. Rolls Sum Odd/Even 1 1 1 3 Odd 1 1 2 4 Even 1 1 3 5 Odd 1 1 4 6 Even 1 1 5 7 Odd 1 2 2 5 Odd. Students will soon see that there are a lot of outcomes (216 to be exact) and listing them all would be difficult. (If you would like to have all outcomes, divide the task among several groups of students.)

44 Discovering Mathematics with the TI-73: Activities for Grades 5 and 6 Another way to analyze the game is to think of the individual rolls of the die and whether they are odd or even. Then, look at the sum or product of 3 rolls. An efficient method for organizing the information is a tree diagram. For example: Die 1 Die 2 Die 3 Sum Product E E E even even E E O odd even E O E odd even E O O even even O E E odd even O E O even even O O E even even Outcome of first roll Outcome of second roll Outcome of third roll Outcome for sum of 3 rolls O O O odd odd The E s represent even and the O s represent odd. For example, E + E + E gives an even sum. So based on the tree diagram (or the accompanying table), 4 8 of the possible outcomes are even and 4 8 are odd, making Game 1 a fair game. A discussion of how students know whether or not the sums are odd or even can be very interesting as students provide their convincing arguments. Wrap-Up After students have listed the outcomes for each game, ask: How many possible ways are there for you to get an even sum in game 1? (108 if you list all outcomes, 4 if you use a tree diagram.) What about an odd sum? (108 if you list all outcomes, 4 if you use a tree diagram.) Do you think Game 1 is fair? (Yes.) Why or why not? (Same chance of getting an even or odd sum.) How many possible ways are there to get an even answer in game 2? (189 if you list all outcomes, 7 if you use a tree diagram.) Odd answer? (27 if you list all the outcomes, 1 if you use a tree diagram.) Is game 2 fair? (No.) Why or why not? (There is a clear advantage for the player receiving points for even outcomes.)

Activity 9: Hey, That s Not Fair! (Or is it?) 45 Assessment In a math journal, have students define equally likely outcomes. Have them give names of games they have played that were fair and unfair and explain the fairness based on probability. Extension Have students create two of their own number games, one fair and one unfair. Encourage them to think of other ways to categorize numbers other than odd or even (for example, divisible by 5, divisible by 10, prime, greater than 6, and so forth). Have them present their games to the class and have classmates play their games to determine the fairness.

Student Activity Name Date Activity 9 Hey, That s Not Fair Use the calculator to roll 3 dice at once. For Game 1, if the sum of the three numbers is odd, player A gets a point, if the sum is even, player B gets a point. For Game 2, if the product is odd, player A gets a point, and if it is even, player B gets a point. Do 20 tosses on the calculator and record each player s points. The winner is the player with the most points at the end. Game 1 Game 2 Toss Player A Player B Player A Player B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Totals

Activity 9: Hey, That s Not Fair! (Or is it?) 47 Tree diagram for Game 1: Die 1 Die 2 Die 3 Sum Tree diagram for Game 2: Die 1 Die 2 Die 3 Sum

48 Discovering Mathematics with the TI-73: Activities for Grades 5 and 6