MA 1125 Lecture 14  Expected Values. Friday, February 28, Objectives: Introduce expected values.


 Audrey Wilson
 5 years ago
 Views:
Transcription
1 MA 5 Lecture 4  Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the population mean, variance, and standard deviation for the probability experiment: Toss a coin three times, and count the number of heads. The probabilities are ( Number of heads Probability 2 as we ve computed before. Theoretically, if we perform the experiment eight times, and the results came out exactly as the probabilities predict, we can compute the mean, variance, and standard deviation in the normal way (except we use the population formulas instead of the sample formulas. x x µ (x µ 2 ( µ = =.5 σ2 = 6. =.75 σ =.75 =.7 Look at the mean first. We find that ( µ = = =
2 2 Note that the mean is simply the sum of each of the outcomes multiplied by their probabilities. If we theoretically performed the experiment times, we would get exactly the same thing. This is the official way that means are computed for probability distributions. In particular, (4 µ = ( x P(x Since the population variance is the mean of the deviations squared, we have a similar formula for it.. (5 σ 2 = ( (x µ 2 P(x and we still have σ = σ 2., 2. Expected Values We now have a formula for computing the mean of a probability distribution. (6 µ = ( x P(x. Another name for the mean of a probability distribution is the expected value. We use the symbols E(x for the expected value of a (random variable x. The formula for the expected value is, (7 E(x = ( x P(x of course. Remember that the expected value and mean are the same thing. Sometimes it makes no sense to talk about an expected value. For example, if we toss a coin, the possible outcomes are H or T. What is the expected value or average outcome? If we roll a die, the outcomes are, 2,, 4, 5, and 6. We can compute the expected value in this case. ( E(x = = 2 6 =.5 This kind of makes sense, the formula actually works, but the number.5 doesn t tell us anything terribly meaningful. We can add meaning. Suppose this is a gambling game. We roll the die, and I ll give you $ if it comes up, $2 if it comes up 2, etc. Now, the expected value has more meaning. I ll give you $.5 on average. Statistically speaking, we, might say that being able to play the game is worth $.5. If I were a casino, I d probably charge you $4 to play. You d give me $4, and I d give you $.5 on average. That s a losing deal for you.
3 MA 5 Lecture 4  Expected Values Gambling games give us a good way to think about expected values. Let s play another game. You bet $ and roll a pair of dice. If the dice come up, then you get your $ back, and you win $. Otherwise, you lose your dollar. We can describe this game with two outcomes. You win $ or you lose $. The probability of winning is the same as rolling a, that is P( = 6 =. If that s the probability of winning, then the probability of losing must be. The probability distribution comes out like this. (9 x P(x P( = P( = To compute the expected value of the winnings, we just follow formula (7. x P(x x P(x ( P( = = P( = = On average, this says, you lose $ or about eight cents. 2.. What about that $ bet? As you try to make sense of this stuff, the $ bet can be confusing. Let s say you come to the gaming table with $, you bet the dollar, and win. You ve got $ dollars now, right. But you re only ahead by $. The $ is your winnings. Can we do the computations with the $ in your hands? Yes. Let s say that it costs $ to play. If you win, the casino slides you $. If you lose, they simply ask you to play again. Now the outcomes are $ and $, with the same probabilities we saw before. Let s compute the expected value. x P(x x P(x ( Here s the interpretation. You paid your dollar. Now you re waiting for the dice to be rolled. How much money, on average, is the outcome of the game? Well, the expected outcome is $ or about $.92. You paid a dollar, but the game s only worth $.92. You re going to lose eight cents on average. This is the same conclusion as before.
4 What s the expected value of a lottery ticket? This second way of analyzing a gambling game fits well with evaluating lottery tickets. Let s say that you can buy a lottery ticket for $5. You bought it, and now your five dollars are gone. But, there are a thousand lottery tickets. One of them is worth $2,. Another is worth $,. Ten of the tickets are worth $. The rest are worth nothing. What is the expected value of your ticket? First we need to know the probabilities. Since there is one ticket worth $2,, we can say that the probability that this is your ticket is. The probability that the $, ticket is yours must also be. x P(x x P(x ( $2 $ $ $ = $4 Each ticket s expected value is $4. Since you paid $5 for it, you lose a dollar on each ticket (on average. We could have computed the expected value on net winning. The outcomes would have been $995, $995, $95, and $5. You would get E(x = $.. Quiz 4. In Roulette, there are equally likely outcomes, {, 2,,..., 5, 6,, }. Let s say that you bet $ on one of the numbers. If your number comes up, you get your $ bet back plus $5. Otherwise, you lose your $ bet. Find the expected value of your winnings in dollars (with outcomes: win $5 or lose $. Don t forget the negative sign, if you need one. Round your answer to two decimal places. 2. In a lottery, there are 2 tickets. One is worth $5, two are worth $, twenty are worth $, and a hundred are worth $. The rest are worth nothing. Find the expected value of a ticket in dollars. Don t forget the negative sign, if you need one. Round your answer to two decimal places.
5 MA 5 Lecture 4  Expected Values 5 4. Homework 4 Remember on a Roulette wheel, there are possible outcomes:, 2,..., 6,, (all equally likely. Half of the numbers 6 are colored red ( of them, and the rest are colored black. and are green.. What is the probability of a red number coming up? Express your answer as a fraction. 2. For a $ bet on red, if red comes up, you get your dollar back plus another $. Your winnings are either win $ or lose $. Find the expected value of your winnings in dollars. Don t forget the negative sign, if you need one. Round your answer to three decimal places.. It s also possible to bet $ on a group of four numbers. What is the probability of one of your numbers coming up? Express your answer as a fraction. 4. If one of your numbers comes up, you get your bet back plus $. Find the expected value of your winnings in dollars (your outcomes are +$ and $. Don t forget the negative sign, if you need one. Round your answer to three decimal places. 5. In a lottery, there are tickets. One is worth $, five are worth $, fifty are worth $, and fivehundred are worth $. The rest are worth nothing. What is the expected value of a ticket in dollars? Don t forget the negative sign, if you need one. Round your answer to two decimal places. 7 Quiz answers: 5 + ( = 2 = =.5 (you lose 5 cents on average = 7 2 =.65 (each ticket is worth $.65 on average. HW answers: = ( 9 = 2 = $.5. 4 = ( = 2 = $ = 4.5 (each ticket is worth $4.5 on average.
Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.
Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers
More informationChapter 16: law of averages
Chapter 16: law of averages Context................................................................... 2 Law of averages 3 Coin tossing experiment......................................................
More informationWe rst consider the game from the player's point of view: Suppose you have picked a number and placed your bet. The probability of winning is
Roulette: On an American roulette wheel here are 38 compartments where the ball can land. They are numbered 136, and there are two compartments labeled 0 and 00. Half of the compartments numbered 136
More informationAMS 5 CHANCE VARIABILITY
AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and
More informationWeek 5: Expected value and Betting systems
Week 5: Expected value and Betting systems Random variable A random variable represents a measurement in a random experiment. We usually denote random variable with capital letter X, Y,. If S is the sample
More informationSection 7C: The Law of Large Numbers
Section 7C: The Law of Large Numbers Example. You flip a coin 00 times. Suppose the coin is fair. How many times would you expect to get heads? tails? One would expect a fair coin to come up heads half
More informationExample: Find the expected value of the random variable X. X 2 4 6 7 P(X) 0.3 0.2 0.1 0.4
MATH 110 Test Three Outline of Test Material EXPECTED VALUE (8.5) Super easy ones (when the PDF is already given to you as a table and all you need to do is multiply down the columns and add across) Example:
More informationStatistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined
Expectation Statistics and Random Variables Math 425 Introduction to Probability Lecture 4 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan February 9, 2009 When a large
More informationElementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025.
Elementary Statistics and Inference S:05 or 7P:05 Lecture Elementary Statistics and Inference S:05 or 7P:05 Chapter 7 A. The Expected Value In a chance process (probability experiment) the outcomes of
More informationBetting systems: how not to lose your money gambling
Betting systems: how not to lose your money gambling G. Berkolaiko Department of Mathematics Texas A&M University 28 April 2007 / Mini Fair, Math Awareness Month 2007 Gambling and Games of Chance Simple
More informationExpected Value. 24 February 2014. Expected Value 24 February 2014 1/19
Expected Value 24 February 2014 Expected Value 24 February 2014 1/19 This week we discuss the notion of expected value and how it applies to probability situations, including the various New Mexico Lottery
More informationThe overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES
INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number
More informationQuestion: What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
More informationChapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary.
Overview Box Part V Variability The Averages Box We will look at various chance : Tossing coins, rolling, playing Sampling voters We will use something called s to analyze these. Box s help to translate
More information36 Odds, Expected Value, and Conditional Probability
36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face
More informationThe Normal Approximation to Probability Histograms. Dice: Throw a single die twice. The Probability Histogram: Area = Probability. Where are we going?
The Normal Approximation to Probability Histograms Where are we going? Probability histograms The normal approximation to binomial histograms The normal approximation to probability histograms of sums
More informationHONORS STATISTICS. Mrs. Garrett Block 2 & 3
HONORS STATISTICS Mrs. Garrett Block 2 & 3 Tuesday December 4, 2012 1 Daily Agenda 1. Welcome to class 2. Please find folder and take your seat. 3. Review OTL C7#1 4. Notes and practice 7.2 day 1 5. Folders
More informationX: 0 1 2 3 4 5 6 7 8 9 Probability: 0.061 0.154 0.228 0.229 0.173 0.094 0.041 0.015 0.004 0.001
Tuesday, January 17: 6.1 Discrete Random Variables Read 341 344 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.
More informationChapter 5. Discrete Probability Distributions
Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable
More informationV. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either
More informationJohn Kerrich s cointossing Experiment. Law of Averages  pg. 294 Moore s Text
Law of Averages  pg. 294 Moore s Text When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So, if the coin is tossed a large number of times, the number of heads and the
More informationStatistics 100A Homework 3 Solutions
Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win $ for each black ball selected and we
More informationMrMajik s Money Management Strategy Copyright MrMajik.com 2003 All rights reserved.
You are about to learn the very best method there is to beat an evenmoney bet ever devised. This works on almost any game that pays you an equal amount of your wager every time you win. Casino games are
More informationThursday, November 13: 6.1 Discrete Random Variables
Thursday, November 13: 6.1 Discrete Random Variables Read 347 350 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.
More informationExpected Value and the Game of Craps
Expected Value and the Game of Craps Blake Thornton Craps is a gambling game found in most casinos based on rolling two six sided dice. Most players who walk into a casino and try to play craps for the
More informationProbability and Expected Value
Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected
More informationThis Method will show you exactly how you can profit from this specific online casino and beat them at their own game.
This Method will show you exactly how you can profit from this specific online casino and beat them at their own game. It s NOT complicated, and you DON T need a degree in mathematics or statistics to
More informationSolution. Solution. (a) Sum of probabilities = 1 (Verify) (b) (see graph) Chapter 4 (Sections 4.34.4) Homework Solutions. Section 4.
Math 115 N. Psomas Chapter 4 (Sections 4.34.4) Homework s Section 4.3 4.53 Discrete or continuous. In each of the following situations decide if the random variable is discrete or continuous and give
More informationMONEY MANAGEMENT. Guy Bower delves into a topic every trader should endeavour to master  money management.
MONEY MANAGEMENT Guy Bower delves into a topic every trader should endeavour to master  money management. Many of us have read Jack Schwager s Market Wizards books at least once. As you may recall it
More information$2 4 40 + ( $1) = 40
THE EXPECTED VALUE FOR THE SUM OF THE DRAWS In the game of Keno there are 80 balls, numbered 1 through 80. On each play, the casino chooses 20 balls at random without replacement. Suppose you bet on the
More informationIn the situations that we will encounter, we may generally calculate the probability of an event
What does it mean for something to be random? An event is called random if the process which produces the outcome is sufficiently complicated that we are unable to predict the precise result and are instead
More informationFormula for Theoretical Probability
Notes Name: Date: Period: Probability I. Probability A. Vocabulary is the chance/ likelihood of some event occurring. Ex) The probability of rolling a for a sixfaced die is 6. It is read as in 6 or out
More informationCh5: Discrete Probability Distributions Section 51: Probability Distribution
Recall: Ch5: Discrete Probability Distributions Section 51: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.
More informationAutomatic Bet Tracker!
Russell Hunter Street Smart Roulette Automatic Bet Tracker! Russell Hunter Publishing, Inc. Street Smart Roulette Automatic Bet Tracker 2015 Russell Hunter and Russell Hunter Publishing, Inc. All Rights
More informationProbability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2
Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability
More informationUniversity of California, Los Angeles Department of Statistics. Random variables
University of California, Los Angeles Department of Statistics Statistics Instructor: Nicolas Christou Random variables Discrete random variables. Continuous random variables. Discrete random variables.
More information14.4. Expected Value Objectives. Expected Value
. Expected Value Objectives. Understand the meaning of expected value. 2. Calculate the expected value of lotteries and games of chance.. Use expected value to solve applied problems. Life and Health Insurers
More informationLecture 13. Understanding Probability and LongTerm Expectations
Lecture 13 Understanding Probability and LongTerm Expectations Thinking Challenge What s the probability of getting a head on the toss of a single fair coin? Use a scale from 0 (no way) to 1 (sure thing).
More information6.042/18.062J Mathematics for Computer Science. Expected Value I
6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you
More information13.0 Central Limit Theorem
13.0 Central Limit Theorem Discuss Midterm/Answer Questions Box Models Expected Value and Standard Error Central Limit Theorem 1 13.1 Box Models A Box Model describes a process in terms of making repeated
More informationMathematical Expectation
Mathematical Expectation Properties of Mathematical Expectation I The concept of mathematical expectation arose in connection with games of chance. In its simplest form, mathematical expectation is the
More informationCh. 13.3: More about Probability
Ch. 13.3: More about Probability Complementary Probabilities Given any event, E, of some sample space, U, of a random experiment, we can always talk about the complement, E, of that event: this is the
More informationBeating Roulette? An analysis with probability and statistics.
The Mathematician s Wastebasket Volume 1, Issue 4 Stephen Devereaux April 28, 2013 Beating Roulette? An analysis with probability and statistics. Every time I watch the film 21, I feel like I ve made the
More informationIntroduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 4.4 Homework
Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 4.4 Homework 4.65 You buy a hot stock for $1000. The stock either gains 30% or loses 25% each day, each with probability.
More informationChapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a realvalued function defined on the sample space of some experiment. For instance,
More informationChapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
More informationSection 6.1 Discrete Random variables Probability Distribution
Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values
More informationProbability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes
Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all
More informationChapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.
Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive
More informationExam. Name. How many distinguishable permutations of letters are possible in the word? 1) CRITICS
Exam Name How many distinguishable permutations of letters are possible in the word? 1) CRITICS 2) GIGGLE An order of award presentations has been devised for seven people: Jeff, Karen, Lyle, Maria, Norm,
More informationSecond Midterm Exam (MATH1070 Spring 2012)
Second Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [60pts] Multiple Choice Problems
More informationFind the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.
Math 0 Practice Test 3 Fall 2009 Covers 7.5, 8.8.3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. ) If a single
More informationExam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR.
Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR. 1. Urn A contains 6 white marbles and 4 red marbles. Urn B contains 3 red marbles and two white
More informationMidterm Exam #1 Instructions:
Public Affairs 818 Professor: Geoffrey L. Wallace October 9 th, 008 Midterm Exam #1 Instructions: You have 10 minutes to complete the examination and there are 6 questions worth a total of 10 points. The
More informationAP Statistics 7!3! 6!
Lesson 64 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!
More informationExample. A casino offers the following bets (the fairest bets in the casino!) 1 You get $0 (i.e., you can walk away)
: Three bets Math 45 Introduction to Probability Lecture 5 Kenneth Harris aharri@umich.edu Department of Mathematics University of Michigan February, 009. A casino offers the following bets (the fairest
More information(SEE IF YOU KNOW THE TRUTH ABOUT GAMBLING)
(SEE IF YOU KNOW THE TRUTH ABOUT GAMBLING) Casinos loosen the slot machines at the entrance to attract players. FACT: This is an urban myth. All modern slot machines are stateoftheart and controlled
More informationIntroduction to Discrete Probability. Terminology. Probability definition. 22c:19, section 6.x Hantao Zhang
Introduction to Discrete Probability 22c:19, section 6.x Hantao Zhang 1 Terminology Experiment A repeatable procedure that yields one of a given set of outcomes Rolling a die, for example Sample space
More informationGrade 6 Math Circles Mar.21st, 2012 Probability of Games
University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 6 Math Circles Mar.21st, 2012 Probability of Games Gambling is the wagering of money or something of
More informationMidterm Exam #1 Instructions:
Public Affairs 818 Professor: Geoffrey L. Wallace October 9 th, 008 Midterm Exam #1 Instructions: You have 10 minutes to complete the examination and there are 6 questions worth a total of 10 points. The
More informationSession 8 Probability
Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome
More informationCh. 13.2: Mathematical Expectation
Ch. 13.2: Mathematical Expectation Random Variables Very often, we are interested in sample spaces in which the outcomes are distinct real numbers. For example, in the experiment of rolling two dice, we
More informationHow To Increase Your Odds Of Winning ScratchOff Lottery Tickets!
How To Increase Your Odds Of Winning ScratchOff Lottery Tickets! Disclaimer: All of the information inside this report reflects my own personal opinion and my own personal experiences. I am in NO way
More informationStatistics 100A Homework 4 Solutions
Chapter 4 Statistics 00A Homework 4 Solutions Ryan Rosario 39. A ball is drawn from an urn containing 3 white and 3 black balls. After the ball is drawn, it is then replaced and another ball is drawn.
More informationEasy Casino Profits. Congratulations!!
Easy Casino Profits The Easy Way To Beat The Online Casinos Everytime! www.easycasinoprofits.com Disclaimer The authors of this ebook do not promote illegal, underage gambling or gambling to those living
More informationVISUAL GUIDE to. RX Scripting. for Roulette Xtreme  System Designer 2.0
VISUAL GUIDE to RX Scripting for Roulette Xtreme  System Designer 2.0 UX Software  2009 TABLE OF CONTENTS INTRODUCTION... ii What is this book about?... iii How to use this book... iii Time to start...
More information2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.
Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are
More informationStat 20: Intro to Probability and Statistics
Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. ChildersDay UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum
More informationThe Math. P (x) = 5! = 1 2 3 4 5 = 120.
The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct
More informationPractical Probability:
Practical Probability: Casino Odds and Sucker Bets Tom Davis tomrdavis@earthlink.net April 2, 2011 Abstract Gambling casinos are there to make money, so in almost every instance, the games you can bet
More informationSolution (Done in class)
MATH 115 CHAPTER 4 HOMEWORK Sections 4.14.2 N. PSOMAS 4.6 Winning at craps. The game of craps starts with a comeout roll where the shooter rolls a pair of dice. If the total is 7 or 11, the shooter wins
More informationREWARD System For Even Money Bet in Roulette By Izak Matatya
REWARD System For Even Money Bet in Roulette By Izak Matatya By even money betting we mean betting on Red or Black, High or Low, Even or Odd, because they pay 1 to 1. With the exception of the green zeros,
More informationUnit 19: Probability Models
Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,
More informationWould You Like To Earn $1000 s With The Click Of A Button?
Would You Like To Earn $1000 s With The Click Of A Button? (Follow these easy step by step instructions and you will) This Version of the ebook is for all countries other than the USA. If you need the
More informationSTA 130 (Winter 2016): An Introduction to Statistical Reasoning and Data Science
STA 130 (Winter 2016): An Introduction to Statistical Reasoning and Data Science Mondays 2:10 4:00 (GB 220) and Wednesdays 2:10 4:00 (various) Jeffrey Rosenthal Professor of Statistics, University of Toronto
More informationECE 316 Probability Theory and Random Processes
ECE 316 Probability Theory and Random Processes Chapter 4 Solutions (Part 2) Xinxin Fan Problems 20. A gambling book recommends the following winning strategy for the game of roulette. It recommends that
More informationHigh School Statistics and Probability Common Core Sample Test Version 2
High School Statistics and Probability Common Core Sample Test Version 2 Our High School Statistics and Probability sample test covers the twenty most common questions that we see targeted for this level.
More informationSTT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables
Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random
More informationProblem sets for BUEC 333 Part 1: Probability and Statistics
Problem sets for BUEC 333 Part 1: Probability and Statistics I will indicate the relevant exercises for each week at the end of the Wednesday lecture. Numbered exercises are backofchapter exercises from
More informationPreAlgebra Lecture 6
PreAlgebra Lecture 6 Today we will discuss Decimals and Percentages. Outline: 1. Decimals 2. Ordering Decimals 3. Rounding Decimals 4. Adding and subtracting Decimals 5. Multiplying and Dividing Decimals
More informationYou can place bets on the Roulette table until the dealer announces, No more bets.
Roulette Roulette is one of the oldest and most famous casino games. Every Roulette table has its own set of distinctive chips that can only be used at that particular table. These chips are purchased
More informationStandard 12: The student will explain and evaluate the financial impact and consequences of gambling.
STUDENT MODULE 12.1 GAMBLING PAGE 1 Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. Risky Business Simone, Paula, and Randy meet in the library every
More informationIntroductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014
Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities
More informationProbability, statistics and football Franka Miriam Bru ckler Paris, 2015.
Probability, statistics and football Franka Miriam Bru ckler Paris, 2015 Please read this before starting! Although each activity can be performed by one person only, it is suggested that you work in groups
More information21.1 Arithmetic Growth and Simple Interest
21.1 Arithmetic Growth and Simple Interest When you open a savings account, your primary concerns are the safety and growth of your savings. Suppose you deposit $1000 in an account that pays interest at
More informationECE302 Spring 2006 HW3 Solutions February 2, 2006 1
ECE302 Spring 2006 HW3 Solutions February 2, 2006 1 Solutions to HW3 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in
More informationMOVIES, GAMBLING, SECRET CODES, JUST MATRIX MAGIC
MOVIES, GAMBLING, SECRET CODES, JUST MATRIX MAGIC DR. LESZEK GAWARECKI 1. The Cartesian Coordinate System In the Cartesian system points are defined by giving their coordinates. Plot the following points:
More informationTHE CHAOS THEORY ROULETTE SYSTEM
THE CHAOS THEORY ROULETTE SYSTEM Please note that all information is provided as is and no guarantees are given whatsoever as to the amount of profit you will make if you use this system. Neither the seller
More informationInside the pokies  player guide
Inside the pokies  player guide 3nd Edition  May 2009 References 1, 2, 3 Productivity Commission 1999, Australia s Gambling Industries, Report No. 10, AusInfo, Canberra. 4 Victorian Department of Justice,
More informationcalculating probabilities
4 calculating probabilities Taking Chances What s the probability he s remembered I m allergic to nonprecious metals? Life is full of uncertainty. Sometimes it can be impossible to say what will happen
More informationLecture 11 Uncertainty
Lecture 11 Uncertainty 1. Contingent Claims and the StatePreference Model 1) Contingent Commodities and Contingent Claims Using the simple twogood model we have developed throughout this course, think
More informationRandom Variables. Chapter 2. Random Variables 1
Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets
More informationSTT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012)
STT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012) TA: Zhen (Alan) Zhang zhangz19@stt.msu.edu Office hour: (C500 WH) 1:45 2:45PM Tuesday (office tel.: 4323342) Helproom: (A102 WH) 11:20AM12:30PM,
More informationWe { can see that if U = 2, 3, 7, 11, or 12 then the round is decided on the first cast, U = V, and W if U = 7, 11 X = L if U = 2, 3, 12.
How to Play Craps: Craps is a dice game that is played at most casinos. We will describe here the most common rules of the game with the intention of understanding the game well enough to analyze the probability
More informationMind on Statistics. Chapter 8
Mind on Statistics Chapter 8 Sections 8.18.2 Questions 1 to 4: For each situation, decide if the random variable described is a discrete random variable or a continuous random variable. 1. Random variable
More information.4 120 +.1 80 +.5 100 = 48 + 8 + 50 = 106.
Chapter 16. Risk and Uncertainty Part A 2009, Kwan Choi Expected Value X i = outcome i, p i = probability of X i EV = pix For instance, suppose a person has an idle fund, $100, for one month, and is considering
More informationGaming the Law of Large Numbers
Gaming the Law of Large Numbers Thomas Hoffman and Bart Snapp July 3, 2012 Many of us view mathematics as a rich and wonderfully elaborate game. In turn, games can be used to illustrate mathematical ideas.
More informationEveryday Math Online Games (Grades 1 to 3)
Everyday Math Online Games (Grades 1 to 3) FOR ALL GAMES At any time, click the Hint button to find out what to do next. Click the Skip Directions button to skip the directions and begin playing the game.
More informationRussell Hunter Publishing Inc
Russell Hunter Street Smart Roulette Video Course Russell Hunter Publishing Inc Street Smart Roulette Video Guide 2015 Russell Hunter and Russell Hunter Publishing. All Rights Reserved All rights reserved.
More information