Ch. 13.2: Mathematical Expectation

Size: px
Start display at page:

Download "Ch. 13.2: Mathematical Expectation"

Transcription

1 Ch. 13.2: Mathematical Expectation Random Variables Very often, we are interested in sample spaces in which the outcomes are distinct real numbers. For example, in the experiment of rolling two dice, we found last section that we could define the sample space as: Sample Space for Rolling 2 Dice: Outcomes: Probabilities: 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 We can think of the specific outcome of any given roll as a random variable, X, that can take any integer value between 2 and 12. Along with the associated probability values, this table defines what s called a probability distribution for the variable X. (More precisely, a random variable is a function that assigns a real number to each possible outcome of a given sample space, and a probability distribution is a function that assigns probabilities to subsets of those numbers in some way. As usual, the precise mathematical definitions are not very intuitive.) Mathematical Expectation To motivate this discussion, let us start with an example: Example 1: Suppose we roll a fair, 6-sided die100 times (keeping trackof theresults), and at the end, we add up all the results of each roll. What would be the likely value of this sum? ANSWER: The sample space for a single roll can be described by the following random variable: Random Variable, X Outcomes: Probabilities: 1/6 1/6 1/6 1/6 1/6 1/6 1

2 Since 100 is much bigger than 6 (the total number of possible outcomes), by the Law of Large Numbers, we should expect 1 /6th of the outcomes to be a 1, 1 /6th of the outcomes to be a 2, and so on. Thus, the total sum should be about: s = (1) (2) (3) (4) (5) (6) ( 1 = (1)+ 1 6 (2)+ 1 6 (3)+ 1 6 (4)+ 1 6 (5)+ 1 ) 6 (6) = = 350. We call the quantity 1 (1) + 1 (2) + 1 (3) + 1 (4) + 1 (5) + 1 (6) the expectation of the random variable X, and denote it by X. It is simply the average number of dots we get on each roll (note, however, that we can never roll exactly 3.5). In general, we use the following definition: Expectation of a Random Variable Suppose a random variable, X, can take finitely-many possible values, (x 1,x 2,...,x n ), each with associated probabilities (p 1,p 2,...,p n ). The expectation of X is then defined as... X = x 1 p 1 + x 2 p x n p n. As we see, an expectation is nothing more than a weighted average of all possible outcomes (when those outcomes are real numbers). In this chapter, most of the examples deal with simple games-of-chance in which one can either lose or win money. In a simple game of chance, whether you win or lose depends purely on luck, and there are few (if any) meaningful strategies to consider. An example might be a state lottery. In these contexts, we can speak of the expected winnings for a game, which is just the average amount of money won per play (i.e, an expectation). 2

3 Example 2: Consider a game in which you roll a pair of dice. If you roll a double, then you win $5. If you roll an odd number, then you win $2. Otherwise, you lose $5. What are your expected winnings? Up to how much should you be willing to pay to play each game? ANSWER: Remember the sample space for rolling 2 dice, in which each outcome is equally-likely: Sample Space, U There are 36 possible outcomes, and we need to consider 3 mutually-exclusive events: (1) rolling a double, (2) rolling an odd number, (3) rolling neither double nor odd. We can find the probability of each event by counting the number of favourable outcomes above: P(rolling a double) = 6 36 = 1 6 P(rolling an odd) = = 1 2 P(rolling neither double nor odd) = = 1 3 Thus, ifweareonlyinterestedinoutcomesdefinedbytheamountofmoneywewin/lose in a game, we have the following random variable: Winnings, X Values: $5 $2 $5 Probabilities: 1/6 1/2 1/3 3

4 Our expected winnings is then just the expectation of this variable: X = 1 6 ($5)+ 1 2 ($2)+ 1 ( $5) $ What this tells us is that we would win an average of about 17 per game, if we kept on playing it many many times. If we had to pay a fee for each game, then we would not want it to be more than 17, otherwise we would eventually end up losing money. Example 3: Consider a lottery with a single JACKPOT prize of $500,000. If a ticket costs $3, and the probability of it being a winning ticket is approximately 1/1,000,000, then what is the expected winnings? ANSWER: Here, we consider only two mutually-exclusive events: Event Winnings, X Probability win $500, 000 $3 1/1,000,000 lose $3 999,999/1,000,000 The expected winnings is: X = 1 999,999 ($499,997) + ( $3) = $2.50 1,000,000 1,000,000 In this example, we subtracted the ticket cost ($3) from the possible prizes before we calculated the expectation, X. However, we could have just as well done it after. If the tickets cost nothing, then we d have: Event Winnings, Y Probability win $500,000 1/1,000,000 lose $0 999,999/1,000,000 and the expected winnings is now: Y = 1 999,999 ($500,000) + ($0) = $0.50 1,000,000 1,000,000 4

5 Now, if the tickets cost $3 each, then we can simply subtract $3 from the above result: X = Y $3 = $2.50 which is the same result as before. This example illustrates the following property of expectations: If X is a random variable, and a,b are constants for each possible value of X, then ax +b is also a random variable, and ax +b = a X +b. 5

6 Example 4: Imagine there is a raffle contest being held at your local community center. Suppose there is one grand prize worth $5,000, and two 2nd prizes each worth $500. If a raffle ticket costs $2, and 800 tickets are sold, what is the expected winnings on one ticket? (Assume that the grand-prize winner is selected first, followed by the 2nd prize winners, without repetition, and that all tickets are equally-likely to be drawn). ANSWER: Fromtheperspective ofasingle ticket, say ticket #001, there are3events to consider: Event Winnings, X win the grand prize $5000 $2 win the 2nd prize $500 $2 not a winner $2 We need to determine the probability for each of these events. Note that from the perspective of the raffle picker, there are literally millions of possible outcomes. For instance, an arbitrary outcome could be represented as the ordered pair(#238,{#591,#642}), where ticket #238 is the grand prize winner, and #591 / #642 are the 2nd prize winners. By the Fundamental Counting Principle, there are then ( ) = = 255,040,800 possible outcomes. This is far too many to list in a table like we did in Example 2. Fortunately, the events above are easy to analyse: P(win the grand prize) = P(win the 2nd prize) = 798 P(not a winner) = /( ) = Thus, the expected winnings for a single ticket is: X = ($4998) ($498)+ ( $2) $

7 Notice in this example, our expected winnings is positive; and yet, we would lose the raffle over 99% of the time. Thus, playing a game in which your expected winnings is positive does not mean that you are more likely to win. We would have to play the game at least several thousand times before we started to see an average winning of $5.50 per game, and most raffles are one-time events! This is an important lesson: an expectation value is typically only useful when the corresponding experiment can be repeated enough times. Example 5: Consider the following game in which two players each spin a fair wheel in turn: Player A Player B The player that spins the higher number wins, and the loser has to pay the winner the difference of the two numbers (in dollars). Who would win more often? What is that player s expected winnings? ANSWER: Assuming 3 equally-likely outcomes for spinning A s wheel, and 2 equallylikely outcomes for B s wheel, there are then 3 2 = 6 possible equally-likely outcomes for this game: Sample Space A\B (2,5) (2,6) 4 (4,5) (4,6) 12 (12,5) (12,6) 7

8 We see here that player A wins in 2/6 games, and player B wins in 4/6 games, so player B wins the most often. But, let s compute the expected winnings for player B: Winnings, X, for Player B A\B $3 $4 4 $1 $2 12 $7 $6 Each of these possible amounts won has the same probability (1/6). The expected winnings for player B is then simply: X = 1 6 ($3)+ 1 6 ($4)+ 1 6 ($1)+ 1 6 ($2)+ 1 6 ( $7)+ 1 6 ( $6) = 1 6 ($3+$4+$1+$2 $7 $6) = $0.50 Hence, we see that even though player B is more likely to win on a single game, his expected winnings is actually negative. If he keeps on playing the game (maybe 20 or so rounds), he will eventually start losing money! 8

Ch. 13.3: More about Probability

Ch. 13.3: More about Probability Ch. 13.3: More about Probability Complementary Probabilities Given any event, E, of some sample space, U, of a random experiment, we can always talk about the complement, E, of that event: this is the

More information

Probability and Expected Value

Probability and Expected Value Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are

More information

Section 7C: The Law of Large Numbers

Section 7C: The Law of Large Numbers Section 7C: The Law of Large Numbers Example. You flip a coin 00 times. Suppose the coin is fair. How many times would you expect to get heads? tails? One would expect a fair coin to come up heads half

More information

36 Odds, Expected Value, and Conditional Probability

36 Odds, Expected Value, and Conditional Probability 36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face

More information

Lecture 13. Understanding Probability and Long-Term Expectations

Lecture 13. Understanding Probability and Long-Term Expectations Lecture 13 Understanding Probability and Long-Term Expectations Thinking Challenge What s the probability of getting a head on the toss of a single fair coin? Use a scale from 0 (no way) to 1 (sure thing).

More information

Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014

Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014 Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities

More information

Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.

Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025. Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers

More information

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either

More information

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

More information

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

Week 5: Expected value and Betting systems

Week 5: Expected value and Betting systems Week 5: Expected value and Betting systems Random variable A random variable represents a measurement in a random experiment. We usually denote random variable with capital letter X, Y,. If S is the sample

More information

Ready, Set, Go! Math Games for Serious Minds

Ready, Set, Go! Math Games for Serious Minds Math Games with Cards and Dice presented at NAGC November, 2013 Ready, Set, Go! Math Games for Serious Minds Rande McCreight Lincoln Public Schools Lincoln, Nebraska Math Games with Cards Close to 20 -

More information

Lab 11. Simulations. The Concept

Lab 11. Simulations. The Concept Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that

More information

The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES

The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number

More information

In the situations that we will encounter, we may generally calculate the probability of an event

In the situations that we will encounter, we may generally calculate the probability of an event What does it mean for something to be random? An event is called random if the process which produces the outcome is sufficiently complicated that we are unable to predict the precise result and are instead

More information

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300 Decision Making Under Uncertainty Professor Peter Cramton Economics 300 Uncertainty Consumers and firms are usually uncertain about the payoffs from their choices Example 1: A farmer chooses to cultivate

More information

2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.

2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are

More information

Betting systems: how not to lose your money gambling

Betting systems: how not to lose your money gambling Betting systems: how not to lose your money gambling G. Berkolaiko Department of Mathematics Texas A&M University 28 April 2007 / Mini Fair, Math Awareness Month 2007 Gambling and Games of Chance Simple

More information

Introduction to Discrete Probability. Terminology. Probability definition. 22c:19, section 6.x Hantao Zhang

Introduction to Discrete Probability. Terminology. Probability definition. 22c:19, section 6.x Hantao Zhang Introduction to Discrete Probability 22c:19, section 6.x Hantao Zhang 1 Terminology Experiment A repeatable procedure that yields one of a given set of outcomes Rolling a die, for example Sample space

More information

Unit 19: Probability Models

Unit 19: Probability Models Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,

More information

Instructions for the Calendar Fundraising Kit

Instructions for the Calendar Fundraising Kit Sports Information Media 343 Millburn Avenue Millburn, NJ 07041 Phone: (800) 733-0543 Fax: 973-564-5601 Instructions for the Fundraising Kit Congratulations! You have just purchased an instant source of

More information

Is it possible to beat the lottery system?

Is it possible to beat the lottery system? Is it possible to beat the lottery system? Michael Lydeamore The University of Adelaide Postgraduate Seminar, 2014 The story One day, while sitting at home (working hard)... The story Michael Lydeamore

More information

We { can see that if U = 2, 3, 7, 11, or 12 then the round is decided on the first cast, U = V, and W if U = 7, 11 X = L if U = 2, 3, 12.

We { can see that if U = 2, 3, 7, 11, or 12 then the round is decided on the first cast, U = V, and W if U = 7, 11 X = L if U = 2, 3, 12. How to Play Craps: Craps is a dice game that is played at most casinos. We will describe here the most common rules of the game with the intention of understanding the game well enough to analyze the probability

More information

The mathematical branch of probability has its

The mathematical branch of probability has its ACTIVITIES for students Matthew A. Carlton and Mary V. Mortlock Teaching Probability and Statistics through Game Shows The mathematical branch of probability has its origins in games and gambling. And

More information

Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined

Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined Expectation Statistics and Random Variables Math 425 Introduction to Probability Lecture 4 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan February 9, 2009 When a large

More information

14.4. Expected Value Objectives. Expected Value

14.4. Expected Value Objectives. Expected Value . Expected Value Objectives. Understand the meaning of expected value. 2. Calculate the expected value of lotteries and games of chance.. Use expected value to solve applied problems. Life and Health Insurers

More information

Mathematical Expectation

Mathematical Expectation Mathematical Expectation Properties of Mathematical Expectation I The concept of mathematical expectation arose in connection with games of chance. In its simplest form, mathematical expectation is the

More information

Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty

Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.

More information

Probabilistic Strategies: Solutions

Probabilistic Strategies: Solutions Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1

More information

Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179)

Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179) Feb 7 Homework Solutions Math 151, Winter 2012 Chapter Problems (pages 172-179) Problem 3 Three dice are rolled. By assuming that each of the 6 3 216 possible outcomes is equally likely, find the probabilities

More information

Math 728 Lesson Plan

Math 728 Lesson Plan Math 728 Lesson Plan Tatsiana Maskalevich January 27, 2011 Topic: Probability involving sampling without replacement and dependent trials. Grade Level: 8-12 Objective: Compute the probability of winning

More information

Chapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary.

Chapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary. Overview Box Part V Variability The Averages Box We will look at various chance : Tossing coins, rolling, playing Sampling voters We will use something called s to analyze these. Box s help to translate

More information

Standard 12: The student will explain and evaluate the financial impact and consequences of gambling.

Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. TEACHER GUIDE 12.1 GAMBLING PAGE 1 Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. Risky Business Priority Academic Student Skills Personal Financial

More information

Bayesian Tutorial (Sheet Updated 20 March)

Bayesian Tutorial (Sheet Updated 20 March) Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Practice Test Chapter 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the odds. ) Two dice are rolled. What are the odds against a sum

More information

Playing with Numbers

Playing with Numbers PLAYING WITH NUMBERS 249 Playing with Numbers CHAPTER 16 16.1 Introduction You have studied various types of numbers such as natural numbers, whole numbers, integers and rational numbers. You have also

More information

4. Binomial Expansions

4. Binomial Expansions 4. Binomial Expansions 4.. Pascal's Triangle The expansion of (a + x) 2 is (a + x) 2 = a 2 + 2ax + x 2 Hence, (a + x) 3 = (a + x)(a + x) 2 = (a + x)(a 2 + 2ax + x 2 ) = a 3 + ( + 2)a 2 x + (2 + )ax 2 +

More information

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9 Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

Curriculum Design for Mathematic Lesson Probability

Curriculum Design for Mathematic Lesson Probability Curriculum Design for Mathematic Lesson Probability This curriculum design is for the 8th grade students who are going to learn Probability and trying to show the easiest way for them to go into this class.

More information

IS IT A SIN TO GAMBLE? Colossians 3:1-7

IS IT A SIN TO GAMBLE? Colossians 3:1-7 Introduction: IS IT A SIN TO GAMBLE? Colossians 3:1-7 1.! Andrew J. Whitaker, Jr., a 55 year old president of a construction! company, won $315,000,000 in the Powerball jackpot in 2002.! a.! I saw Mr.

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level S2 of challenge: B/C S2 Mathematical goals Starting points Materials required Time needed Evaluating probability statements To help learners to: discuss and clarify some common misconceptions about

More information

Standard 12: The student will explain and evaluate the financial impact and consequences of gambling.

Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. STUDENT MODULE 12.1 GAMBLING PAGE 1 Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. Risky Business Simone, Paula, and Randy meet in the library every

More information

Math Games For Skills and Concepts

Math Games For Skills and Concepts Math Games p.1 Math Games For Skills and Concepts Original material 2001-2006, John Golden, GVSU permission granted for educational use Other material copyright: Investigations in Number, Data and Space,

More information

Current California Math Standards Balanced Equations

Current California Math Standards Balanced Equations Balanced Equations Current California Math Standards Balanced Equations Grade Three Number Sense 1.0 Students understand the place value of whole numbers: 1.1 Count, read, and write whole numbers to 10,000.

More information

Video Poker in South Carolina: A Mathematical Study

Video Poker in South Carolina: A Mathematical Study Video Poker in South Carolina: A Mathematical Study by Joel V. Brawley and Todd D. Mateer Since its debut in South Carolina in 1986, video poker has become a game of great popularity as well as a game

More information

Hooray for the Hundreds Chart!!

Hooray for the Hundreds Chart!! Hooray for the Hundreds Chart!! The hundreds chart consists of a grid of numbers from 1 to 100, with each row containing a group of 10 numbers. As a result, children using this chart can count across rows

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

INFO ABOUT THE ODDS BETTING ON LOTTO, LOTTERIES OR KENO?

INFO ABOUT THE ODDS BETTING ON LOTTO, LOTTERIES OR KENO? INFO ABOUT THE ODDS BETTING ON LOTTO, LOTTERIES OR KENO? YOU MAY HEAR OF PEOPLE HAVING A WIN WITH LOTTO AND POWERBALL, GETTING LUCKY IN THE LOTTERY, OR HAVING WINNING NUMBERS COME UP IN THE POOLS OR KENO.

More information

Stat 20: Intro to Probability and Statistics

Stat 20: Intro to Probability and Statistics Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. Childers-Day UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum

More information

Chapter 5 - Practice Problems 1

Chapter 5 - Practice Problems 1 Chapter 5 - Practice Problems 1 Identify the given random variable as being discrete or continuous. 1) The number of oil spills occurring off the Alaskan coast 1) A) Continuous B) Discrete 2) The ph level

More information

Decision making using probability

Decision making using probability Chapter 6 Decision making using probability In this chapter, we look at how we can use probability in order to aid decision making. 6.1 Expected Monetary Value Intuition should now help to explain how

More information

Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4?

Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4? Contemporary Mathematics- MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

Gaming the Law of Large Numbers

Gaming the Law of Large Numbers Gaming the Law of Large Numbers Thomas Hoffman and Bart Snapp July 3, 2012 Many of us view mathematics as a rich and wonderfully elaborate game. In turn, games can be used to illustrate mathematical ideas.

More information

How To Increase Your Odds Of Winning Scratch-Off Lottery Tickets!

How To Increase Your Odds Of Winning Scratch-Off Lottery Tickets! How To Increase Your Odds Of Winning Scratch-Off Lottery Tickets! Disclaimer: All of the information inside this report reflects my own personal opinion and my own personal experiences. I am in NO way

More information

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314 Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space

More information

(SEE IF YOU KNOW THE TRUTH ABOUT GAMBLING)

(SEE IF YOU KNOW THE TRUTH ABOUT GAMBLING) (SEE IF YOU KNOW THE TRUTH ABOUT GAMBLING) Casinos loosen the slot machines at the entrance to attract players. FACT: This is an urban myth. All modern slot machines are state-of-the-art and controlled

More information

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015 ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2015 These notes have been used before. If you can still spot any errors or have any suggestions for improvement, please let me know. 1

More information

What is the Probability of Pigging Out

What is the Probability of Pigging Out What is the Probability of Pigging Out Mary Richardson Susan Haller Grand Valley State University St. Cloud State University richamar@gvsu.edu skhaller@stcloudstate.edu Published: April 2012 Overview of

More information

AMS 5 CHANCE VARIABILITY

AMS 5 CHANCE VARIABILITY AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and

More information

RACE TO CLEAR THE MAT

RACE TO CLEAR THE MAT RACE TO CLEAR THE MAT NUMBER Place Value Counting Addition Subtraction Getting Ready What You ll Need Base Ten Blocks, 1 set per group Base Ten Blocks Place-Value Mat, 1 per child Number cubes marked 1

More information

6.042/18.062J Mathematics for Computer Science. Expected Value I

6.042/18.062J Mathematics for Computer Science. Expected Value I 6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you

More information

Lottery Combinatorics

Lottery Combinatorics Published by the Applied Probability Trust Applied Probability Trust 2009 110 Lottery Combinatorics IAN MCPHERSON and DEREK HODSON The chance of landing the National Lottery jackpot (or a share of it)

More information

Easy Casino Profits. Congratulations!!

Easy Casino Profits. Congratulations!! Easy Casino Profits The Easy Way To Beat The Online Casinos Everytime! www.easycasinoprofits.com Disclaimer The authors of this ebook do not promote illegal, underage gambling or gambling to those living

More information

Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2

Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2 Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability

More information

Worldwide Casino Consulting Inc.

Worldwide Casino Consulting Inc. Card Count Exercises George Joseph The first step in the study of card counting is the recognition of those groups of cards known as Plus, Minus & Zero. It is important to understand that the House has

More information

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

More information

Elementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025.

Elementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025. Elementary Statistics and Inference S:05 or 7P:05 Lecture Elementary Statistics and Inference S:05 or 7P:05 Chapter 7 A. The Expected Value In a chance process (probability experiment) the outcomes of

More information

Inside the pokies - player guide

Inside the pokies - player guide Inside the pokies - player guide 3nd Edition - May 2009 References 1, 2, 3 Productivity Commission 1999, Australia s Gambling Industries, Report No. 10, AusInfo, Canberra. 4 Victorian Department of Justice,

More information

Pigeonhole Principle Solutions

Pigeonhole Principle Solutions Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such

More information

FUN AND EASY PHONATHON GAMES

FUN AND EASY PHONATHON GAMES FUN AND EASY PHONATHON GAMES Bingo: Create a Bingo Board with various goals on it (pledge of $100 etc.). Give each caller a set of colored squares that can stick to the board. As the callers achieve an

More information

Solving Rational Equations

Solving Rational Equations Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

More information

That s Not Fair! ASSESSMENT #HSMA20. Benchmark Grades: 9-12

That s Not Fair! ASSESSMENT #HSMA20. Benchmark Grades: 9-12 That s Not Fair! ASSESSMENT # Benchmark Grades: 9-12 Summary: Students consider the difference between fair and unfair games, using probability to analyze games. The probability will be used to find ways

More information

Sue Fine Linn Maskell

Sue Fine Linn Maskell FUN + GAMES = MATHS Sue Fine Linn Maskell Teachers are often concerned that there isn t enough time to play games in maths classes. But actually there is time to play games and we need to make sure that

More information

SuperSpeed Math. Addition, Subtraction, Multiplication, Division And the Gnarlies!

SuperSpeed Math. Addition, Subtraction, Multiplication, Division And the Gnarlies! SuperSpeed Math, copyright Chris Biffle SuperSpeed Math Addition, Subtraction, Multiplication, Division And the Gnarlies! Chris Biffle Crafton Hills College Yucaipa, California CBiffle@AOL.com SuperSpeed

More information

PROBABILITY SECOND EDITION

PROBABILITY SECOND EDITION PROBABILITY SECOND EDITION Table of Contents How to Use This Series........................................... v Foreword..................................................... vi Basics 1. Probability All

More information

AP Stats - Probability Review

AP Stats - Probability Review AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose

More information

Fair Price. Math 5 Crew. Department of Mathematics Dartmouth College. Fair Price p.1/??

Fair Price. Math 5 Crew. Department of Mathematics Dartmouth College. Fair Price p.1/?? Fair Price p.1/?? Fair Price Math 5 Crew Department of Mathematics Dartmouth College Fair Price p.2/?? Historical Perspective We are about ready to explore probability form the point of view of a free

More information

Example: Find the expected value of the random variable X. X 2 4 6 7 P(X) 0.3 0.2 0.1 0.4

Example: Find the expected value of the random variable X. X 2 4 6 7 P(X) 0.3 0.2 0.1 0.4 MATH 110 Test Three Outline of Test Material EXPECTED VALUE (8.5) Super easy ones (when the PDF is already given to you as a table and all you need to do is multiply down the columns and add across) Example:

More information

The History of the Mathematics of Card Counting Peter Woerde

The History of the Mathematics of Card Counting Peter Woerde The History of the Mathematics of Card Counting Peter Woerde Introduction It has been mathematically proven that card counting is a way to beat the casino in the game of 21, also known as black jack. To

More information

Fundamentals of Probability

Fundamentals of Probability Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

More information

Foundation 2 Games Booklet

Foundation 2 Games Booklet MCS Family Maths Night 27 th August 2014 Foundation 2 Games Booklet Stage Focus: Trusting the Count Place Value How are games used in a classroom context? Strategically selected games have become a fantastic

More information

Probability. Section 9. Probability. Probability of A = Number of outcomes for which A happens Total number of outcomes (sample space)

Probability. Section 9. Probability. Probability of A = Number of outcomes for which A happens Total number of outcomes (sample space) Probability Section 9 Probability Probability of A = Number of outcomes for which A happens Total number of outcomes (sample space) In this section we summarise the key issues in the basic probability

More information

$2 4 40 + ( $1) = 40

$2 4 40 + ( $1) = 40 THE EXPECTED VALUE FOR THE SUM OF THE DRAWS In the game of Keno there are 80 balls, numbered 1 through 80. On each play, the casino chooses 20 balls at random without replacement. Suppose you bet on the

More information

Probability Models.S1 Introduction to Probability

Probability Models.S1 Introduction to Probability Probability Models.S1 Introduction to Probability Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard The stochastic chapters of this book involve random variability. Decisions are

More information

Just the Factors, Ma am

Just the Factors, Ma am 1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

More information

Definition and Calculus of Probability

Definition and Calculus of Probability In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the

More information

Queensland Office of Liquor and Gaming Regulation

Queensland Office of Liquor and Gaming Regulation Queensland Office of Liquor and Gaming Regulation Lotteries Rule This Rule is prepared by the Queensland Office of Liquor and Gaming Regulation v. Lotteries Rule Queensland Lotteries Rule Contents Section

More information

Statistics 100A Homework 4 Solutions

Statistics 100A Homework 4 Solutions Chapter 4 Statistics 00A Homework 4 Solutions Ryan Rosario 39. A ball is drawn from an urn containing 3 white and 3 black balls. After the ball is drawn, it is then replaced and another ball is drawn.

More information

NIM with Cash. Abstract. loses. This game has been well studied. For example, it is known that for NIM(1, 2, 3; n)

NIM with Cash. Abstract. loses. This game has been well studied. For example, it is known that for NIM(1, 2, 3; n) NIM with Cash William Gasarch Univ. of MD at College Park John Purtilo Univ. of MD at College Park Abstract NIM(a 1,..., a k ; n) is a -player game where initially there are n stones on the board and the

More information

Minimax Strategies. Minimax Strategies. Zero Sum Games. Why Zero Sum Games? An Example. An Example

Minimax Strategies. Minimax Strategies. Zero Sum Games. Why Zero Sum Games? An Example. An Example Everyone who has studied a game like poker knows the importance of mixing strategies With a bad hand, you often fold But you must bluff sometimes Lectures in Microeconomics-Charles W Upton Zero Sum Games

More information

Chapter 16: law of averages

Chapter 16: law of averages Chapter 16: law of averages Context................................................................... 2 Law of averages 3 Coin tossing experiment......................................................

More information

Expected Value and the Game of Craps

Expected Value and the Game of Craps Expected Value and the Game of Craps Blake Thornton Craps is a gambling game found in most casinos based on rolling two six sided dice. Most players who walk into a casino and try to play craps for the

More information

PERMUTATIONS and COMBINATIONS. If the order doesn't matter, it is a Combination. If the order does matter it is a Permutation.

PERMUTATIONS and COMBINATIONS. If the order doesn't matter, it is a Combination. If the order does matter it is a Permutation. Page 1 PERMUTATIONS and COMBINATIONS If the order doesn't matter, it is a Combination. If the order does matter it is a Permutation. PRACTICE! Determine whether each of the following situations is a Combination

More information

Played With Five Standard Six-Sided Dice. by Paul Hoemke

Played With Five Standard Six-Sided Dice. by Paul Hoemke Played With Five Standard Six-Sided Dice by Paul Hoemke 1 Copyright 2011 by Paul Hoemke. Five New 5-Dice Games by Paul Hoemke is licensed under a Creative Commons Attribution 3.0 Unported License. http://creativecommons.org/licenses/by/3.0/

More information

We rst consider the game from the player's point of view: Suppose you have picked a number and placed your bet. The probability of winning is

We rst consider the game from the player's point of view: Suppose you have picked a number and placed your bet. The probability of winning is Roulette: On an American roulette wheel here are 38 compartments where the ball can land. They are numbered 1-36, and there are two compartments labeled 0 and 00. Half of the compartments numbered 1-36

More information

Financial Literacy Meeting Ideas Daisy Financial Literacy Games and Activities

Financial Literacy Meeting Ideas Daisy Financial Literacy Games and Activities Financial Literacy Meeting Ideas Daisy Financial Literacy Games and Activities Fulfills Money Counts steps 1, 2, 3: Money Money You need: Place Value Boards (one for each girl), bags of copied money (one

More information

This lesson plan is from the Council for Economic Education's publication: Mathematics and Economics: Connections for Life 9-12

This lesson plan is from the Council for Economic Education's publication: Mathematics and Economics: Connections for Life 9-12 This lesson plan is from the Council for Economic Education's publication: Mathematics and Economics: Connections for Life 9-12 To purchase Mathematics and Economics: Connections for Life 9-12, visit:

More information

Section 6.2 Definition of Probability

Section 6.2 Definition of Probability Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will

More information