Homework 2 Due Wednesday, July 19, 2006 Astronomy/EPS 12 The Planets

Similar documents
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Lesson 6: Earth and the Moon

Class 2 Solar System Characteristics Formation Exosolar Planets

How To Understand Light And Color

8.1 Radio Emission from Solar System objects

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

Sample Exercise 6.1 Concepts of Wavelength and Frequency

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System

PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh

AS COMPETITION PAPER 2008

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

The Earth s Atmosphere

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x Nm 2 /kg 2

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Atoms Absorb & Emit Light

Take away concepts. What is Energy? Solar Energy. EM Radiation. Properties of waves. Solar Radiation Emission and Absorption

Atomic Structure: Chapter Problems

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

Teaching Time: One-to-two 50-minute periods

Planets beyond the solar system

Radiation Transfer in Environmental Science

Chemistry 102 Summary June 24 th. Properties of Light

Photons. ConcepTest ) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

Angular Velocity vs. Linear Velocity

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

UNIT V. Earth and Space. Earth and the Solar System

STUDY GUIDE: Earth Sun Moon

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

Use the following image to answer the next question. 1. Which of the following rows identifies the electrical charge on A and B shown above?

Summary: Four Major Features of our Solar System

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

The atmospheres of different planets

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Experiment #5: Qualitative Absorption Spectroscopy

Chapter 6 Formation of Planetary Systems Our Solar System and Beyond

Science Standard 4 Earth in Space Grade Level Expectations

Multiple Choice Identify the choice that best completes the statement or answers the question.

Newton s Law of Universal Gravitation

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.

Astro 301/ Fall 2005 (48310) Introduction to Astronomy

2007 Pearson Education Inc., publishing as Pearson Addison-Wesley. The Jovian Planets

Modeling the Expanding Universe

Electromagnetic Radiation (EMR) and Remote Sensing

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes.

The Phenomenon of Photoelectric Emission:

Geol 116 The Planet Class 7-1 Feb 28, Exercise 1, Calculate the escape velocities of the nine planets in the solar system

The Electromagnetic Spectrum

CHEM 1411 Chapter 5 Homework Answers

CHAPTER 6 THE TERRESTRIAL PLANETS

TOPIC 5 (cont.) RADIATION LAWS - Part 2

THE SOLAR SYSTEM - EXERCISES 1

Solar Nebula Theory. Basic properties of the Solar System that need to be explained:

Lab 7: Gravity and Jupiter's Moons

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets?

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.

Newton s Law of Gravity

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total

ASTR 1010 Astronomy of the Solar System Professor Caillault Fall 2009 Semester Exam 3 Answers

Examination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

2 Absorbing Solar Energy

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = = = 25 or 2

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.

Calculating particle properties of a wave

Clouds and the Energy Cycle

Sunlight and its Properties. EE 495/695 Y. Baghzouz

PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA

Atomic Structure Ron Robertson

Name Class Date. spectrum. White is not a color, but is a combination of all colors. Black is not a color; it is the absence of all light.

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Thursday 23 May 2013 Morning

Lecture 13. Gravity in the Solar System

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics

WAVES AND ELECTROMAGNETIC RADIATION

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

Version A Page The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

Week 1-2: Overview of the Universe & the View from the Earth

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1

Assignment 5. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Solar System Formation

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points

Principle of Thermal Imaging

Explain the Big Bang Theory and give two pieces of evidence which support it.

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2

1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

Name Class Date. true

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC

Transcription:

Homework 2 Due Wednesday, July 19, 2006 Astronomy/EPS 12 The Planets Chapter 4, Review and Discussion 11 - Why do excited atoms absorb and reemit radiation at characteristic frequencies? As described by the Bohr model, the energy levels in an atom have discrete and characteristic energies. Transitions from one energy level to another correspond to emission or absorption of a photon with a characteristic energy that is exactly equal to the difference in atomic energy levels. Since the energy of a photon is defined by it s frequency, the emitted or absorbed photons have characteristic frequencies corresponding to the difference in energy between the atomic energy levels. Chapter 4, Review and Discussion 19 - Describe what happens to a spectral line from a star as the stars rotation rate increases? A rotating star has some atoms moving towards the observer and some moving away from the observer. The speed at which the atoms are moving (in both directions) increases with rotation rate. The moving atoms result in a Doppler shift (to both the red and the blue) of the spectral line, otherwise known and line broadening. When the rotation rate increases the Doppler shifts become larger, and the line width increases. Chapter 4, Problem 6 - Calculate the energy change in the transition responsible for the left-hand sodium line shown in Figure 4.6. Using a simplified equation where constants are plugged in for you, the energy in electron-volts (ev) of a photon that has a wavelength specified in nanometers (nm), is given by the following equation E (ev) = 1240 λ 1240 ev nm (nm) = = 2.119 ev 589.9 nm In other words, from the wavelength of the photon you can determine the frequency of the photon using c = λ ν which when rearranged gives ν = c λ then in terms of the frequency, the energy of the transition is given by E = h ν where h is Planck s constant. The two equations can be combined together as E = h c λ then plugging in values gives for the constants, h and c, and then λ = 589.9 nm, which is converted to meters so that the units in the speed of light cancel: E = 6.63 10 34 J s 3 108 m/s 589.9 nm = 6.63 10 34 J s 3 108 m/s 5.899 10 7 m = 3.3 10 19 J Electron volts (ev) and Joule (J) are both units of energy, so is the calorie (c).

Chapter 4, Problem 8 - How many different photo (i.e, photons of different frequencies) can be emitted as a hydrogen atom in the third excited state falls back, directly or indirectly, to the ground state? What are the wavelengths of those photons? The third excited state corresponds to n = 4 and the ground state is n = 1. So there are 3 transitions from the n = 4 state (n =4 to 3,n =4 to 2,n =4 to 1). The atoms that get to n =3 or n =2 can still keep emitting photons and there are 2 transitions from n =3 state (n =3 to 2, n =3 to 1). Finally, there is 1 transition from the n =2 state (n =2 to 1). In total there are 3+2+1=6 transitions. P.90 In Chaisson & cillan describes the two formulas needed to calculate the energies of these photons. ( 1 E(eV ) = 1.36 1 ) n up n lo where n up is the upper state (or state with larger n) and n lo is the lower state (with smaller n). To convert from ev to wavelength, we use: λ(nm) = 1240 E(eV ) Putting the equation for the energy, E, from the first formula into the second equation, we get λ(nm) = 1240 ( ) 1.36 1 n up 1 n lo So that for the 6 transitions above the wavelengths are E 4 to 3 = 1875 nm E 4 to 2 = 486.1 nm E 4 to 1 = 97.3 nm E 3 to 2 = 656.3 nm E 3 to 1 = 102.6 nm E 2 to 1 = 121.6 nm Chapter 5, Review and Discussion 5 - What advantages does the Hubble Space Telescope have over ground-based telescopes? List some disadvantages. The main advantage of HST is that it is above the atmosphere. This means that it can 1) access wavelength regions that are blocked by the atmosphere like the ultraviolet and the infrared regions and 2) the problem of blurring by atmospheric turbulence is circumvented. The disadvantages arise from the fact that the telescope is in space, such that it is difficult and expensive to upgrade and repair, and the equipment that is used must be able to withstand the extreme conditions of space. Chapter 5, Review and Discussion 18 - In what ways do the mirrors in X-ray telescopes differ from those in optical instruments? The mirrors in X-ray telescopes operate at grazing angles, so that they are metal cylinders instead typical curved plates. The X-ray mirrors are placed inside one another (nested) to focus the image, unlike an optical telescope. 2

Chapter 5, Problem 9 - The oon lies about 380,000 km away. To what distances do the angular resolutions of SST(3 ), HST(0.05 ), and a radio interferometer (0.001 ) correspond at that distance? Using the small angle formula d = 206271 angle 380, 000 km we plug in the angular measure and get, 1.63 km for SST, 0.027 km for HST and 0.00054 km (or 54 cm!) for a radio interferometer. Chapter 6, Review and Discussion 8 - Name three important differences between terrestrial planets and Jovian planets? Table 6.2 lists a number of differences, the terrestrial planets are closer to the Sun, smaller, rocky, less dense, and have fewer or no moons and no rings. Chapter 6, Problem 12 - How long would it take a radio signal to complete the roundtrip between Earth and Saturn?... The Earth is at 1 AU and Saturn is at 9.5 AU, which means the closest together that they will get is 8.5 AU. 1 AU = 1.5 10 8 km. Radio signals travel at the speed of light, c = 3 10 5 km/s. So, t (sec) = d (km) c (km/s) The the ROUND-TRIP distance (that s where the factor of 2 comes from) in kilometers is, ( 1.5 10 8 ) km d = 2 8.5 AU = 2.55 10 9 km 1 AU and then the total time isx t = 2.55 109 km 3 10 5 km/s = 8500 sec = 2.4 hours To determine how far the space-craft moves in that time, we need to know the velocity and we use the circular orbit velocity formula G v c = r with G = 6.7 10 11 Nm 2 /kg 2, the mass of Saturn, is 95 Earth masses so, 95 6 10 24 kg = 5.7 10 26 kg, and r is given in the problem to be 100,000 km = 1 10 8 m. Plugging in: 6.7 10 v c = 11 10 24 1 10 8 = 19, 542 m/s = 19.5 km/s So that in the time it takes to send a signal back and forth, the spacecraft has moved 19.5 km/s 8500 sec = 165,750 km! Which means there is no way to control the spacecraft in orbit around Saturn in real time. Chapter 7, Review and Discussion 5 - What is the greenhouse effect, and what effect does it have on Earth s surface temperature? The greenhouse effect is the trapping the energy of near the Earth s surface by the atmosphere. The greenhouse effect arises because the atmosphere is transparent at visible wavelengths and allows 3

sunlight to heat the surface, while it is transparent in the infrared region, and so it does not allow energy at these wavelengths to leave Earth efficiently. The results is increased surface temperatures due to the atmosphere. Chapter 7, Problem 7 - On the basis of the data in presented in the text, estimate the fractions of Earth s volume represented by (a) the inner core (b) the outer core, (c) the mantle, and (d) the crust. We use the data in Figure 7.1, which gives the radius, R, at the boundaries of each of these structures, and we use the formula for the volume in a sphere The total volume of Earth is V = 4 3 πr3 V Earth = 4 3 π(6400 km)3 = 1.1 10 11 km 3 (a) for the inner core, R = 1300km, V = 9.3 10 9 km 3 and the fraction of total volume is f = V/V Earth = 0.84%. (b) for the outer core,r = 3500km, V = 1.7 10 11 km 3 (where we calculated the volume at radius 3500km and then subtracted the volume of the inner core) and the fraction of total volume is f = 15.5%. (c) for the mantle, R = 6400km, V = 9.7 10 11 km 3 (where we calculated the volume at radius 6400km and then subtracted the volume within the radius = 3500km) and the fraction of total volume is f = 83.6%. (d) for the crust we calculated volumes at R=6450 km and R =6400 km and subtracted them to get, V = 2.6 10 9 km 3 and the fraction of total volume is f = 0.2% Chapter 8, Review and Discussion 7 - What does it mean to say that the oon is in a synchronous orbit around Earth? How did the oon come to be in a such an orbit? A synchronous orbit means that the time for the oon to complete one rotation around it s own spin axis is exactly equal to the time it takes for the oon to complete one revolution (orbit) around Earth. The oon came into this configuration (called tidally locked) due to gravitational interactions between the oon and the Earth over a long period of time. Chapter 8, Review and Discussion 19 - Explain why ercury is never seen overhead at midnight in the Earth s sky? Looking overhead at midnight from Earth means that one is looking directly away from the Sun, so that the only planets that could possibly be visible are the ones with larger orbits than Earth. Since ercury is closer to Sun than the Earth, it can never been seen in this configuration. Chapter 8, Problem 11 - Assume that a planet will have list its initial atmosphere by the present time if the average molecular speed exceeds one-sixth of the escape speed. What would ercury s mass have to be in order for it to still have a nitrogen atmosphere? The molecular weight of nitrogen is 28. Escape velocities and mean molecular speeds are described on pg. 210 of Chaisson & cillan. The escape velocity (in km/s) is v escape = 11.2 r 4

where is the mass in Earth-masses, and r is the radius in Earth-radii. The average molecular speed (in km/s) is T v mol = 0.157 m where T is the temperature (in K) and m is the molecular weight. The question asks for the minimum mass, such that 1/6 times the escape speed is less greater than the average molecular speed. (If the escape speed is larger than the molecular speed, then the molecules will not escape). So v mol 1 6 v escape T 0.157 m 11.2 6 r Plugging in the temperature near the surface of ercury, T = 600K, the molecular weight of nitrogen, m = 28, and the radius of ercury, r = 38 Earth radii, we can solve for : 600 0.157 28 11.2 6 0.38 7.2 which means that ercury would have to be 7.2 times as massive as Earth to retain it s nitrogen atmosphere (this is completely due to the increased temperature on ercury from being closer to the Sun. 5