Converter Topologies

Similar documents
DC-DC Boost Converter with Constant Output Voltage for Grid Connected Photovoltaic Application System

LLC Resonant Converter Reference Design using the dspic DSC

Switched Mode Converters (1 Quadrant)

µ r of the ferrite amounts to It should be noted that the magnetic length of the + δ

Switching Regulator IC series Capacitor Calculation for Buck converter IC

Voltage level shifting

I) EQUATION 1: SHUNT-CONTROLLED

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Pulse-Width Modulation Inverters

High Efficiency DC-DC Converter for EV Battery Charger Using Hybrid Resonant and PWM Technique

Part II Converter Dynamics and Control

CHARGE AND DISCHARGE OF A CAPACITOR

Full-wave rectification, bulk capacitor calculations Chris Basso January 2009

LECTURE 9. C. Appendix

ECEN4618: Experiment #1 Timing circuits with the 555 timer

Chapter 7. Response of First-Order RL and RC Circuits

Inductance and Transient Circuits

Making Use of Gate Charge Information in MOSFET and IGBT Data Sheets

RC (Resistor-Capacitor) Circuits. AP Physics C

Capacitors and inductors

PI4ULS5V202 2-Bit Bi-directional Level Shifter with Automatic Sensing & Ultra Tiny Package

VIPer12ADIP VIPer12AS

Monotonic, Inrush Current Limited Start-Up for Linear Regulators

SEMICONDUCTOR APPLICATION NOTE

SINAMICS S120 drive system

AN1207. Switch Mode Power Supply (SMPS) Topologies (Part II) REQUIREMENTS AND RULES INTRODUCTION CONTENTS. Microchip Technology Inc.

Lecture 15 Isolated DC-DC converters

DATA SHEET. 1N4148; 1N4446; 1N4448 High-speed diodes DISCRETE SEMICONDUCTORS Sep 03

Astable multivibrator using the 555 IC.(10)

Differential Equations and Linear Superposition

Silicon Diffused Power Transistor

Gate protection. Current limit. Overvoltage protection. Limit for unclamped ind. loads. Charge pump Level shifter. Rectifier. Open load detection

Smart Highside Power Switch

Product Operation and Setup Instructions

NOTES ON OSCILLOSCOPES

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

OPERATION MANUAL. Indoor unit for air to water heat pump system and options EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1

PSI U Series. Programmable DC Power Supplies W to 3000 W THE POWER TEST EXPERTS.

9. Capacitor and Resistor Circuits

AVR121: Enhancing ADC resolution by oversampling. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

ALSO IN THIS ISSUE: For more information contact: Graham Robertson Media Relations, FOR DESIGNERS AND SYSTEMS ENGINEERS

Photovoltaic Power Control Using MPPT and Boost Converter

TDA7377H. 2x30W DUAL/QUAD POWER AMPLIFIER FOR CAR RADIO. HIGH OUTPUT POWER CAPABILITY: 2x35W max./4ω. 4 x 1KHz, 10%

High-Power Factor Flyback Converter for LED Driver with FL7732 PSR Controller. Bridge-Diode D R SN R START D VDD C VDD Q MOSFET

Internet Engineering. Jacek Mazurkiewicz, PhD Softcomputing. Part 1: Introduction, Elementary ANNs

Signal Processing and Linear Systems I

Package SJP. Parameter Symbol Conditions Rating Unit Remarks Transient Peak Reverse Voltage V RSM 30 V Repetitive Peak Reverse Voltage, V RM 30 V

CAPACITANCE AND INDUCTANCE

Datasheet PROFET BTS 723 GW. Smart High-Side Power Switch Two Channels: 2 x 100mΩ Status Feedback Suitable for 42V

Principal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya.

II.1. Debt reduction and fiscal multipliers. dbt da dpbal da dg. bal

CLOCK SKEW CAUSES CLOCK SKEW DUE TO THE DRIVER EROSION OF THE CLOCK PERIOD

Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E

The Impact of Variable Speed Drives on Electrical Systems

Innovation + Quality. Product range Valves and controls for cooling systems

MTH6121 Introduction to Mathematical Finance Lesson 5

IR Receiver Module for Light Barrier Systems

Journal Of Business & Economics Research September 2005 Volume 3, Number 9

High Intensify Interleaved Converter for Renewable Energy Resources

Signal Rectification

AP Calculus AB 2013 Scoring Guidelines

Insulated-Gate Transistors Simplify AC-Motor Speed Control

SkySails Tethered Kites for Ship Propulsion and Power Generation: Modeling and System Identification. Michael Erhard, SkySails GmbH, Hamburg, Germany

Version 2.1, 6 May 2011

UNDERSTANDING THE DEATH BENEFIT SWITCH OPTION IN UNIVERSAL LIFE POLICIES. Nadine Gatzert

Measuring macroeconomic volatility Applications to export revenue data,

Making a Faster Cryptanalytic Time-Memory Trade-Off

Analogue and Digital Signal Processing. First Term Third Year CS Engineering By Dr Mukhtiar Ali Unar

Photo Modules for PCM Remote Control Systems

Chapter 4. LLC Resonant Converter

CALCULATION OF OMX TALLINN

Development and Testing of a 200 MJ/350 kw Kinetic Energy Storage System for Railways Applications

Chapter 4: Exponential and Logarithmic Functions

IR Receiver Modules for Remote Control Systems

SOLID MECHANICS TUTORIAL GEAR SYSTEMS. This work covers elements of the syllabus for the Edexcel module 21722P HNC/D Mechanical Principles OUTCOME 3.

The leakage inductance of the power transformer

Smart Highside Power Switch

TIMERS SELECTION GUIDE

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

OM02 Optical Mouse Sensor Data Sheet

CoolSET -F3R ICE3BR0665J. Off-Line SMPS Current Mode Controller with integrated 650V CoolMOS and Startup cell (frequency jitter Mode) in DIP-8

Design of an Auxiliary Power Distribution Network for an Electric Vehicle

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.

A bidirectional DC-DC converter for renewable energy systems

WATER MIST FIRE PROTECTION RELIABILITY ANALYSIS

Molding. Injection. Design. GE Plastics. GE Engineering Thermoplastics DESIGN GUIDE

Multiprocessor Systems-on-Chips

Design, Analysis, and Implementation of Solar Power Optimizer for DC Distribution System

TN/TS-1500 Inverter Instruction Manual

Chapter 1.6 Financial Management

MCR-S- -DCI. Current Transducer up to 55 A, Programmable and Configurable INTERFACE. Data Sheet. 1 Description

TOOL MASTER Quadra. Tool presetting The professional and compact solution for your manufacturing

Application of Fast Response Dual-Colour Pyroelectric Detectors with Integrated Op Amp in a Low Power NDIR Gas Monitor

4 Convolution. Recommended Problems. x2[n] 1 2[n]

Present Value Methodology

Model Number Structure

Transcription:

High Sepup Raio DCDC Converer Topologies Par I Speaker: G. Spiazzi P. Teni,, L. Rosseo,, G. Spiazzi,, S. Buso,, P. Maavelli, L. Corradini Dep. of Informaion Engineering DEI Universiy of Padova

Seminar Ouline Why we need high sepup raio converers? Applicaion fields Low power high sepup raio opologies Coupled inducors High power high sepup raio opologies Non isolaed Isolaed 2

Why? High Sepup Raio Topologies Lowvolage highcurren energy sources Fuelcells (some kw) Paralleled phoovolaic modules in domesic applicaions (some kw) Microinverer, i.e. connecion of a single phoovolaic module o he grid (some hundred was) Sepdown inverers require an inpu volage higher han he maximum line volage peak 3

Example of Microinverer Uiliy grid Microinverer srucure 200300W single pv panel High SepUp Microinverer for single panel DCDC Modulariy Reducion of parial shading effecs Dedicaed Maximum Power Poin Tracker (MPPT) 4

Simple Boos Topology Boos scheme including some parasiic elemens: Diode model U i I L r L L U D r S r D S Swich model D C I o R o U o Volage conversion raio (neglecing inducor curren ripple): M = 1 1 d 1 r D ( 1 d) rs R ( 1 d) o 1 d 2 r L U U D o = 1 F d,u 1 d (,R ) o o 5

Simple Boos Topology Volage conversion raio M including conducion losses: M ideal 8 M max 6 4 2 R o 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Duycycle 6

Simple Boos Topology Converer efficiency: P η = P ou in = UoI UI i o i = UoI UI i D L = ( d) = F( d,u, R ) M 1 o o 1 η 0.95 0.9 0.85 R o 0.8 0.75 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Duycycle 7

Low Power Applicaions Example: inegraed BoosFlyback converer L m S 1:n 21 D 2 D 1 C 1 U 2 U 1 Uo I can be seen as a flyback converer wih a non dissipaive snubber: D 1 and C 1 deliver o he oupu he energy sored in he ransformer leakage inducance 8

Inegraed BoosFlyback Converer Ideal waveforms: CCM operaion of flyback secion DCM operaion of boos secion L m 1:n 21 i D2 D 2 U 2 Uo S i D1 D 1 C 1 U 1 i D1 i D2 0 1 2 3 4 =T s 0 Advanages: ZCS urn on Sof diode urn off Reduced swich volage sress 9

Inegraed BoosFlyback Converer Problems: Parasiic oscillaions a D 2 urn off caused by is capaciance C r resonaing wih ransformer leakage inducances and L s u r L m 1:n 21 i s L s C r D 2 U 2 Uo High volage sress across D 2 S D 1 C 1 U 1 Dissipaive RCD snubber is needed 10

Modified IBF Converer L m S 1:n 21 i s L s D 3 x C r u r D 2 D 1 C 1 U 2 Uo U 1 Clamping diode D 3 added o he original opology Advanages: Clean diode volage waveforms wihou parasiic oscillaions Energy ransfer oward he oupu also during swich urn on inerval Sligh volage gain increase due o resonances beween parasiic componens 11

Modified IBF Converer Inerval T 01 = 1 0 i D1 i D2 i D2 L m L s D 2 U 2 Uo i D3 0 1 2 3 4 5 6 7 =T s 0 S C 1 U 1 12

Modified IBF Converer Inerval T 12 = 2 1 u r i D1 C r i D2 L m L s U 2 Uo i D3 0 1 2 3 4 5 6 7 =T s 0 S C 1 U 1 13

Modified IBF Converer Inerval T 23 = 3 2 i D1 i D2 L m L s D 3 i D3 U 2 Uo i D3 0 1 2 3 4 5 6 7 =T s 0 S C 1 U 1 Noe: acual i D3 slope can be eiher posiive or negaive 14

Modified IBF Converer Inerval T 34 = 4 3 i D1 i D2 L m L s D 3 i D3 U 2 Uo i D3 0 1 2 3 4 5 6 7 =T s 0 S i D1 D 1 C 1 U 1 15

Modified IBF Converer Inerval T 45 = 5 4 u r i D1 C r i D2 L m L s U 2 Uo i D3 0 1 2 3 4 5 6 7 =T s 0 i D1 D 1 C 1 U 1 16

Modified IBF Converer Inerval T 56 = 6 5 i D1 i D2 i D2 L m L s D 2 U 2 Uo i D3 0 1 2 3 4 5 6 7 =T s 0 i D1 D 1 C 1 U 1 17

Modified IBF Converer Inerval T 67 = 7 6 i D1 i D2 i D2 L m L s D 2 U 2 Uo i D3 0 1 2 3 4 5 6 7 =T s 0 C 1 U 1 18

Converer Parameers Inpu volage: Oupu volage: Nominal oupu power: Swiching frequency: = 2535 V U o = 400 V P o = 300 W f s = 100 khz Magneizing inducance: L m = 20 µh Primary leakage inducance: = 0.4 µh Secondary leakage inducance: L s = 2 µh 19

Volage Conversion Raio M 21 17 13 9 Comparison beween calculaions and spice simulaions M 1 5.6 5.2 4.8 4.4 M = U U o g M = 1 U U This unmached poin corresponds o a differen opological sequence 1 g 5 4 0.4 0.5 0.6 0.7 0.8 Duycycle 20

Volage Conversion Raio Effec of resonan inervals on he overall volage gain M 14 13 12 11 10 9 8 7 Wih parasiic componens 6 0.4 0.45 0.5 0.55 0.6 0.65 0.7 Duycycle No parasiic componens M = U U o g 21

Experimenal Resuls = 35 V, U o = 400 V, P o = 300 W u x [100V/div] u DS [50V/div [2.5A/div] Peaking due o a small dip in he converer inpu volage due o fas curren rise ime 22

Experimenal Resuls = 35 V, U o = 400 V, P o = 300 W u x u x u DS u DS I mpk i D1 0 1 2 3 4 5 6 i D2 i D3 0 1 2 3 4 5 6 7 =T s 0 23

Experimenal Resuls = 25 V, U o = 400 V, P o = 300 W u x [100V/div] u DS [50V/div L m L s D 3 i D3 U 2 Uo S C 1 U 1 [5A/div] 0 1 2 3 D 3 urns off during he swich on inerval 24

Measured Efficiency η 0.95 P o = 200 W f s = 100kHz η 0.94 f s = 100kHz P o = 300 W 0.94 0.93 f s = 200kHz 0.92 f s = 200kHz 0.93 0.91 0.92 25 27 29 31 33 35 [V] 0.90 25 27 29 31 33 35 [V] 25

Measured Efficiency f s = 100 khz η = 35V 0.95 0.94 = 25V 0.93 0.92 100 150 200 P o [W] 250 300 26

IBF Converer wih Volage Muliplier Volage muliplier cell D 2 U 2 D 3 C 3 U 3 U o L m D 1 S C U 1 1 27

IBF Converer wih Volage Muliplier IBF converer wih volage muliplier cell versus modified IBF D 2 D 3 X U 2 C 3 U 3 U o L m 1:n 21 i s L s D 3 x C r u r D 2 U 2 Uo L m D 1 S C U 1 1 S D 1 C 1 U 1 Similar behavior wih a higher degree of freedom in conrolling he swich volage sress 28

Converer Waveforms BOOST secion in DCM and FLYBACK secion in CCM N p u r C r x D 2 i s L D s 3 N s C 3 U 2 U 3 I mvl I mpk I gpk I mpk I m1 I m2 im U o i D1 L m D 1 C 1 S U 1 i s ( 5 ) i D2 I m1 /n 21 I m2/n 21 i s ( 2 ) i D3 i D3 ( 3 ) 0 1 2 3 4 5 6 7 =T s 0 29

Experimenal Prooype Design example: Inpu volage: = 25 35V Oupu volage: U o = 400V Nominal oupu power: P o = 300W Swiching frequency: f s = 100kHz Boos oupu: U 1 = 75V Magneizing inducance: L m = 20µH Primary leakage inducance: = 0.4µH Secondary leakage inducance: L s = 2µH 150V raed mosfe Based on desired curren ripple and DCM CCM mode a nominal power From he design consrains: M= U o / =400/35=11.42 M 1 = U 1 / =75/35=2.143 Numerically solving: d = 0.519, n 21 = 4.589 M 2 = U 2 / = 4.823 M 3 = MM 1 M 2 = U 3 / = 4.454 M calculaed volage M 1 gains (coninuous 5 curves) and simulaion resuls (doed) 25 20 15 10 5 1 0.4 0.5 0.6 0.7 0.8 Duycycle 4 3 2 30

Experimenal resuls u x u DS Measured main waveforms in a swiching period = 35V, V o = 400V, P o = 300W u x : 100V/div; u DS : 20V/div; : 5A/div u r C r x D 2 i s N s U 2 N p L D s 3 C 3 U 3 im U o u DS u x u x u DS L m D 1 S C U 1 1 zero curren urn on layou sray inducances resonance Deails of urn on and urn off inervals 0 1 2 3 4 5 6 31

Converer efficiency The converer efficiency was measured as a funcion of inpu volage, a P o =300W,Fig.1, and a =[25V,35V] and variable oupu power, Fig. 2 η Efficiency η Efficiency 0.95 0.96 = 35V 0.95 0.94 0.94 = 25V 0.93 25 27 29 31 33 35 [V] Fig.1 0.93 100 150 Fig.2 200 P o [W] 250 300 32

Isolaed IBF Converer N p u r im C r x D 2 i s L D s 3 N s C 3 U 2 U 3 U o For isolaion,, he loss less snubber D 1 C 1 is subsiued by an acive clamp L m D 1 C 1 S U 1 i d i o U AC C AC S AC Lm S D 2 N p D 1 C r u r U 2 L s i s N s C 1 U 1 U o R o 33

Isolaed IBF Converer Advanages: ZVS urn on Sof diode urn off Reduces swich volage sress Clean diode volage waveforms wihou parasiic oscillaions Energy ransfer oward he oupu also during swich urn on inerval Reduced acive clamp circulaing curren 34

Converer Operaion Hp: negligible capacior volage ripples Inerval T 01 = 1 0 ( 0 ) i d I mpk I mvl i d i o i d ( 0 ) i SAC Lm S D 2 N p L s i s N s C 1 U 2 U 1 U o R o i D2 i D1 0 1 2 3 4 5 6 =T s 0 Sof D 2 urn off 35

Converer Operaion Hp: negligible capacior volage ripples Inerval T 12 = 2 1 ( 0 ) i d I mpk I mvl i d i o i d ( 0 ) i SAC Lm S N p C r u r U 2 L s i s N s C 1 U 1 U o R o i D2 i D1 0 1 2 3 4 5 6 =T s 0 36

Converer Operaion Hp: negligible capacior volage ripples Inerval T 23 = 3 2 ( 0 ) i d I mpk I mvl i d i o i d ( 0 ) i SAC Lm S N p D 1 L s i s N s C 1 U 2 U 1 U o R o i D2 i D1 0 1 2 3 4 5 6 =T s 0 Noe: acual i D1 slope can be eiher posiive or negaive 37

Converer Operaion Hp: negligible capacior volage ripples Inerval T 34 = 4 3 ( 0 ) i d I mpk I mvl i d i o i d ( 0 ) i SAC U AC C AC S AC Lm N p D 1 L s i s N s C 1 U 2 U 1 U o R o i D2 i D1 0 1 2 3 4 5 6 =T s 0 Sof D 1 urn off 38

Converer Operaion Hp: negligible capacior volage ripples Inerval T 45 = 5 4 ( 0 ) i d I mpk I mvl i d i o i d ( 0 ) U AC C AC Lm C r u r U 2 N p S i AC s U o L s i SAC N s C 1 U 1 R o i D2 i D1 0 1 2 3 4 5 6 =T s 0 Reduced acive clamp circulaing curren 39

Converer Operaion Hp: negligible capacior volage ripples ( 0 ) i d I mpk Inerval T 56 = 6 5 i d ( 0 ) I mvl i d i o i SAC U AC C AC S AC Lm D 2 N p L s i s N s C 1 U 2 U o R o i U D1 1 0 1 2 3 4 5 6 =T s 0 i D2 40

Converer Parameers Inpu volage: Oupu volage: Nominal oupu power: Swiching frequency: = 2535 V U o = 400 V P o = 300 W f s = 100 khz Magneizing inducance: L m = 20 µh Primary leakage inducance: = 0.4 µh Secondary leakage inducance:l s = 2 µh 41

Experimenal Resuls = 35 V, U o = 400 V, P o = 300 W (2µs/div) u D1 [100V/div] u DS [20V/div] i d [5A/div] Peaking due o a small dip in he converer inpu volage due o he fas curren rise ime 42

Experimenal Resuls = 35 V, U o = 400 V, P o = 300 W (2µs/div) u D1 [100V/div] u DS [20V/div] } i d [5A/div] The resonan phase reduces he acive clamp circulaing curren 43

Experimenal Resuls = 35 V, U o = 400 V, P o = 300 W (2µs/div) U AC C AC S AC Lm S D 2 D 1 C r u r L s C 1 U o R o 390 pf exernal capacior added } i d [5A/div] The resonan phase reduces he acive clamp circulaing curren 44

Deail of Main Swich Turn On = 35 V, U o = 400 V, P o = 300 W Time scale: 500ns/div ( 0 ) i d I mpk u D1 [100V/div] i d ( 0 ) I mvl u DS [20V/div] i SAC i D2 i d [5A/div] i D1 0 1 2 3 4 5 6 =T s 0 6 = 0 1 2 45

Deail of Main Swich Turn Off = 35 V, U o = 400 V, P o = 300 W Time scale: 500ns/div ( 0 ) i d I mpk u D1 [100V/div] i d ( 0 ) I mvl u DS [20V/div] i SAC i D2 i d [5A/div] i D1 0 1 2 3 4 5 6 =T s 0 3 4 5 46

Zero Volage Swiching Deail of he main swich urn on (nominal oupu power) u GS [5V/div] u DS [20V/div] u D1 [100V/div] i d [5A/div] [200ns/div] 47

Differen Operaing Mode = 25 V, U o = 400 V, P o = 100 W i d i o u DS [20V/div] u D1 [100V/div] Lm D 2 D 1 C 1 U 2 U 1 U o R o i d [2A/div] D 1 urns off during he swich on inerval 48

Measured Efficiency Power sage only P o = 300 W η η 0.95 = 35V 0.94 0.94 = 25V 0.93 0.93 0.92 0.92 100 150 200 P o [W] 250 300 0.91 25 27 29 31 33 35 [V] 49

Commens There are differen opologies presened in lieraure whose behavior is very similar o he Inegraed BoosFlyback converer. These opologies have a drawback of a disconinuous inpu curren waveform, ha make he use of such converers for higher power levels a leas problemaic. For high power applicaions, a coninuous inpu curren represens a very nice feaure 50