Chapter 7. Response of First-Order RL and RC Circuits
|
|
|
- Shanon Holmes
- 9 years ago
- Views:
Transcription
1 Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural esponses 7.5. equenial wiching 7.6. Unbounded esponse 7.7. The Inegraing Amplifier 1
2 7.3 The ep esponse of L and C Circuis Finding he currens and volages in firs-order L or C circuis when eiher dc volage or curren sources are suddenly applied. The ep esponse of an L Circui The circui is shown in Fig Energy sored in he inducor a he ime he swich is closed is given in erms of a nonzero iniial curren i(). The ask is o find he expressions for he curren in he circui and for he volage across he inducor afer he swich has been closed. We derive he differenial equaion ha describes he circui and we solve he equaion. 2
3 Afer he swich has been closed, Kirchhoff s volage law requires ha di = i + L (7.29) d which can be solved for he curren by separaing he variables i and, hen inegraing. The firs sep is o solve Eq. (7.29) for di d : di d = i + = i (7.3) L L Nex, we muliply boh sides by d. di i = d (7.31) L We now separae he variables in Eq. (7.32) o ge di = d i ( / ) L and hen inegrae boh sides. Using variables for he inegraion, we obain x and (7.32) y as 3
4 = ) ( ) / ( i I dy L x dx (7.33) where I is he curren a = and ) ( i is he curren a any >. Therefore L I i = ) / ( ) / ( ) ( ln (7.34) from which L e I i ) / ( ) / ( ) / ( ) ( = or L e I i ) / ( ) ( + = (7.35) When he iniial energy in he inducor is zero, I is zero. Thus eq. (7.35) reduces o 4
5 i( ) ( / L) = e (7.36) Eq. (7.36) indicaes ha afer he swich has been closed, he curren increases exponenially from zero o a final value /. The ime consan of he circui, L /, deermines he rae of increase. One ime consan afer he swich has been closed, he curren will have reached approximaely 63% of is final value, or i( τ ) = e (7.37) If he curren were o coninue o increase a is iniial rae, i would reach is final value a = τ ; ha is because di 1 / τ / τ = e = e (7.38) d τ L he iniial rae a which i () increases is di d ( ) = (7.39) L 5
6 If he curren were o coninue o increase a his rae, he expression for i would be i = (7.4) L from which, a = τ, i L = = (7.41) L Equaions (7.36) and (7.4) are ploed in Fig The values given by Eqs. (7.37) and (7.41) are also shown in his figure. The volage across an inducor is + (7.35), for, L di d, so from Eq. v L ( / L) ( I ) e ( / L) = L I e = (7.42) The volage across he inducor is zero before he swich is closed. Eq. (7.42) indicaes ha he inducor volage jumps o I a he insan he swich is closed and hen decays exponenially o zero. 6
7 Does he value of v a + = makes sense? Because he iniial curren is I and he inducor prevens an insananeous change in curren, he curren is I in he insan afer he swich has been closed. The volage drop across he resisor is I, and he volage impressed across he inducor is he source volage minus he volage drop, ha is, I. When he iniial inducor curren is zero, Eq. (7.42) simplifies o v ( / L) = e (7.43) If he iniial curren is zero, he volage across he inducor jumps o. We also expec he inducor volage o approach zero as increases, because he curren in he circui is approaching he consan value of. 7
8 Fig shows he plo of Eq. (7.43) and he relaionship beween he ime consan and he iniial rae a which he inducor volage is decreasing. If here is an iniial curren in he inducor, Eq. (7.35) gives he soluion for i. The algebraic sign of I is posiive if he iniial curren is in he same direcion as ; oherwise, I carries a negaive sign. i Example 7.5 The swich shown in Fig has been in posiion a long ime. A =, he swich moves from a o b. The swich is a make-before-break ype; so, here is no inerrupion of curren hrough he inducor. a) Find he expression i () for b) Wha is he iniial volage across he inducor jus afer he swich has been moved o posiion b? c) Does he iniial volage make sense in erms of circui behavior? d) How many milliseconds afer he swich has been moved does he inducor volage equal 24? e) Plo boh i () and v () versus. 8
9 We can also describe he volage v () across he inducor direcly, no jus in erms of he circui curren. We begin by noing ha he volage across he resisor is he difference beween he source volage and he inducor volage. We wrie v( ) i( ) = (7.44) where is a consan. Differeniaing boh sides wih respec o ime yields di d dv = 1 (7.45) d Muliply each side of Eq. (7.45) by he inducance L. v L dv = (7.46) d Puing Eq. (7.46) ino sandard form yields 9
10 dv d + v L = (7.47) erify ha he soluion o Eq. (7.47) is idenical o ha given in Eq. (7.42). v L ( / L) ( I ) e ( / L) = L I e = (7.42) A his poin, a general observaion abou he sep response of an L circui is perinen. When we derived he differenial equaion for he inducor curren, we obained Eq. (7.29). We now di rewrie Eq. (7.29) = i + L as d di + i = (7.48) d L L Observe ha Eqs. (7.47) and (7.48) have he same form. pecifically, each equaes he sum of he firs derivaive of he variable and a consan imes he variable o a consan value. 1
11 In (7.47), he consan on he righ-hand side is zero; hence his equaion akes on he same form as he naural response equaions. In boh (7.47) and (7.48), he consan muliplying he dependen variable is he reciprocal of he ime consan, 1 ha is, =. L τ We encouner a similar siuaion in he derivaions for he sep response of an C circui. 11
12 The ep esponse of an C Circui We can find he sep response of a firs-order C circui by analyzing he circui shown in Fig For mahemaical convenience, we choose he Noron equivalen of he nework conneced o he equivalen capacior. umming he currens away from he op node in Fig generaes he differenial equaion Division by C gives dv d v + I (7.49) C C C = 12
13 dv d vc I + (7.5) C C C = Comparing Eq. (7.5) wih Eq. (7.48) di d + i = (7.48) L L reveals ha he form of he soluion for v C is he same as ha for he curren in he inducive circui, namely, Eq. (7.35). ( / L) i( ) = + I e (7.35) Therefore, by simply subsiuing he appropriae variables and coefficiens, we can wrie he soluion for v C direcly. The ranslaion requires ha I replace C replace L 1 replace replace I. We ge / C ( I ) e, vc = I + (7.51) 13
14 A similar derivaion for he curren in he capacior yields he differenial equaion di d 1 + i C = (7.52) Eq. (7.52) has he same form as Eq. (7.47) dv + v = (7.47) d L hence he soluion for i is obained by using he same ranslaions used for he soluion of Eq. (7.5). Thus i = I + / C e, (7.53) where is he iniial value for v C, he volage across he capacior. Le s see if he soluions for he C circui make sense in erms of known circui behavior. 14
15 From Eq. (7.51), noe ha he iniial volage across he capacior is, he final volage across he capacior is, and he ime consan of he circui is C. I Also noe ha he soluion for v C is valid for. These observaions are consisen wih he behavior of a capacior in parallel wih a resisor when driven by a consan curren source. Equaion (7.53) predics ha he curren in he capacior + a = is I. This predicion makes sense because he capacior volage canno change insananeously, and herefore he iniial curren in he resisor is. The capacior branch curren changes insananeously + from zero a = o I a =. The capacior curren is zero a =. Also noe ha he final value of v = I. Example 7.6 The swich in he circui shown in Fig has been in posiion 1 for a long ime. A =, he swich moves o posiion 2. Find a) v ( ) for + b) i ( ) for 15
16 7.4 A General oluion for ep and Naural esponse The general approach o finding eiher he naural response of he sep response of he firs-order L and C circuis shown in Fig is based on heir differenial equaions being he same. To generalize he soluion of hese four possible circuis, we le x () represen he unknown quaniy, giving x () four possible values. I can represen he curren or volage a he erminals of an inducor or he curren or volage a he erminals of a capacior. From he previous eqs. (7.47), (7.48), (7.5), and (7.52), we know ha he differenial equaion describing any one of he four circuis in Fig. (7.24) akes he form dx x x + = K (7.54) τ where he value of he consan K can be zero. 16
17 Because he sources in he circui are consan volages and/or currens, he final value of x will be consan; ha is, he final value mus saisfy (7.54), and, when x reaches is final value, he derivaive dx d mus be zero. Hence x f = Kτ (7.55) where x f represens he final value of he variable. We solve (7.54) by separaing he variables, beginning by solving for he firs derivaive: dx d ( x Kτ ) ( x x f ) x = + K = = (7.56) τ τ τ In wriing (7.56), we used (7.55) o subsiue K τ. We now muliply boh sides of (7.56) by divide by x x f o obain dx 1 = d x x τ f x f d for and (7.57) Inegrae (7.57). To obain as general a soluion as possible, we use ime as he lower limi and as he upper limi. 17
18 Time corresponds o he ime of he swiching or oher change. Previously we assumed ha =, bu his change allows he swiching o ake place a any ime. Using u and v as symbols of inegraion, we ge x( ) du x 1 = x( ) u f τ dv (7.58) Carrying ou he inegraion called for in (7.58) gives 18
19 x( ) f ( ) / τ [ x( ) X ] e = x + (7.59) f The significance of his equaion is he unknown variable as a = funcion of ime he final value of he variable he iniial [ ime of swiching] ime consan + value of he value of he variable he final variable e (7.6) In many cases, he ime of swiching - - is zero. 19
20 When compuing he sep and naural response of circuis, follow hese seps: 1. Idenify he variable of ineres for he circui. For C circuis, i is mos convenien o choose he capaciive volage; for L circuis, i is bes o choose he inducive curren. 2. Deermine he iniial value of he variable, which is is value a. Noe ha if we choose capaciive volage or inducive curren as variable of ineres, i is no necessary o disinguish beween + = and =. This is because hey boh are coninuous variables. If we choose anoher variable, we need o remember ha is iniial + value is defined a. = 3. Calculae he final value of he variable, which is he value as. 4. Calculae he ime consan for he circui. Wih hese quaniies we can use Eq. (7.6) o produce an equaion describing he variable of ineres as a funcion of ime. 2
21 21
RC (Resistor-Capacitor) Circuits. AP Physics C
(Resisor-Capacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED
Inductance and Transient Circuits
Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual
Capacitors and inductors
Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear
Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur
Module 4 Single-phase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,
Differential Equations and Linear Superposition
Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y
Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)
Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions
9. Capacitor and Resistor Circuits
ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren
CHARGE AND DISCHARGE OF A CAPACITOR
REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:
Module 3. R-L & R-C Transients. Version 2 EE IIT, Kharagpur
Module 3 - & -C Transiens esson 0 Sudy of DC ransiens in - and -C circuis Objecives Definiion of inducance and coninuiy condiion for inducors. To undersand he rise or fall of curren in a simple series
AP Calculus AB 2013 Scoring Guidelines
AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a mission-driven no-for-profi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was
Transient Analysis of First Order RC and RL circuits
Transien Analysis of Firs Order and iruis The irui shown on Figure 1 wih he swih open is haraerized by a pariular operaing ondiion. Sine he swih is open, no urren flows in he irui (i=0) and v=0. The volage
AP Calculus BC 2010 Scoring Guidelines
AP Calculus BC Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board
cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)
Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer
Full-wave rectification, bulk capacitor calculations Chris Basso January 2009
ull-wave recificaion, bulk capacior calculaions Chris Basso January 9 This shor paper shows how o calculae he bulk capacior value based on ripple specificaions and evaluae he rms curren ha crosses i. oal
Chapter 2 Kinematics in One Dimension
Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how
Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling
Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: -Solving Exponenial Equaions (The Mehod of Common Bases) -Solving Exponenial Equaions (Using Logarihms)
Signal Processing and Linear Systems I
Sanford Universiy Summer 214-215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 14-15, Gibbons
Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.
Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given
Economics Honors Exam 2008 Solutions Question 5
Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I
11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements
Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge
Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m
Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m
Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1
Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prin-ou should hae 1 quesions. Muliple-choice quesions may coninue on he ne column or page find all choices before making your selecion. The
Steps for D.C Analysis of MOSFET Circuits
10/22/2004 Seps for DC Analysis of MOSFET Circuis.doc 1/7 Seps for D.C Analysis of MOSFET Circuis To analyze MOSFET circui wih D.C. sources, we mus follow hese five seps: 1. ASSUME an operaing mode 2.
CAPACITANCE AND INDUCTANCE
CHAPTER 6 CAPACITANCE AND INDUCTANCE THE LEARNING GOALS FOR THIS CHAPTER ARE: Know how o use circui models for inducors and capaciors o calculae volage, curren, and power Be able o calculae sored energy
AP Calculus AB 2007 Scoring Guidelines
AP Calculus AB 7 Scoring Guidelines The College Board: Connecing Sudens o College Success The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and
1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,
Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..
µ r of the ferrite amounts to 1000...4000. It should be noted that the magnetic length of the + δ
Page 9 Design of Inducors and High Frequency Transformers Inducors sore energy, ransformers ransfer energy. This is he prime difference. The magneic cores are significanly differen for inducors and high
The Transport Equation
The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be
Permutations and Combinations
Permuaions and Combinaions Combinaorics Copyrigh Sandards 006, Tes - ANSWERS Barry Mabillard. 0 www.mah0s.com 1. Deermine he middle erm in he expansion of ( a b) To ge he k-value for he middle erm, divide
The Torsion of Thin, Open Sections
EM 424: Torsion of hin secions 26 The Torsion of Thin, Open Secions The resuls we obained for he orsion of a hin recangle can also be used be used, wih some qualificaions, for oher hin open secions such
4. International Parity Conditions
4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency
Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.
Appendi A: Area worked-ou s o Odd-Numbered Eercises Do no read hese worked-ou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa
17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides
7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion
A Probability Density Function for Google s stocks
A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural
Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary
Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes
Second Order Linear Differential Equations
Second Order Linear Differenial Equaions Second order linear equaions wih consan coefficiens; Fundamenal soluions; Wronskian; Exisence and Uniqueness of soluions; he characerisic equaion; soluions of homogeneous
Equation for a line. Synthetic Impulse Response 0.5 0.5. 0 5 10 15 20 25 Time (sec) x(t) m
Fundamenals of Signals Overview Definiion Examples Energy and power Signal ransformaions Periodic signals Symmery Exponenial & sinusoidal signals Basis funcions Equaion for a line x() m x() =m( ) You will
Motion Along a Straight Line
Moion Along a Sraigh Line On Sepember 6, 993, Dave Munday, a diesel mechanic by rade, wen over he Canadian edge of Niagara Falls for he second ime, freely falling 48 m o he waer (and rocks) below. On his
Part II Converter Dynamics and Control
Par II onverer Dynamics and onrol 7. A equivalen circui modeling 8. onverer ransfer funcions 9. onroller design 1. Inpu filer design 11. A and D equivalen circui modeling of he disconinuous conducion mode
Optimal Investment and Consumption Decision of Family with Life Insurance
Opimal Invesmen and Consumpion Decision of Family wih Life Insurance Minsuk Kwak 1 2 Yong Hyun Shin 3 U Jin Choi 4 6h World Congress of he Bachelier Finance Sociey Torono, Canada June 25, 2010 1 Speaker
Cointegration: The Engle and Granger approach
Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be non-saionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require
AP Calculus AB 2010 Scoring Guidelines
AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in 1, he College
Voltage level shifting
rek Applicaion Noe Number 1 r. Maciej A. Noras Absrac A brief descripion of volage shifing circuis. 1 Inroducion In applicaions requiring a unipolar A volage signal, he signal may be delivered from a bi-polar
A Curriculum Module for AP Calculus BC Curriculum Module
Vecors: A Curriculum Module for AP Calculus BC 00 Curriculum Module The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy.
PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE
Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees
Stochastic Optimal Control Problem for Life Insurance
Sochasic Opimal Conrol Problem for Life Insurance s. Basukh 1, D. Nyamsuren 2 1 Deparmen of Economics and Economerics, Insiue of Finance and Economics, Ulaanbaaar, Mongolia 2 School of Mahemaics, Mongolian
MTH6121 Introduction to Mathematical Finance Lesson 5
26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random
Acceleration Lab Teacher s Guide
Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion
Chapter 4: Exponential and Logarithmic Functions
Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion
Present Value Methodology
Presen Value Mehodology Econ 422 Invesmen, Capial & Finance Universiy of Washingon Eric Zivo Las updaed: April 11, 2010 Presen Value Concep Wealh in Fisher Model: W = Y 0 + Y 1 /(1+r) The consumer/producer
Astable multivibrator using the 555 IC.(10)
Visi hp://elecronicsclub.cjb.ne for more resources THE 555 IC TIMER The 555 IC TIMER.(2) Monosable mulivibraor using he 555 IC imer...() Design Example 1 wih Mulisim 2001 ools and graphs..(8) Lile descripion
Niche Market or Mass Market?
Niche Marke or Mass Marke? Maxim Ivanov y McMaser Universiy July 2009 Absrac The de niion of a niche or a mass marke is based on he ranking of wo variables: he monopoly price and he produc mean value.
2.5 Life tables, force of mortality and standard life insurance products
Soluions 5 BS4a Acuarial Science Oford MT 212 33 2.5 Life ables, force of moraliy and sandard life insurance producs 1. (i) n m q represens he probabiliy of deah of a life currenly aged beween ages + n
Chapter 6: Business Valuation (Income Approach)
Chaper 6: Business Valuaion (Income Approach) Cash flow deerminaion is one of he mos criical elemens o a business valuaion. Everyhing may be secondary. If cash flow is high, hen he value is high; if he
Newton s Laws of Motion
Newon s Laws of Moion MS4414 Theoreical Mechanics Firs Law velociy. In he absence of exernal forces, a body moves in a sraigh line wih consan F = 0 = v = cons. Khan Academy Newon I. Second Law body. The
A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation
A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion
Imagine a Source (S) of sound waves that emits waves having frequency f and therefore
heoreical Noes: he oppler Eec wih ound Imagine a ource () o sound waes ha emis waes haing requency and hereore period as measured in he res rame o he ource (). his means ha any eecor () ha is no moing
Chapter 8: Regression with Lagged Explanatory Variables
Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One
Pulse-Width Modulation Inverters
SECTION 3.6 INVERTERS 189 Pulse-Widh Modulaion Inverers Pulse-widh modulaion is he process of modifying he widh of he pulses in a pulse rain in direc proporion o a small conrol signal; he greaer he conrol
Lecture 2: Telegrapher Equations For Transmission Lines. Power Flow.
Whies, EE 481 Lecure 2 Page 1 of 13 Lecure 2: Telegraher Equaions For Transmission Lines. Power Flow. Microsri is one mehod for making elecrical connecions in a microwae circui. I is consruced wih a ground
Hedging with Forwards and Futures
Hedging wih orwards and uures Hedging in mos cases is sraighforward. You plan o buy 10,000 barrels of oil in six monhs and you wish o eliminae he price risk. If you ake he buy-side of a forward/fuures
Signal Rectification
9/3/25 Signal Recificaion.doc / Signal Recificaion n imporan applicaion of juncion diodes is signal recificaion. here are wo ypes of signal recifiers, half-wae and fullwae. Le s firs consider he ideal
Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.
Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised
The naive method discussed in Lecture 1 uses the most recent observations to forecast future values. That is, Y ˆ t + 1
Business Condiions & Forecasing Exponenial Smoohing LECTURE 2 MOVING AVERAGES AND EXPONENTIAL SMOOTHING OVERVIEW This lecure inroduces ime-series smoohing forecasing mehods. Various models are discussed,
The option pricing framework
Chaper 2 The opion pricing framework The opion markes based on swap raes or he LIBOR have become he larges fixed income markes, and caps (floors) and swapions are he mos imporan derivaives wihin hese markes.
Table of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities
Table of conens Chaper 1 Ineres raes and facors 1 1.1 Ineres 2 1.2 Simple ineres 4 1.3 Compound ineres 6 1.4 Accumulaed value 10 1.5 Presen value 11 1.6 Rae of discoun 13 1.7 Consan force of ineres 17
Credit Index Options: the no-armageddon pricing measure and the role of correlation after the subprime crisis
Second Conference on The Mahemaics of Credi Risk, Princeon May 23-24, 2008 Credi Index Opions: he no-armageddon pricing measure and he role of correlaion afer he subprime crisis Damiano Brigo - Join work
Making Use of Gate Charge Information in MOSFET and IGBT Data Sheets
Making Use of ae Charge Informaion in MOSFET and IBT Daa Shees Ralph McArhur Senior Applicaions Engineer Advanced Power Technology 405 S.W. Columbia Sree Bend, Oregon 97702 Power MOSFETs and IBTs have
WHAT ARE OPTION CONTRACTS?
WHAT ARE OTION CONTRACTS? By rof. Ashok anekar An oion conrac is a derivaive which gives he righ o he holder of he conrac o do 'Somehing' bu wihou he obligaion o do ha 'Somehing'. The 'Somehing' can be
= r t dt + σ S,t db S t (19.1) with interest rates given by a mean reverting Ornstein-Uhlenbeck or Vasicek process,
Chaper 19 The Black-Scholes-Vasicek Model The Black-Scholes-Vasicek model is given by a sandard ime-dependen Black-Scholes model for he sock price process S, wih ime-dependen bu deerminisic volailiy σ
4 Convolution. Recommended Problems. x2[n] 1 2[n]
4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discree-ime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.1-1.
Lectures # 5 and 6: The Prime Number Theorem.
Lecures # 5 and 6: The Prime Number Theorem Noah Snyder July 8, 22 Riemann s Argumen Riemann used his analyically coninued ζ-funcion o skech an argumen which would give an acual formula for π( and sugges
Analogue and Digital Signal Processing. First Term Third Year CS Engineering By Dr Mukhtiar Ali Unar
Analogue and Digial Signal Processing Firs Term Third Year CS Engineering By Dr Mukhiar Ali Unar Recommended Books Haykin S. and Van Veen B.; Signals and Sysems, John Wiley& Sons Inc. ISBN: 0-7-380-7 Ifeachor
Kinematics in 1-D From Problems and Solutions in Introductory Mechanics (Draft version, August 2014) David Morin, [email protected].
Chaper 2 Kinemaics in 1-D From Problems and Soluions in Inroducory Mechanics (Draf ersion, Augus 2014) Daid Morin, [email protected] As menioned in he preface, his book should no be hough of as
Diagnostic Examination
Diagnosic Examinaion TOPIC XV: ENGINEERING ECONOMICS TIME LIMIT: 45 MINUTES 1. Approximaely how many years will i ake o double an invesmen a a 6% effecive annual rae? (A) 10 yr (B) 12 yr (C) 15 yr (D)
DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS
DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS Hong Mao, Shanghai Second Polyechnic Universiy Krzyszof M. Osaszewski, Illinois Sae Universiy Youyu Zhang, Fudan Universiy ABSTRACT Liigaion, exper
I. Basic Concepts (Ch. 1-4)
(Ch. 1-4) A. Real vs. Financial Asses (Ch 1.2) Real asses (buildings, machinery, ec.) appear on he asse side of he balance shee. Financial asses (bonds, socks) appear on boh sides of he balance shee. Creaing
1 HALF-LIFE EQUATIONS
R.L. Hanna Page HALF-LIFE EQUATIONS The basic equaion ; he saring poin ; : wrien for ime: x / where fracion of original maerial and / number of half-lives, and / log / o calculae he age (# ears): age (half-life)
ON THE PRICING OF EQUITY-LINKED LIFE INSURANCE CONTRACTS IN GAUSSIAN FINANCIAL ENVIRONMENT
Teor Imov r.amaem.sais. Theor. Probabiliy and Mah. Sais. Vip. 7, 24 No. 7, 25, Pages 15 111 S 94-9(5)634-4 Aricle elecronically published on Augus 12, 25 ON THE PRICING OF EQUITY-LINKED LIFE INSURANCE
BALANCE OF PAYMENTS. First quarter 2008. Balance of payments
BALANCE OF PAYMENTS DATE: 2008-05-30 PUBLISHER: Balance of Paymens and Financial Markes (BFM) Lena Finn + 46 8 506 944 09, [email protected] Camilla Bergeling +46 8 506 942 06, [email protected]
Technical Appendix to Risk, Return, and Dividends
Technical Appendix o Risk, Reurn, and Dividends Andrew Ang Columbia Universiy and NBER Jun Liu UC San Diego This Version: 28 Augus, 2006 Columbia Business School, 3022 Broadway 805 Uris, New York NY 10027,
Option Put-Call Parity Relations When the Underlying Security Pays Dividends
Inernaional Journal of Business and conomics, 26, Vol. 5, No. 3, 225-23 Opion Pu-all Pariy Relaions When he Underlying Securiy Pays Dividends Weiyu Guo Deparmen of Finance, Universiy of Nebraska Omaha,
On the degrees of irreducible factors of higher order Bernoulli polynomials
ACTA ARITHMETICA LXII.4 (1992 On he degrees of irreducible facors of higher order Bernoulli polynomials by Arnold Adelberg (Grinnell, Ia. 1. Inroducion. In his paper, we generalize he curren resuls on
Improper Integrals. Dr. Philippe B. laval Kennesaw State University. September 19, 2005. f (x) dx over a finite interval [a, b].
Improper Inegrls Dr. Philippe B. lvl Kennesw Se Universiy Sepember 9, 25 Absrc Noes on improper inegrls. Improper Inegrls. Inroducion In Clculus II, sudens defined he inegrl f (x) over finie inervl [,
Capital budgeting techniques
Capial budgeing echniques A reading prepared by Pamela Peerson Drake O U T L I N E 1. Inroducion 2. Evaluaion echniques 3. Comparing echniques 4. Capial budgeing in pracice 5. Summary 1. Inroducion The
Switching Regulator IC series Capacitor Calculation for Buck converter IC
Swiching Regulaor IC series Capacior Calculaion for Buck converer IC No.14027ECY02 This applicaion noe explains he calculaion of exernal capacior value for buck converer IC circui. Buck converer IIN IDD
Chapter 8 Student Lecture Notes 8-1
Chaper Suden Lecure Noes - Chaper Goals QM: Business Saisics Chaper Analyzing and Forecasing -Series Daa Afer compleing his chaper, you should be able o: Idenify he componens presen in a ime series Develop
The Greek financial crisis: growing imbalances and sovereign spreads. Heather D. Gibson, Stephan G. Hall and George S. Tavlas
The Greek financial crisis: growing imbalances and sovereign spreads Heaher D. Gibson, Sephan G. Hall and George S. Tavlas The enry The enry of Greece ino he Eurozone in 2001 produced a dividend in he
Chapter 6 Interest Rates and Bond Valuation
Chaper 6 Ineres Raes and Bond Valuaion Definiion and Descripion of Bonds Long-erm deb-loosely, bonds wih a mauriy of one year or more Shor-erm deb-less han a year o mauriy, also called unfunded deb Bond-sricly
ARCH 2013.1 Proceedings
Aricle from: ARCH 213.1 Proceedings Augus 1-4, 212 Ghislain Leveille, Emmanuel Hamel A renewal model for medical malpracice Ghislain Léveillé École d acuaria Universié Laval, Québec, Canada 47h ARC Conference
NOTES ON OSCILLOSCOPES
NOTES ON OSCILLOSCOPES NOTES ON... OSCILLOSCOPES... Oscilloscope... Analog and Digial... Analog Oscilloscopes... Cahode Ray Oscilloscope Principles... 5 Elecron Gun... 5 The Deflecion Sysem... 6 Displaying
CHAPTER FIVE. Solutions for Section 5.1
CHAPTER FIVE 5. SOLUTIONS 87 Soluions for Secion 5.. (a) The velociy is 3 miles/hour for he firs hours, 4 miles/hour for he ne / hour, and miles/hour for he las 4 hours. The enire rip lass + / + 4 = 6.5
1 A B C D E F G H I J K L M N O P Q R S { U V W X Y Z 1 A B C D E F G H I J K L M N O P Q R S { U V W X Y Z
o ffix uden abel ere uden ame chool ame isric ame/ ender emale ale onh ay ear ae of irh an eb ar pr ay un ul ug ep c ov ec as ame irs ame lace he uden abel ere ae uden denifier chool se nly rined in he
LECTURE 7 Interest Rate Models I: Short Rate Models
LECTURE 7 Ineres Rae Models I: Shor Rae Models Spring Term 212 MSc Financial Engineering School of Economics, Mahemaics and Saisics Birkbeck College Lecurer: Adriana Breccia email: abreccia@emsbbkacuk
Longevity 11 Lyon 7-9 September 2015
Longeviy 11 Lyon 7-9 Sepember 2015 RISK SHARING IN LIFE INSURANCE AND PENSIONS wihin and across generaions Ragnar Norberg ISFA Universié Lyon 1/London School of Economics Email: [email protected]
MACROECONOMIC FORECASTS AT THE MOF A LOOK INTO THE REAR VIEW MIRROR
MACROECONOMIC FORECASTS AT THE MOF A LOOK INTO THE REAR VIEW MIRROR The firs experimenal publicaion, which summarised pas and expeced fuure developmen of basic economic indicaors, was published by he Minisry
Stability. Coefficients may change over time. Evolution of the economy Policy changes
Sabiliy Coefficiens may change over ime Evoluion of he economy Policy changes Time Varying Parameers y = α + x β + Coefficiens depend on he ime period If he coefficiens vary randomly and are unpredicable,
